用户名: 密码: 验证码:
煤中小分子化合物对煤高温快速液化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选用兖州煤和神府煤为研究煤种,针对煤中小分子化合物对煤高温快速液化的影响进行了较系统的研究。首先用四氢呋喃(THF)对两种煤样进行索式抽提,分析了抽提物的组成及脱除小分子化合物过程对煤结构的影响;通过对脱除小分子化合物前后的煤样进行热重分析,探讨了煤中小分子化合物对煤热解行为的影响;并研究煤中小分子化合物对煤高温快速液化的影响。得到以下主要结论:
     用THF对兖州煤和神府煤进行抽提,兖州煤的抽提率为14.00%,神府煤的抽提率为10.72%。由红外光谱分析可知,两种煤中小分子化合物中含有脂肪烃、芳烃和脂肪醚等物质;与原煤相比抽余煤在大分子结构上基本没有变化,只是失去了煤网络结构中的小分子化合物。经过抽提后,两种煤孔径分布变大,比表面积变小。
     脱除小分子化合物前后的煤样进行热重分析显示:抽提掉小分子化合物后的抽余煤的热解速率明显低于原煤,表明煤中小分子化合物对煤的热解行为有较大的影响;两种煤的原煤和抽余煤的DTG曲线表明,抽余煤的最大失重速率的温度没有发生改变,说明抽提后未破坏煤大分子的主体结构。
     在选定的煤高温快速液化反应条件下,对抽提前后的煤样进行高温快速液化实验,考察小分子化合物对煤高温快速液化的影响:当用四氢呋喃作为溶剂抽提掉煤中的小分子化合物后,在氢气和四氢萘同时存在的条件下,发现抽余煤的总转化率和油产率都高于原煤,这是由于抽提过程使煤的结构疏松,桥键键能降低和煤中孔径变大,使供氢溶剂与煤接触更充分共同的结果;在液化气氛改为N2,溶剂改为萘以后,煤液化时的氢源只能来自煤本身。在这种条件下,原煤和抽余煤的总转化率都有明显下降;在液化气氛为N2,溶剂改为萘的液化条件下,所选的两种煤样原煤的转化率都明显高于抽余煤,表明煤中小分子化合物在液化过程中可以提供活性氢。所选两种煤,兖州煤的转化率明显高于神府煤,这是由于兖州煤所含的氢元素高于神府煤的结果。
Taking Yanzhou coal and Shenfu coal as the research object, the effect on quick coal liquefaction at high temperature (QCLHT) of small molecular compound in coal was is systematically investigated. In order to remove small molecular compound in coal, the extraction of Yanzhou coal and Shenfu coal were preformed by using tetrahydrofuran as extraction solvent. Then, the composition of the extracts and the structure of the extracted coal were analyzed. By analyzing the TG and DTG of the raw coal and the extracted coal, the effect on the pyrolysis behavior of small molecular compound in coal was discussed. Finally, the role of small molecular compound in coal for QCLHT was deeply studied. The research mainly includes the following conclusions:
     The extraction experiments of Yanzhou coal and Shenfu coal shown that the extraction rate of Yanzhou coal is 14.00% and that of Shenfu coal is 10.72%. IR spectra indicates that small molecular compound in coal consists mainly of aliphatic hydrocarbon, aromatic hydrocarbon and aliphatic ether. The extraction does not change the macromolecule structure of coal and only removes small molecular compound in coal. The extraction leads to the decrease of specific surface area of Yanzhou coal and Shenfu coal and the obvious increase of pore diameter of these.
     TG of the raw coal and the extracted coal illustrates that the weight loss rate of the extracted coal was obviously lower than that of the raw coal. It indicates that small molecular compound in coal has greater influence on the pyrolysis behavior. In addition, DTG of the raw coal and the extracted coal also show that the temperature of the maximum weight loss rate almost does not change. This is because the extraction does not change the macromolecule structure of coal.
     According to previous research of our research group, the temperature of QCLHT is chose as 490℃, reaction time as 5 minutes, initial cold hydrogen or nitrogen pressure as 7.0 MPa. QCLHT of the raw coal and the extracted coal were preformed. The results show that oil yield and total conversion of the extracted coal are higher than that of the raw coal under hydrogen pressure and 1,2,3,4-tetrahydronaphthalene as hydrogen donor solvent. This is because that the extraction makes coal structure loose, the bond energy of bridge bond reduce and pore size increase. This will be in favor of the contact of hydrogen donor solvent and coal. Under nitrogen pressure and naphthalene as solvent, the hydrogen source of coal liquefaction only comes from coal itself. So, total conversion of the raw coal and the extracted coal decreased significantly. Meanwhile, the extracted coal has significantly lower total conversion than the raw coal under nitrogen pressure naphthalene as solvent. It illustrates that small molecular compound in coal is hydrogen-rich material which will give active hydrogen in the process of QCLHT. In addition, total conversion of Yanzhou coal is significantly higher than that of Shenfu coal. This is because that hydrogen content of Yanzhou coal higher than that of Shenfu coal.
引文
[1]郭树才.煤化工工艺学[M].北京:化学工业出版社,1995:265-266.
    [2]许志华.煤炭加工利用概论[M].北京:中国矿业大学出版社.
    [3]高晋生,吴幼青,H.H.Oelert等.中国低阶烟煤和石油渣油混合加工研究[J].华东化工学院学报,1993,19(5):561-567.
    [4]张德祥,高晋生,朱之培.年轻煤在石油渣有重油中加氢液化的研究[J].华东化工学院学报,1986,12(3):355-362.
    [5]王生维,李思田.抚顺长焰煤的液化性能研究[J].煤炭转化,1996,19(4):79.
    [6]崔之栋,李嘉珞.煤炭液化[M].大连:大连理工大学出版社,1992.
    [7] Masato Kouzu, Kazuhide Koyama, Minoru Oneyama et al, Fuel Pro. Tec., 2000, 68, 161-173.
    [8] X.Y. Wei, E.ogata, Z.M.zong, E.Niki. Effect of hydrogen pressure, sulfur and FeS2 on dipheny1-methane hydrocracking [J]. Energy&Fuel,1992(6):868.
    [9]曾蒲君,王承宪.煤基合成燃料工艺学[M].北京,中国矿业大学出版社,1993.
    [10] Kabe T, Nitoh O, Funatsu E, et. al. Studies on hydrogen transfer mechanisms in coal liquefaction by means of 3H and 14C tracer techniques, Fuelpro.ech.,1986, 14(1):91-101.
    [11] Vernon L.W. Free radical chemistry of coal liquefaction: role of molecular hydrogen. Fuel, 1980, 59(2): 80-86.
    [12] McMillen D F, Malhotra R, Hum G et al. The role of thermalhydrogen-transfer process in catalytic coal liquefaction [J].Energy& Fuel,1987 (1): 93-95.
    [13] McMillen. D. F., Malhotra. R., Chang. S. J., et al. Mechanisms of hydrogen transfer and bond sciss of strongly bonded coal structure in donor-solvent systems [J].Fuel, 1987 (66): 1611.
    [14] Derbyshire. F., Hager. T. Fuel, 1994,73(7),1087-192.
    [15] Derbyshire. F. J, Whitehust. D. D. Studies of coal conversion in polycondensed aromatic compounds. Fuel, 1981, 60(8):655-662.
    [16] Derbyshire F.J., Hager T. Coal liquefaction and Catalysis [J].Fuel,1994,73(7):1087-1092.
    [17]翁斯灏,吴幼青,高晋生等.煤加氢液化铁催化剂的穆斯保尔谱研究Ⅰ铁硫化物在加氢反应中的转化及活性机理[J].燃料化学学报,1990,18(2):97-102.
    [18]翁斯灏,高晋生,吴幼青等.煤加氢液化铁催化剂的穆斯保尔谱研究Ⅱ氧化铁在不同反应条件下的转化及催化活性[J].燃料化学学报,1990,18(2):103-108.
    [19]高晋生.硫化氢在煤加氢液化中的作用[J].燃料化学学报,1985,12(1):44-46.
    [20] Okutani, T. S.,Yokoyama, S., Maekawa, Y. Coal liquefaction with H2S-H2 gas mixture and metal oxide catalysts[J].Ing. Eng. Chem. Process Des. Dev., 1983,22 (2):306.
    [21] Toshiahi K, Osamu N. Studies on hydrogen transfer mechanisms in coal liquefaction by means of 3H and 14C tracer techniques[J].Fuel Processing Technology, 1986(14):91.
    [22]朱晓苏,李茹英,郑建国等.煤炭直接液化油收率极限理论及其应用[J].煤炭转化,2001,24(1),57-62.
    [23] Shan T, Reaction Engineering in direct coal liquefaction, Tokyo: Addison-westly Pubbishing Company Inc, 1981.
    [24]王志忠,凌大琦,燃料化学学报,1983,11(4):19-27.
    [25] He Huang. Keyu Wang et al. Studies of coal liquefaction at very shortrection time [J]. Energy &Fuel,1998(12):95-101.
    [26]申峻.硕士论文,太原:太原理工大学,1996.
    [27]李刚.博士论文,太原:太原理工大学,2009.
    [28]袁新华,秦志宏,徐红星等.用CS2-NM P混合溶剂抽提法制备洁净煤[J].煤炭转化, 1999, 22 (1) : 53-55.
    [29]陈茺.许学敏,颜湧捷.环己酮抽提煤的研究[J].燃料化学学报, 1997, 25 (1) : 60-64.
    [30]陈茺,高晋生,魏贤勇.溶剂抽提与煤的净化[J].煤炭转化, 1995, 18 (2) : 14-20.
    [31]袁新华,范健,秦志宏. CS2-NM P混合溶剂中煤萃取率的研究[J].煤炭转化, 1998, 21 (2) : 60-62.
    [32] Iino M , Takanohash i T, Obara Setal. Characterization of the Extracts and Residues from CS2-N -M ethyl-2-Pyrrolidinone Mixed Solvent Extraction. Fuel, 1989, 68 (2) : 1588-1593.
    [33] Iion M., Takanohashi T, Ohkawa T, et al. On the Solvent Soluble Constituents Originally Existing in Zao Zhang Coal. Fuel, 1991, 70: 1236-1237.
    [34] IionM , Takanohashi T, Ohsuga H, et al. Extraction of Coals with CS2-N -Methy1-2-Pyrrolidinone Mixed Solvent at Room Temperature. Fuel, 1988, 67: 1639-1647.
    [35]刘振学,魏贤勇,周仕学等.煤的溶剂萃取研究进展[J].煤炭转化,2003,26 (2) :1-5.
    [36]孙林兵,张丽芳,秦志宏等.煤的CS2/NM P混合溶剂抽提研究进展[J].煤炭转化,2002,25 (4) :1-4.
    [37]王晓华,魏贤勇.神府东胜煤CS2萃取物组成分析[J].煤炭转化,2003,26 (3) :32-35.
    [38]陈茺,高晋生,颜湧捷.兖州煤环己酮抽提物的组成、结构及性质研究[J].燃料化学学报, 1997, 25 (2) : 135-138.
    [39]潘丽敏,刘群,陈春生.煤中低分子化合物生烃意义初探[J].长春地质学院学报,1996,26 (3) :356-359.
    [40] Wei Xianyong, Shen J L , Takanohashi T. Effects of Hydrogen Donno r Additives onCoal Extraction w ith CS2-N -M ethyl-2-Pyrrolidinone Mxed Solvent. Energy & Fuels, 1989, 3 (3) : 575-577.
    [41] Takanohashi T, Iion M. Extraction of Coals with CS2-N -M ethyl-2-Pyrrolidinone Mixed Solvent at Room Temperature and ESR Parameters of Their Extracts and Resides. Energy & Fuels, 1992 (4) : 452-455.
    [42]秦志宏,宗志敏,刘建周等.煤岩组分在二硫化碳-N-甲基-吡咯烷酮混合溶剂中的可溶性.燃料化学学报, 1997, 25 (6) : 549-553.
    [43]陈鹏,D.M.BODILY.用傅立叶红外光谱研究兖州煤的煤素质[J].燃料化学学报,1988,16(1):86-92.
    [44]陈培榕,邓勃.现代仪器分析实验技术[M].北京:清华大学出版社,1999:109-110.
    [45]孟令芝,何永炳.有机波谱分析[M].武汉:武汉大学出版社,1997:19-31.
    [46]程淑艳,谢鲜梅,廖家友.铜铬和铜铝类水滑石结构及其催化性能[J].石油学报(石油加工),2009,增刊:102-105.
    [47]谢克昌.煤的结构与反应性[M].北京:科学出版社,2002.
    [48] Painter P C, Sobkowiak M., Youcheff J. FT-IR Study of Hydrogen Bonding in Coal. Fuel, 1987, 66: 973-978.
    [49] Nishioka M, Larsen J W. Association of Aromatic Structures in Coals. Energy Fuels, 1990, 4: 100-106.
    [50] Given P H et al. The concept of a mobile or molecular phase within the macromolecular network of coals: A debate. Fuel,1986,65:155-162.
    [51] Douglas Brenner. The macromolecular nature of bituminous coal. Fuel,1985,64:167-173.
    [52] Masaharu Nishioka. Preprint Division of Fuel Chemistry of American Chemistry Society,1992,37(2):878-883.
    [53]朱之培,高晋生.煤化学[M].上海:上海科学技术出社,1984,194-198.
    [54]高晋生,周霞萍.煤中的低分子化合物及其在煤转化中的作用研究[J].煤炭转化,1992,15(3):51-55.
    [55] Gorbaty M L. Prominent frontiers of coal science: past, present and future. Fuel,1994,73:1819-1828.
    [56]王娜,孙成功,李保庆.煤中低分子化合物研究进展[J].煤炭转化,1997,20(3):19-23.
    [57]马晓燕,赵朴,张世诚.刍议煤中低分子化合物的研究对煤加氢液化的影响[J].煤炭技术,2001,20(10) :62-63.
    [58]邹刚明,李海滨.煤液化过程热解动力学特性的研究[J].茂名学院学报,2003,13(1):14-18.
    [59]凌开成,薛永兵,申峻,邹纲明.杨村烟煤快速液化反应性的研究[J] .燃料化学学报,2003,31(1):49-52.
    [60]薛永兵.煤液化过程中溶剂作用的研究[D] .山西:太原理工大学,2000.
    [61] Emine Yagmur, Emir H. Simsek, Zeki Aktas, Taner Togrul. Effect of demineralization process on the liquefaction of Turkish coals In tetralin with microwave energy: Determination of particle size distribution and surface area[J].FUEL,2005(84):2316-2323.
    [62] A. Ishihara, I. P. Sutrisna, I. Finahari, E. W. Qian, T. Kabe. Effect of demineralization on hydrogen transfer of coal with tritiated Gaseous hydrogen[J].FUEL,2004(85):887-901.
    [63] Fatma Karaca, Esen Balat. Coprocessing of Turkish lignite with a cellulosic Waste material 1. The effect of coprocessing on liquefaction yields at Different reaction temperatures[J] FUEL,2000(64):47-55.
    [64] M. Canel, Z. Misirlioglu, A. Sinag. Hydropyrolsis of a Turkish (Tuncbilek)and effect of temperature and pressure on product distribution [J].FUEL 2005(46):2185-2197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700