用户名: 密码: 验证码:
复合氧化物催化微晶纤维素/蔗渣液化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油、煤炭、天然气等不可再生资源日益枯竭,导致世界能源危机日趋严峻。生物质具有可再生、零净碳排放等优点,其开发利用符合低碳经济的理念,因此随着新能源研究的深入,生物质等可再生资源的开发研究成了当今世界面临的重大课题。
     本文采用共沉淀法制备了MgMOx(M=Cr、Ni、Al、Mn、Zn、Fe)系列二元金属复合氧化物催化剂。以微晶纤维素及蔗渣为原料,采用高压反应釜对其在热压水条件下的催化液化过程工艺进行了研究。同时,将生物质液化反应产物分为气相、水溶相、四氢呋喃(THF)溶相和残渣四部分,对水溶相的主要化合物组成及相对含量采用气相色谱质谱(GC-MS)进行了分析,并分析了液化反应温度、时间对蔗渣液化水溶相产物酸、羟值的影响;利用凝胶渗透色谱(GPC)对四氢呋喃溶相化合物的分子量分布进行了表征,并采用傅利叶红外光谱(FT-IR)对其主要特征官能团进行了分析;采用元素分析仪对液化残渣的化学元素组成和热值(HHV)进行了分析与表征。探讨了反应温度、时间、液固比、液化气氛、催化剂等因素对微晶纤维素、蔗渣液化转化率以及各相产物分布的影响。结果表明,当以二元金属复合氧化物MgMnOx作为催化剂时,在250℃,30 min,液固比为10条件下,微晶纤维素转化率达96.2%;在270℃,5 min,液固比为10条件下,蔗渣的转化率为90.4%,其中水溶相产率达51.5%。
     以MgMnOx作为液化催化剂时,微晶纤维素液化水溶相主要产物为环戊烯酮及其衍生物、2-羟基丙酸、及少量酸、醇、醚,其四氢呋喃萃取相的质均分子量(Mw)为659 g·mol-1;蔗渣液化时,四氢呋喃萃取相的质均分子量为802 g·mol-1,较无催化剂时降低了219 g·mol-1。催化剂对蔗渣液化各相产率分布及水溶相主要组成有很大影响,当以MgMnOx等系列复合金属氧化物作为催化剂时,其水溶相产物主要为环戊烯酮衍生物、2,5-己二酮、苯酚及衍生物、乙酰丙酸、对羟基苯醛等;无催化剂条件下,其液化水溶相主要为糠醛及其衍生物5-羟甲基-2-呋喃甲醛。
     复合金属氧化物催化剂MgMnOx能有效促进微晶纤维素、蔗渣的液化降解,且环境友好,本研究结果对生物质催化液化具有较好的借鉴意义。
With the depletion of petroleum, coal, natural gas and other fossil fuels, the global energy crisis is increasing fairly rapidly. Biomass is one of renewable energy form with zero net carbon emission; the utilization of biomass is in accordance well with the concept of low carbon economy. Studying on the transformation of biomass has been paid great interesting for the exploitation of new energy and renewable resources.
     In this dissertation, coprecipitation method was adopted for the preparation of a series of mixed metallic oxides MgMOx(M=Cr、Ni、Al、Mn、Zn、Fe) and their catalytic properties were investigated for the liquefaction of microcellulose and bagasse in the thermal compressed water. The liquefied products of biomass feedstock were separated into gas phase, water and THF extraction fractions and solid residues. The main chemical compositions and relative content of water extraction products were characterized by GC-MS and the effects of reaction temperature and time on acid/hydroxide number of aqueous phase were analyzed as well. GPC was used to measure the molecular weight distribution of polymers dissolved in THF and the qualitative analysis of functional groups was carried out by FT-IR. Simultaneously, the chemical element composition and high heat valve of the solid residue were characterized by element analyzer and calculated. The effects of reaction temperature, time, ratio of liquid to solid (L/S), atmosphere and catalysts on liquefaction of microcellulose and bagasse were investigated in detail. Experimental results indicated that 96.2% of microcellulose was converted when the MgMnOx was used as catalyst at 250℃for 30 min with L/S ratio 10, while 90.4% of baggase was converted at an elevated temperature of 270℃for 5 min with L/S ratio 10 and more than of 51.5% products dissolved in water phase.
     Water dissolving phase were mainly composed of cyclopentyl ketene and its derivatives, 2-hydroxypropanoic acid and a small amount of acid, alcohol and ether with the mass-average molecular weight of THF extraction phase was 659 g·mol-1 while MgMnOx was used as catalyst for the liquefaction of microcellulose. As for the liquefaction of bagasse, the average number of molecular weight in tetrahydrofuran (THF) dissolving fractions decreased from 1021 g·mol-1 to 802 g·mol-1 while the same catalyst was adopted. The results demonstrated that the bagasse liquefaction products distribution and composition were significantly affected by the catalyst. For example, water soluble phase in catalytic liquefaction of bagasse were mainly composed of cyclopentenone, 2, 5-Hexanedione, phenol and its derivatives, 4-oxo-pentanoic acid, p-hydroxy-Benzaldehyde but, the aqueous phase were mainly composed of furfural and its derivatives when no catalyst was used.
     As an environmental friendly liquefaction catalyst, MgMnOx can effectively promoted liquefied degradation of microcellulose and baggase. So reported result is significant for the reference of biomass liquefaction process.
引文
[1] Ragauskas A J, Williams C K, Davison B H, et al. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489
    [2] Michael St?cker. Biofuels and biomass-to-liquid fuels in the biorefinery: Catalytic conversion of lignocellulosic biomass using porous materials[J]. Angewandte Chemie International Edition, 2008, 47:9200-9211
    [3]丛璐,徐有宁,韩作斌.生物质能及应用技术[J].沈阳工程学院学报(自然科学版), 2009, 5(1): 9-14
    [4]张百良,樊峰鸣,李保谦.生物质成型燃料技术及产业化前景分析[J].河南农业大学学报, 2005, 39(1): 111-115
    [5]高荫榆,雷占兰,郭磊,等.生物质能转化利用技术及其研究进展[J].江西科学, 2006, 24(6): 529-534
    [6]董玉平,王理鹏,邓波,等.国内外生物质能源开发利用技术[J].山东大学学报, 2007, 37(3): 64-68
    [7]马志刚,吴树志,白云峰.生物质能利用技术现状及进展[J].能源工程, 2008, (5): 21-27
    [8]任南琪,林明,马汐平,等.厌氧高效产氢细菌的筛选及其耐酸性研究[J].太阳能学报, 2003, 24(1): 80-84
    [9]韩志国,李爱芬,龙敏南,等.微藻光合作用制氢——能源危机的最终出路[J].生态科学, 2003, 22(2): 104-108
    [10]赵玉山.细菌产氢的研究[D].北京:北京化工大学, 2005
    [11]崔有贵,李永峰,任南琪,等.甜菜废蜜生物制氢细菌的诱变育种[J].中国甜菜糖业, 2004, (3): 1-2
    [12]倪维斗,靳辉,李政.中国液体燃料的短缺及其替代问题[J].科技导报, 2001, 12: 9-12
    [13]吴杰.我国生物柴油的发展前景[J].广东化工, 2008, 35(7): 51-53
    [14]米铁,唐汝江,陈汉平,等.生物质能利用技术及研究进展[J].煤气与热力, 2004, 24(12): 701-705
    [15] González J F, S.Román, Bragado D, et al. Investigation on the reactions influencing biomass air and air/steam gasification for hydrogen production[J]. Fuel Processing Technology, 2008, 89: 764-772
    [16] Sahaym U, Norton M G. Advances in the application of nanotechnology in enabling a 'hydrogen economy'[J]. Journal of Materials Science, 2008, 43: 5395-5429
    [17] Karellas S, Kakaras E, Papadopoulos T, et al. Hydrogen production from allothermal biomass gasification by means of palladium membranes[J]. Fuel Processing Technology, 2008, 89: 582-588
    [18] Penninger J M L, Maass G J J, Repb M. Compressed hydrogen-rich fuel gas (CHFG) from wet biomass by reforming in supercriticalwater[J]. International Journal of Hydrogen Energy, 2007, 32: 1472-1476
    [19] Kivisaari T, Bjornbom P, Sylwan C. Studies of biomass fuelled MCFC systems[J]. Journal of Power Sources, 2002, 104: 115-124
    [20]王富丽,黄世勇,宋清滨,等.生物质快速热解液化技术的研究进展[J].广西科学院学报, 2008, 24(3): 225-230
    [21]王黎明,王述洋.国内外生物质热解液化装置的研发进展[J].太阳能学报, 2006, 27(11): 1180-1184
    [22]刘世锋,王述洋,张勇.生物质热解液化制取燃油的综合效益分析[J].农机化研究, 2007, (1): 220-222
    [23]曹有为,王述洋.国内生物质热解技术的研究进展探究[J].林业劳动安全, 2005, 18(2): 24-26
    [24] Czernik S, Bridgwater A V. Overviewof applications of biomass fast pyrolysis oil[J]. Energy & Fuels, 2004, (18): 590-598
    [25]王树荣,骆仲泱,谭洪,等.生物质热裂解生物油特性的分析研究[J].工程热物理学报, 2004, 25(6): 1049-1052
    [26] Polycarpou P. Bioethanol production from Asphodelus aestivus[J]. Renewable Energy, 2009, 34: 2525-2527
    [27]赵岩,李冬,陆文静,等.纤维素超临界水预处理与水解研究[J].化学学报, 2008, 66(20): 2295-2301
    [28] Appell H R, Fu Y C, Frideman S. Converting organic wastes to oil[J]. Agricultural Engineering, 1972, 53(3): 17- 19
    [29] Kamio E, Takahashi S, Noda H, et al. Effect of heating rate on liquefaction of cellulose by hot compressed water[J]. Chemical Engineering Journal, 2008, 137: 328-338
    [30] Yuan X Z, Tong J Y, Zeng G M, et al. Comparative studies of products obtained at different temperatures during straw liquefaction by hot compressed water[J]. Energy & Fuels, 2009
    [31] Minowa T, Inoue S. Hydrogen production from biomass by catalytic gasification in hot compressed water[J]. Renewable Energy 1999, 16: 1114-1117
    [32] Akhtar J, Kuang S K, Amin N S. Liquefaction of empty palm fruit bunch (EPFB) in alkaline hot compressed water[J]. Renewable Energy, 2009, 34: 1-8
    [33] Wahyudiono, Sasaki M, Goto M. Kinetic study for liquefaction of tar in sub- and supercritical water[J]. Polymer Degradation and Stability, 2008, 93: 1194-1204
    [34] Fang Z, Sato T, Jr. R L S, et al. Reaction chemistry and phase behavior of lignin in high-temperature and supercritical water[J]. Bioresource Technology 2008, 99: 3424-3430
    [35] Qu Y, Wei X, Zhong C. Experimental study on the direct liquefaction of Cunninghamia lanceolata in water[J]. Energy, 2003, 28 597-606
    [36] Luik L, Luik H, Palu V, et al. Conversion of the Estonian fossil and renewable feedstocks in the medium of supercritical water[J]. Journal of Analytical and Applied Pyrolysis, 2009, 85: 492-496
    [37] Xu C, Lad N. Production of heavy oils with high caloric values by direct liquefaction of woody biomass in sub/near-critical water[J]. Energy & Fuels, 2008, 22: 635-642
    [38] Xu C, Lancaster J. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water[J]. Water Reseach, 2008, 42: 1571-1582
    [39] Yuan X, Cao H, Li H, et al. Quantitative and qualitative analysis of products formed during co-liquefaction of biomass and synthetic polymer mixtures in sub- and upercritical water[J]. Fuel Processing Technology, 2009, 90: 428-434
    [40]朱清时,阎立峰,郭庆祥.生物质洁净能源[M].化学工业出版社, 2002
    [41] Ji N Z T, Zheng M. Direct catalytic conversion of cellulose into ethylene glycol using nickel-promoted tungsten carbide catalysts[J]. Angewandte Chemie International Edition, 2008, 47: 8510-8513
    [42] Zhao H, Holladay J E, Brown H, et al. Metal Chlorides in Ionic Liquid Solvents Convert Sugars to 5-Hydroxymethylfurfural[J] Science, 2007, 316(5831), 1597-1600
    [43] Fukuoka A, Dhepe P L.Catalytic conversion of cellulose into sugar alcohols[J] Angewandte Chemie International Edition, 2006, 45, 5161-5163
    [44] Sivakumar P, Jung H, John W, et al. Liquefaction of lignocellulosic and plastic wastes with coal using carbon monoxide and aqueous alkali[J]. Fuel Process Technology, 1996, 49: 219-232
    [45] Yokoyama S, Akira Suzuki A, Murakami M, et al.Liquid fuel production from sewagesludge by catalytic conversion using sodium carbonate[J] Fuel, 1987, 66: 1150-1155
    [46] Karag?z S, Bhaskar T, Muto A, et al., Hydrothermal upgrading of biomass: Effect of K2 CO3 concentration and biomass/water ratio on products distribution[J]. Bioresource Technology, 2006, 97: 90-98
    [47] (a) Karag?z S B T, Muto A, et al., Effect of Rb and Cs carbonates for production of phenols from liquefaction of wood biomass[J]. Fuel, 2004, 83: 2293-2299 (b) Karag?z S, Bhaskar T, Muto A, et al., Comparative studies of oil compositions produced from sawdust, rice husk, lignin and cellulose by hydrothermal treatment[J]. Fuel, 2005, 84: 875-884 (c) Xu C, Lancaster J. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water[J]. Water Research, 2008, 42: 1571-1582
    [48] Maldas D, Shiraishi N. liquefaction of biomass in the present of phenol and H2O using alkakies and salts as the catalyst[J]. Biomass and Bioenergy, 1997, 12(4): 273- 279
    [49] Karag?z S, Bhaskar T, Muto A, et al. Hydrothermal upgrading of biomass: Effect of K2CO3 concentration and biomass/water ratio on products distribution[J]. Bioresource Technology, 2006, 97: 90-98
    [50] Karag?z S, Bhaskar T, Muto A, et al. Effect of Rb and Cs carbonates for production of phenols from liquefaction of wood biomass[J]. Fuel, 2004, 83 2293-2299
    [51] Miller J E, Evans L, Littlewolf A, et al. Batch microreactor studies of lignin and lignin model compound depolymerization by bases in alcohol solvents[J]. Fuel, 1999, 78: 1363-1366
    [52] (a) Girisuta B, Janssen L P B M, Heeres H J. A kinetic study on the decomposition of 5-hydroxymethylfurfural into levulinic acid[J]. Green Chemistry, 2006, 8: 701-709 (b) Guo Y, Li K, Clark J H. The synthesis of diphenolic acid using the periodic mesoporous H3PW12O40-silica composite catalysed reaction of levulinic acid[J]. Green Chemistry, 2007, 9: 839-841
    [53] Korkut A F K, Esen B. Central composite rotatable design for liquefaction of pine barks[J]. Fuel Processing Technology, 2005, 87(1): 17-24
    [54]谢涛,谌凡更.蔗渣在碳酸乙烯酯中的快速液化[J].林产化学与工业, 2005, 25(4): 86-90
    [55]乐治平,宏张,洪立智.固体超强酸Cl-/Fe2O3的制备及催化液化生物质[J].化工进展, 2007, 26(2): 246-248
    [56] Liu A, Park Y, Huang Z, et al. Product identification and distribution from hydrothermal conversion of walnut shells[J]. Energy & Fuels, 2006, 20: 446-454
    [57]郭贵全,魏文,王红娟,等.蔗渣液化中铁系催化剂作用的研究[J].林产化学与工业, 2005, 25(3): 47-50
    [58] Xu C, Etcheverry T. Hydro-liquefaction of woody biomass in sub- and super-critical ethanol with iron-based catalysts[J]. Fuel, 2008, 87: 335-345
    [59]谢文,袁兴中,曾光明,等.催化剂对亚临界水中生物质液化行为的影响[J].资源科学, 2008, 30(1): 129-133
    [60] Zhang T, Zhou Y, Liu D, et al. Qualitative analysis of products formed during the acid catalyzed liquefaction of bagasse in ethylene glycol[J]. Bioresource Technology, 2007, 98: 1454-1459
    [61] Heitzm, Browna, Chornete. Solvent effects on liquefaction :solubilization profiles of a Canadian prototype wood, Populus deltoids, in the presence of different solvents[J]. Canadian Journal of Chemical Engineering, 1994, 72(12): 1021-1027
    [62] Li H, Yuan X, Zeng G, et al. Liquefaction of rice straw in sub- and supercritical 1,4-dioxane-water mixture[J]. Fuel Processing Technology, 2009, 90: 657-663
    [63] Tang S R, Zong Z M, Zhou L, et al. Molecular composition of soluble fraction from depolymerized cornstalk powder in supercritical methanol and ethanol[J]. Renewable Energy, 2010, 35: 946-951
    [64] Liu Z, Zhang F S. Effects of various solvents on the liquefaction of biomass to produce fuels and chemical feedstocks[J]. Energy Conversion and Management, 2008, 49: 3498-3504
    [65] Qu Y, Wei X, Zhong C. Experimental study on the direct liquefaction of Cunninghamia lanceolata in water[J]. Energy, 2003, 28 597–606
    [66] Yang Y F, Feng C P, Inamori Y, et al. Analysis of energy conversion characteristics in liquefaction of algae[J]. Resources, Conservation and Recycling, 2004, 43: 21–33
    [67] Minowa T, Murakami M, Dote Y, et al. Oil production from garbage by thermochemical liquefaction[J]. Biomass and Bioenergy, 1995, 8(2): 117-120
    [68] Xu C, Lancaster J. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water[J]. Water Research, 2008, 42: 1571-1582
    [69] Aravantinos-Zafiris G, Oreopoulou V, Tzia C, et al. Fibre fraction from orange peel residues after pectin extraction[J]. Lebensm-Wiss u-Technol, 1994, 27: 468-471
    [70] Demirbas A. Effect of lignin content on aqueous liquefaction products of biomass[J]. Energy Conversion & Management, 2000, 41: 1601-1607
    [71] Wu L, Guo S, Wang C, et al. Production of alkanes (C7-C29) from different part of poplar tree via direct deoxy-liquefaction[J]. Bioresource Technology, 2009, 100: 2069-2076
    [72] Yang Y F, Feng C P, Inamori Y, et al. Analysis of energy conversion characteristics in liquefaction of algae[J]. Resources, Conservation and Recycling, 2004, 43: 21-33
    [73] Wang C, Pan J, Li J, et al. Comparative studies of products produced from four different biomass samples via deoxy-liquefaction[J]. Bioresource Technology, 2008, 99: 2778-2786
    [74] Qian Y, Zuo C, Tan J, et al. Structural analysis of bio-oils from sub-and supercritical water liquefaction of woody biomass[J]. Energy, 2007, 32: 196-202
    [75] Karaca F. Molecular mass distribution and structural characterization of liquefaction products of a biomass waste material[J]. Energy & Fuels, 2006, 20: 383-387
    [76] Mun S P, Jang J P. Liquefaction of cellulose in the presence of phenol using p-toluene sulfonic acid as a catalyst[J]. Journal of Industrial and Engineering Chemistry, 2009, 15: 743-747
    [77] Yip J, Chen M, Szeto Y S, et al. Comparative study of liquefaction process and liquefied products from bamboo using different organic solvents[J]. Bioresource Technology, 2009, 100: 6674-6678
    [78] Hassan E-b M, Shukry N. Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues[J]. Industrial Crops and Products, 2008, 27(1): 33-38
    [79] Li J, Wu L, Yang Z. Analysis and upgrading of bio-petroleum from biomass by direct deoxy-liquefaction[J]. Journal of Analytical and Applied Pyrolysis, 2008, 81: 199-204
    [80] Guo S, Wu L, Wang C, et al. Direct conversion of sunflower shells to alkanes and aromatic compounds[J]. Energy & Fuels, 2008, 22: 3517-3522
    [81]姜洪涛,李会泉,懿张.生物质高压液化制生物原油研究进展[J].化工进展, 2006, 25(1): 8-13
    [82] Appell H R, Anderson L I, Tilman D A. Fuels from waste[M]. New York: Academic Press, 1967
    [83] Minowa T, Zhen F, Ogi T, et al. Liquefaction of cellulose in hot compressed water using sodium carbonate: products distribution at different reaction temperatures[J]. Journal of Chemical Engineering of Japan, 1997, 30(1): 186-190
    [84] JasiukaitytéE, Kunaver M, Strli? M. Cellulose liquefaction in acidified ethyleneglycol[J]. Cellulose, 2009, 16: 393-405
    [85] Lin L, Yao Y, Yoshioka M, et al. Liquefaction mechanism of cellulose in the presence of phenol under acid catalysis[J]. Carbohydrate Polymers, 2004, 57: 123-129
    [86] Jakab E, Liu K, Meuzelaar H L C. Thermal decomposition of wood and cellulose in the presence of solvent vapors[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 2087-2095
    [87] Lin L Z, Yao Y G, Yoshioka M, et al. Liquefaction mechanism of lignin in the presence of phenol at elevated temperature without catalysts-studies on beta-O-4 model compound .1. structural characterization of the reaction products[J]. Holzforschung, 1997, 51(4): 316-324
    [88] Saisu M, Sato T, Watanabe M, et al. Conversion of lignin with supercritical water-phenol mixtures[J]. Energy & Fuels, 2003, 17: 922-928
    [89] Okuda K, Umetsu M, Takami S, et al. Disassembly of lignin and chemical recovery—rapid depolymerization of lignin without char formation in water–phenol mixtures[J]. Fuel Processing Technology, 2004, 85: 803-813
    [90]李与文,王慧丽.制浆造纸分析检验[M].北京:化学工业出版社, 2005
    [91]熊素敏,左秀凤,朱永义.稻壳中纤维素、半纤维素和木质素的测定[J].粮食与饲料工业, 2005, (8): 40-41
    [92] Hassan E-b M, Shukry N. Polyhydric alcohol liquefaction of some lignocellulosic agricultural residues[J]. Industrial Crops and Products, 2008, 27: 33-38
    [93] Demiralí, Sens?z S. The effects of different catalysts on the pyrolysis of industrial wastes(olive and hazelnut bagasse)[J]. Bioresource Technology, 2008, 99: 8002-8009
    [94] Serrano V G, Villegas J P, A. Perez Florindo, et al. FT-IR study of rockrose and of char and activated carbon[J]. Journal of Analytical and Applied Pyrolysis, 1996, 36(1): 71-80
    [95] ?ens?z S, Demiral ?, Gerel? H F. Olive bagasse (Olea europea L.) pyrolysis[J]. Bioresource Technology, 2006, 97: 429–436
    [96] Dawy M, Shabaka A A, Nada A M A. Molecular structure and dielectric properties of some treated lignins[J]. Polymer Degradation and Stability, 1998, 62(3): 455-462
    [97]姜洪涛,李会泉,懿张.生物质高压液化制生物原油研究进展[J].化工进展, 2006, 25(1): 8-13
    [98] Xu C, Lancaster J. Conversion of secondary pulp/paper sludge powder to liquid oil products for energy recovery by direct liquefaction in hot-compressed water[J]. Water Research, 2008, 42: 1571-1582
    [99] Jakab E, Liu K, Meuzelaar H L C. Thermal decomposition of wood and cellulose in the presence of solvent vapors[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 2087-2095
    [100] Saisu M, Sato T, Watanabe M, et al. Conversion of lignin with supercritical water-phenol mixtures[J]. Energy & Fuels, 2003, 17: 922-928
    [101] Okuda K, Umetsu M, Takami S, et al. Disassembly of lignin and chemical recovery—rapid depolymerization of lignin without char formation in water–phenol mixtures[J]. Fuel Processing Technology, 2004, 85: 803-813

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700