用户名: 密码: 验证码:
煤的极性溶剂萃取及SO_4~(2-)/ZrO_2催化解聚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水和甲醇是极性溶剂,在一定的温度下可溶解煤中的小分子极性化合物,而且在酸催化下可选择性地断裂煤骨架结构中的共价键,这对于认识煤结构与从煤中提取组分较单一的化学品都具有较重要的意义。以水和甲醇为溶剂,采用常压萃取和固体超强酸催化解聚的方法,以GC/MS和FTIR为分析手段,研究了4种中低变质煤的萃取率和萃取物组成。
     水的常压萃取结果表明:随着煤变质程度的降低,萃取率增加,而且含氧化合物含量增加;萃取物成分较简单,主要有4大类,分别为含杂原子化合物,芳烃,长链烯烃和长链烷烃,含氧化合物和长链烷烃占萃取物总量的绝大部分;水能够破坏煤大分子交联结构中的氢键并在一定程度上催化其中醚键的断裂反应;萃取物中有一定量的非极性化合物,这可能是溶到水中极性有机物和非极性有机物的分子间的相互作用的结果;由于水对煤的浸润性不强,不容易进入微孔和网络结构,因此,水溶出的是以游离态存在的部分小分子。
     甲醇对煤的浸润性强于水,溶剂分子易于接近煤表面或煤结构的大孔表面而进入微孔和网络结构。因此,甲醇的常压萃取有以下特点:萃取物中芳烃成分增加,酚类成分和烯烃化合物的含量也有所增加,长链烷烃含量较少。由此说明,煤结构中作为小分子的流动相中的芳烃和烯烃化合物主要存在于煤的微孔结构中,长链烷烃主要游离于煤或大孔表面,较少地居于微孔之中。
     所合成的超强酸SO_4~(2-)/ZrO_2(SZ)对所选煤模型化合物具有较高的催化活性;采用SZ催化煤解聚得到组分较单一且含量较高的酚类成分。酚是一种合成有机高聚物的单体。因此,这是一种从煤中获取单组分化学品的很好的方法。SZ催化煤解聚萃取物的种类和含量与煤种有关,变质程度低、含氧量高的煤种可获得高含量的酚类化合物。煤解聚产物中应有更大分子量的酚、酸和酯类化合物,但由于GC/MS检测范围的限制而没有被检测出来。
     极性溶剂能够溶解煤结构中以流动相存在的极性和非极性物质。极性物质的溶出是因为极性溶剂破坏了煤中原结构中的部分氢键;非极性物质的溶出可能是溶解到水中的极性有机物和煤中的非极性有机物的分子间的相互作用的结果。SZ催化煤解聚得到组分较单一且含量较高的酚类成分,这说明所研究煤样的煤大分子网络结构中存在较丰富的醚键和酯键,固体超强酸催化煤解聚是获得酚的有效手段。
Water and methanol are polar solvents which can dissolve micromolecular polar compounds in coal at certain temperature and selectively break the covalent bonds of coal structure with the catalysis of certain acid, which is of great importance in both understanding of coal structure and extracting of relatively simply composed chemicals from coal. Taking water and methanol as solvents respectively and employing methods of extraction under normal atmosphere and super solid acidic catalyst depolymerization via analytical means of GC/MS and FTIR, we studied the extraction rate and composition of extracts from four medium and low ranks of coals.
     Results of extraction under normal atmosphere with water as solvent indicate that the lower the coal rank, the higher the extraction rate as well as the percentage of oxygenated chemicals. The extracts are simple, mainly including four major kinds of compounds, namely, heteroatom and aromatic compounds, long-chain alkane and alkene compounds, among which oxygenated chemicals and long-chain alkane compounds account for the majority. Water can break the hydrogen bond of the network structure inside coal macromolecules and can catalyze to fracture the ether bond to some extent. Interaction between the hydrated polar organic and non-polar organic possibly leads to a certain amount of non-polar compounds in the extracts. Since water has a ralatively low infiltrating rate to coal, it is not easy to enter the millipore and network structure. Thus what water can dissolve is part of micro- molecules at free state.
     Methanol has higher infiltrating rate to coal than water, so its molecule can readily approach coal surface or macro pore surface of coal structure before entering the millipore and network structure. Extraction under normal atmosphere with methanol as solvent is therefore characterized by the following features: aromatics take up a greater part among the extracts, which is also the case in phenols and olefin compounds while long-chain alkanes account for relatively low proportion. This shows that small-molecular aromatics and olefin compounds of the coal structure in the mobile phase mainly exist in the microporous parts of the coal, while the long-chain alkenes dissociates on the surface of the coal or the macroporous parts but seldom in the millipore.
     The synthesized super solid acidic catalyst SO_4~(2-)/ZrO_2(SZ) has a relatively high catalytic activity to the selected coal model preparaed. With catalysis of SZ, the coal was depolymerized to single composed phenolic compounds in high amount, which is a kind of monomer that can be used to synthesize organic polymer. The above method is therefore a good way to get single composed chemicals from coal. The type and quantity of the catalytical depolymerization extracts by solid super acid SZ are related to the type of coal. Higher yields of phenolic compounds can be obtained from low ranked and highly oxygenated coal. Phenols, acid and ester derivatives of larger molecular weight should have been detected in the depolymerized products without the restrictions of GC/MS detection range.
     Polar solvents can dissolve the polar and non-polar material in mobile phase in the coal structure. That cracking of part of hydrogen bond of the original coal structure owning to strong polar solvents is respossible for the dissolvement of the polar material, while the dissolvement of the non-polar material is a result of interaction between the polar organic and non-polar organic molecules that are dissolved in water. Super solid acid can be used to catalyse coal depolymerization to get single composed and the high amount of phenolic compounds. This implies that coal macromolecules network structure is rich for ether and ester bond and resorting to solid super acid to catalyzed coal depolymerization is an effective approach to obtain phenolic compounds.
引文
[1]濮洪九.洁净煤技术产业化与我国能源结构优化[J].煤炭学报,2002, 27 (1): 1.
    [2]陈学俊.能源工程的发展与展望[J].西安交通大学学报:社会科学版,2003, 23 (2): 1-7.
    [3] Bert R, Robert T. Status and perspectives of fossil power generation [J]. Energy, 2004, 29(3): 1853-1874.
    [4] Vulava V M, McKay L D, Driese S G, Menn F M, et al. Distribution and transport of coal tar-derived PAHs in fine-grained residuum [J]. Chemosphere, 2007, 68 (3): 554-563.
    [5] Fang G C, Wu Y S, Chen J C, Chang C N, et al. Characteristic of polycyclic aromatic hydrocarbon concentrations and source identification for fine and coarse particulates at Taichung Harbor near Taiwan Strait during 2004-2005 [J]. Science of the Total Environment, 2006, 366 (2-3): 729-738.
    [6] Liu S H, Tao S, Liu W X, Liu Y N, et al. Atmospheric polycyclic aromatic hydrocarbons in north China: A winter-tme study [J]. Environ. Sci. Technol, 2007, 41 (24): 8256-8261.
    [7] Schobert H H, et al. Chemicals and materials from coal in the 21st century [J]. Fuel, 2002, 81(1): 15.
    [8]黄建国.煤焦油、苯的加工利用[J].煤化工,2005 (5): 16-18.
    [9]应卫勇,曹发海,房鼎业.碳一化工主要产品生产技术[M].北京:化学工业出版社, 2004.
    [10] Tromp P J J. Coal Pyrolysis [D]. Univ. Amsterdam, 1987.
    [11] Butala S J M, Medina J C, Hulse R J, Bartholomew C H, Lee M L. Pressurized fluid extraction of coal [J]. Fuel, 2000, 79 (13): 1657-1664.
    [12] Wang X H, Wei X Y, Zong Z M. Study on composition characteristics of Pingshuo coal by solvents fractionated extraction [J]. Coal Convertion, 2006, 29 (2): 4-7.
    [13] Zhao X Y, Zong Z M, Cao J P, et al.Ma Y M, Han L, Liu G F, Zhao W, Li W Y, Xie K C, Bai X F, Wei X Y. Difference in chemical composition of carbon disulfide extractable fraction between vitrinite and inertinite from Shenfu-Dongsheng and Pingshuo coal [J]. Fuel, 2008, 87 (5): 565–575.
    [14] Liu C C, Chen H, Sun Y B, Wang X H, Cao J P, Wei X Y. Fractionated extraction and composition of coals [J]. Journal of Jilin University: Science Edition,2004, 42 (3): 442-446.
    [15] Yoshida T, Li C Q, Takanohashi T, Matsumura A, Sato S, Saito I. Effect of extraction condition on‘‘HyperCoal’’production (2)-effect of polar solvents under hot filtration [J]. Fuel Process Technol, 2004, 86 (1): 61-72.
    [16] Takanohashi T, Kawashima H. Construction of a model structure for Upper Freeport coalusing 13C NMR chemical shift calculations [J]. Energy Fuels, 2002, 16(2):379-387.
    [17]陈昌国,鲜学福.煤结构的研究及其发展[J].煤炭转化,1998,21 (2): 7-13.
    [18] Shinn J H. From coal to single-stage and two-stage products: A reactive model of coal structure [J]. Fuel, 1984, 63(10): 1187-1196.
    [19] Given P H, Marzec A, Borton W A, et al. The concept of a mobile or molecular phase within the macromolecular network of coals: A debate [J]. Fuel, 1986, 65(3): 155-163.
    [20] Nishioka M. The associated molecular nature of bituminous coal [J]. Fuel, 1992, 71(8): 941-948.
    [21] Clifford L. Spiro. Space-filling models for coal: a molecular description of coal plasticity [J]. Fuel, 1981, 60(12): 1121-1126.
    [22] Thompson R L, Rothenberger K S, Retcofsky H L. Variable-temperature EPR studies of Illinois No. 6 coal treated with donor and acceptor molecules. Energy Fuels, 1997, 11 (3): 739-746.
    [23] Kelemen S R, Gorbaty M L, Kwiatek P J. Quantification of nitrogen forms in Argonne Premium coals. Energy Fuels, 1994, 8 (4): 896-906.
    [24] Haenel M W. Recent progress in coal structure research [J]. Fuel, 1992, 71(12): 1211-1233.
    [25] Cody G D, Botto R E, Sde H, et al. Soft X-ray microanalysis and microscopy: A unique probe of the organic chemistry of heterogeneous solids[J]. Prepr Pap Am Chem Soc Div Fuel Chem, 1995, 40 (3): 387-390.
    [26] Wertz D L, Bissell M. One-dimensional description of the average polycyclic aromatic unit in Pocahontas No. 3 coal: an X-ray scattering study [J]. Fuel, 1995, 74 (10): 1431-1435.
    [27] Zoller D L, Johnston M V, Tomic J et al. Thermogravimetry-photoionization mass spectrometry of different rank coals [J]. Energy & Fuels, 1999, 13 (5): 1079-1104.
    [28]张代钧,陈昌国,徐龙君等.南桐煤镜质组非晶结构的X射线衍射研究[J].燃料化学学报,1997,25 (1): 72-77.
    [29] Sobkowiak M, Painter P. A comparision of Drift and KBr pellet methodologies for the quantitative analysis of functional groups in coal by infrared spectroscopy. Energy & Fuels, 1995, 9 (2): 359-363.
    [30]张蓬洲,李丽云,叶朝辉.用固体高分辨核磁共振研究煤结构[J].燃料化学学报,1993,2 (3): 310-315.
    [31]魏贤勇,宗志敏,秦志宏等.分子煤化学的构想及其发展前景[C].化工与材料99,袁晴棠,金涌主编(中国工程院化工、冶金与材料工程学部第二届学术会议论文集). 1999年10月,623-628.
    [32]魏贤勇,顾晓华,宗志敏等.中国化学会第六届应用化学学术会议论文集[C].1999.
    [33]藤重异永,白田利胜,中根尧.机能性高分子材料[M].才一厶社, 1984.
    [34] Glenm J D, Connor K, Srijaranai S, et al. Calixarene derivatives stationary phases used as liquid chromatography [J]. Anal Lett., 1993, 26: 153-159.
    [35] Gugnon D R, Capistran J D, Karasz F E, et al. Synthesis, doping, and electrical conductivity of high molecular weight poly(p-phenylene vinylene) [J]. Polymer, 1987, 28: 567-573.
    [36] Fukuda M, Sawada K, Yoshino K. Synthesis and electroluminescent property of polythiophene and poly (34-dimethylthiophene) [J]. Jpn J Appl Phys., 1989, 28(80): 1433- 1441.
    [37]陈鹏.煤及煤液制取芳烃高聚物的发展与机遇[J].煤炭转化,1995,18 (2): 1-6.
    [38] Song C, Schobert H. Opportunities for developing specialty chemicals and advanced materials from coals [J]. Fuel Processing Technology, 1993, 34: 157-196.
    [39] Steinberg V I, Baltisberger R J, Patal K M. Coal Science[M].Academic Press: New York, 1983.
    [40]秦志宏.煤中有机质溶出行为的研究[D].江苏徐州:中国矿业大学,2004.
    [41] Larsen J W, Mohammadi M. Structural changes in coals due to pyridine extraction [J]. Energy & Fuels, 1990, 4(1): 107-110.
    [42] Iino M, Takanohashi T, Obsuga H, et al. Extraction of coals with CS2-N-methyl-2-pyrrolidinone mixed solvent at room temperature : Effect of coal rank and synergism of the mixed solvent [J]. Fuel, 1988, 67(12): 1639-1647.
    [43] Iino M, Takanohashi T , Ohkava T, et al. On the solvent soluble constituents originally existing in Zao Zhuang coal [J]. Fuel, 1991, 70(10): 1236-1237.
    [44]陈茺,高晋生,魏贤勇.溶剂抽提与煤的净化[J].煤炭转化,1995,18 (2): 14-20.
    [45]秦志宏,袁新华,尹学琼等.岩相对煤在CS2-NMP混合溶剂中溶解性的影响[J].中国矿业大学学报,1998,27 (4): 344-348.
    [46]秦志宏,袁新华,宗志敏等.煤中致粘组分与不粘组分[J].煤炭转化,1998,21(3): 47-50.
    [47] Painter P C, Opaprakasit P, Scaroni A. Ionomers and the structure of coal [J]. Energy & Fuels, 2000, 14(5): 1115-1118.
    [48]袁新华,秦志宏,徐红星等.用CS2-NMP混合溶剂抽提法制备洁净煤[J].煤炭转化,1999,22(1): 53-55.
    [49] Li C and Iino M. Prospects for Coal Science in the 21st Century[C]. Taiyuan: Shanxi Science & Technology Press, P.R.China.1999.
    [50] Kabyemela B M, Adschiri T. Glucose and fructose decomposition in subcritical and supercritical water: Detailed reaction path way, mechanisms and kinetics [J]. Ind Eng Chem Res, 1999, 38(8): 2888-2892.
    [51] Kabyemela B M, Adschiri T, Malaluan R M. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water[J]. Ind Eng Chem Res, 1997, 36 (5): 1552-1558.
    [52] Douglas W L, Sunggu L. Kinetic and mechanism of styrene recovery from waste polystyrene by supercritical partial oxidation [J]. Advances in Environmental Research, 2001, (1): 9-16.
    [53]陈克宇,汪贺娟,陶巍.在超临界水中聚苯乙烯泡沫的降解[J].环境科学与技术,1983, (3): 19-21.
    [54] Masaru W, Makato M, Tadafumi A. Partial oxidation of polystyrene in supercritical water [J]. Journal of Supercritical Fluids, 2001, (20): 257-266.
    [55] Takehiko M, Hiji E. Characteristic of polyethylene cracking in supercritical water compared to thermal cracking [J]. Polymer Degration and Stability, 1999, 65(3): 373-386.
    [56] Fang Z , Koziński J A. Study onf rubber liquefaction in supercritical water using DAC-stereomicroscopy and FT-IR spectrometry [J]. Fuel, 2000, 81(9): 935-945.
    [57]刘志敏,张建玲,韩布兴.超(近)临界水中的化学反应[J].化学进展,2005,17(2): 266-274.
    [58]胡浩权,郭树才,Hedden Kurt.大雁褐煤超临界水萃取研究[J].燃料化学报,1993,20(1): 83-89.
    [59] Girishi V. Deshpande, Gerald D. Hoider, Alfred A. Bishop, et al. Extraction of coal using supercritical water[J]. Fuel, 1984, 63 (7): 956-960.
    [60]谢晓峰,大木章,前天滋.中国工程院化工、冶金与材料工程学部第二届学术会议论文集[C].北京:清华大学出版社,1999.
    [61] Mochida I, Iwamoto K, Tahara T, et al. Liquefaction of subbituminous coals under apparently non-hydrogenative conditions[J]. Fuel, 1982, 61(6):603-609.
    [62] Shui H, Wang Z, Wang G. Effect of hydrothermal treatment on the extraction of coal in the CS2/NMP mixed solvent[J]. Fuel, 2006, 85(12-13): 1798-1802.
    [63] K. Shimizu, H. Karamatsu, Y. Iwami, et al. Solubilization of lignite with superacid (trifluoro- methanesulfonic acid)/isopentane at the mild conditions[J]. Fuel Process Technol, 1995, 45: 85-94.
    [64] Mae K, Maki T, Araki J, et al. Extraction of Low-Rank Coals Oxidized with Hydrogen Peroxide in Conventionally Used Solvents at Room Temperature[J]. Energy Fuels, 1997, 11 (4): 825-831.
    [65] Hull F, Conant J B. A study of superacid solutions. I. The use of the chloranil electrode in glacial acetic acid and the strength of certain weak bases[J]. J Am Chem Soc, 1927, 49 (12):3047-3061.
    [66] Gillespie R J, Peel T E. Hammett acidity function for some superacid systems. II.The systems H2SO4-HSO3F,KSO3F-HSO3F, HSO3F-SO3, HSO3F-AsF5, HSO3F-SbF5 and HSO3F-SbF5- SO3[J]. J Am Chem Soc, 1973, 95 (16): 5173-5178.
    [67] Jong R S, H J. Characterization of ZrO_2-SiO_2 unmodified or modified with H2SO4 and acid catalysis [J]. J Mol Catal, 1991, 64 (3): 349-360.
    [68] Okawa M, Ninomiya Y, Taga M, et al. Book of abstracts for 3th Tokyo conference on advanced catalytic science and technology.Tokyo:1998.
    [69] Morterra C, Cerrato G, Emanuel C, et al. Surface Acidity of Some Sulfate-Doped ZrO_2 Catalysts [J]. J Catal, 1993, 142 (2): 349-367.
    [70] Lopez T, Navarrete J, Gomez R, et al. Preparation of sol-gel sulfated ZrO_2-SiO_2 andcharacterization of its surface acidity [J]. Appl Catal., 1995, 125 (2): 217-232.
    [71]陈同云,古绪鹏,胡祥余.低温陈化法制备S042-/ZrO_2-TiO_2超强酸及其催化性能和稳定性研究[J].无机化学学报,2002,18(4):378-382.
    [72] Hino M, Arata K. Synthesis of highly active superacids of SO_4~(2-)/ZrO_2 with Ir, Pt, Rh, Ru, Os and Pd substances for reaction of butane [J]. Catal Lett, 1995, 30: 25-30.
    [73] Hiromi M, Makoto H, Kazushi A. Solid catalyst treated with anion: XIX. Synthesis of the solid superacid catalyst of tin oxide treated with sulfate ion [J]. Appl Catal, 1990, 59 (1): 205-212.
    [74]田部浩三,野依良治.超强酸和超强碱[M].北京:化学工业出版社, 1986.
    [75]李德庆,米镇涛.固体超强酸催化剂的发展与应用[J].化工进展,1996,(4): 5-10.
    [76] Nishioka M. Multistep extraction of coal [J]. Fuel, 1991, 70 (12): 1413-1419.
    [77] Yoneyama Y, Song C. Promoting effect of water addition on C-O bond cleavage and hydrogenation of dinaphthyl ether over MoS2 catalyst in situ generated from ammonium tetrathiomolybdate [J].Energy & Fuels, 2002, 16(3): 767-773.
    [78] Bergh J J, Cronje I J, Dekker J, et al. Non-catalytic oxidation of water-slurried coal with oxygen: identification of fulvic acids and acute toxicity [J]. Fuel, 1997, 76(2): 149-154.
    [79]黄银燕,赵壁英,谢有畅.复合固体超强酸催化剂SO_4~(2-)/WO_3-ZrO_2的结构研究[J].物理化学学报,1995,11(6): 547-552.
    [80] W H Chen, Ko H H, Sakthivel A, et.al. A solid-state NMR、FT-IR and TPD study on acid properties of sulfated and metal-promoted zirconia : influences of promoter and sulfation treatment [J]. Catal Today, 2006, 116: 111-120.
    [81] Reddy B M, Patil M K, Lakshmanan P. Sulfated CexZr_(1-x)O_2 solid acid catalyst for solvent free synthesis of coumarins [J]. J Mol Catal A: Chemical, 2006, 256: 290-294.
    [82]唐新硕,王新平,金松寿. SO_4~(2-)/ZrO_2型超强酸酸中心形成机理研究[J].中国科学(B辑),1994,24(6): 584-595.
    [83]赵君生,张嘉郁译.固体酸碱及其催化性质[M].北京:化学工业出版社,1979.
    [84] Mercera P D L, Ommen J G, Doesburg E B M, Burggraaf A J, Ross J R H. Zirconia as a support for catalysts Influence of additives on the thermal stability of the porous texture of monoclinic zirconia[J]. Appl Catal, 1991, 71(2): 363-391.
    [85] Arata K, Fukui A, Toyoshima L. Synthesis of solid superacid catalyst with acid strength of Ho≤-16.4[J]. J.Chem Soc,Chem Commun, 1980, 76: 851-852.
    [86] Iglesia E., Soled S L, Kramer G M. Isomerization of Alkanes on Sulfated Zarconia Promoted by Pt and by Adamantyl Hydride Tranfer Species [J]. J Catal, 1993, 144 (1): 238-253.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700