用户名: 密码: 验证码:
前列腺素对妊娠子宫肌炎性因子生成和收缩相关蛋白表达的调节作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胚胎的植入,妊娠的维持以及分娩的发生等一系列过程都与母胎界面免疫反应密切相关。研究表明,分娩启动与宫内局部炎症微环境的改变有关,炎性因子可调控子宫肌组织收缩相关蛋白等表达,而使子宫肌收缩活性的发生改变,从而启动分娩。但是子宫局部炎症微环境的调控机制,目前尚不清楚。前列腺素F2α一直被认为是有效的宫缩激动剂,但应用在临床引产却通常需要数小时的延迟作用时间,提示了其对子宫肌收缩力的调控机制可能先参与了子宫肌的激活过程,而后再刺激子宫产生规律收缩。有研究报道分娩启动前孕妇羊水中PGs水平显著升高,且分娩启动后并没有进一步升高,这提示了前列腺素很可能参与了分娩启动前子宫肌的激活,因此在本课题的第一部分,我们以原代培养子宫平滑肌细胞为研究模型,研究了子宫内二种主要的前列腺素——PGF2α及PGE2是否调节妊娠子宫肌细胞炎性因子的生成,进而影响宫内炎症微环境的改变。
     妊娠期间子宫肌的功能状态呈现动态变化,即在大部分时间内其处于静息,在妊娠末期时出现规律性的收缩。子宫肌从静息转化为收缩是与子宫肌组织与收缩相关蛋白表达水平有关。前列腺素是否具有直接调节子宫肌收缩相关表达的作用,尚未见相关报道。因此,本课题的第二部分,我们对以PTGS-2,OTR,CX43以及PTGFR四种蛋白作为UAPs家族的代表,研究了PGF2α及PGE2是否可能通过调节这些蛋白的表达而参与了子宫肌的激活过程。
     此外,转录因子与其下游靶基因的表达密切相关,其直接结合于靶基因启动子区域,从而影响了靶基因的转录过程。锌指E盒结合同源盒蛋白(ZEB)作为一转录抑制因子,已被证实参与了收缩相关蛋白CX43,OTR等的转录调控。那么在分娩启动前期,是否收到前列腺素的调控目前还未见明确报道。
     实验结果如下:
     一、PGs通过不同受体对妊娠子宫平滑肌细胞上炎症因子生成的调节作用
     1.在分娩启动前期子宫肌激活的过程中,PGF2α可刺激促炎因子IL-6,IL-1β,趋化因子IL-8,MCP-1,以及生长因子VEGF的表达上调;但抑制了TNFα的生成。
     2. PGF2α-PTGFR激活的胞内信号转导通路,主要由PLC-PKC通路上调子宫平滑肌细胞中IL-6,IL-1β, IL-8, MCP-1,VEGF的生成,同时抑制了TNFα的生成;而Calcineurin-NFAT通路的激活则介导了对MCP-1以及TNFα的生成;P38-STATs通路主要参与了对MCP-1生成的调节,PI3K通路则可能调节MCP-1和VEGF的生成。
     3. PGE2通过EP1/3上调IL-6,VEGF,TNF 的生成,但同时减少了IL-1β的生成;通过EP2上调IL-6,IL-8,IL-1β以及VEGF的生成,在低浓度时促进TNFα的生成,在高浓度时抑制其生成;通过EP4主要下调了VEGF的生成,同时上调IL-1β以及TNFα的生成。PGE2对趋化因子MCP-1并未见明显的调节作用。
     4. PGF2α以及PGE2均参与分娩前期炎症相关因子的生成,一方面通过促进促炎因子的生成创造了分娩启动前期子宫局部炎症微环境的建立,同时刺激子宫平滑肌分泌的趋化因子对于白细胞向宫内的招募富集,进一步扩大炎症反应的进行提供了有利条件。
     二、PGs通过不同受体对妊娠子宫平滑肌细胞上子宫收缩相关蛋白表达的调节作用
     1.前列腺素F2α通过激活Gq蛋白,经胞内一系列信号分子P38,PI3K和PLC-β-PKC等的传递,介导了对子宫收缩相关蛋白CX43,PTGS-2以及OTR表达的上调作用,而同时以负反馈调节的方式降低了自身受体的表达。
     2. PGE2则分别通过收缩性受体EP1/3上调了CX43,PTGS-2,OTR以及PTGFR的表达,而舒张性受体EP2则通过抑制OTR以及PTGFR的表达降低子宫平滑肌对催产素和前列腺素等宫缩剂的敏感性。通过两类受体亚型的相互协调作用,完成对收缩相关蛋白的表达的精细调节。
     三、PGs通过不同受体对妊娠子宫平滑肌细胞上转录因子ZEBs的调节作用
     1. PGF2α可剂量依赖性减少ZEB两种亚型蛋白水平的表达。
     2.PGE2主要是发挥着下调ZEB1的调节作用,但是其通过EP1/3可上调ZEB1和ZEB2;通过EP2和EP4下调ZEB1以及ZEB2的蛋白表达。
     结论:
     本研究表明,临近分娩时孕妇羊水中高表达的前列腺素PGF2α及PGE2在子宫肌局部通过自分泌或旁分泌的方式,一方面可通过促进炎症相关的促炎因子及子的表达,参与构建宫内局部炎症微环境,同时也通过上调VEGF的表达改变子宫肌细胞的通透性,刺激宫内趋化因子的表达,从而为炎症反应的扩大提供有利条件。另一方面,通过上调子宫收缩相关蛋白的表达来直接激活子宫肌的收缩状态,为分娩的顺利进行做好准备。
Numerous physiological processes, like implantation, pregnancy maintaince and thetrigger of parturtiton, have close relationship with maternal immune system. Evidenceindicated that the establishment of inflammatory environment in intrauterine organscontributes to the initiation of parturition. The cytokines and chemokines activate themyometrium contractile ability changes via modulating contraction-related fators, andfurther more initate the parturition of labor. However there is no definite conclusion aboutthe regulation mechanism of inflammation factors during pregnancy and parturition.Considering as the most powerful contractile agonist of myometrium, PGs was reported todelay the stimulatory effect in clinical application as the drug induced labor. Thus thisfinding indicated that the regulatory mechanism of PGs on myometrium contractility mightgo through the uterus activation process in the early stage of parturition initiation and latersitmulates the regular contration in uterus. Reports demonstrated that the level of PGsdetected in amion fluid before parturition arised significantly which possibly contribute tothe uterine activation process during the early parturition. Without clarified explainationabout the hypothesis, we studied whether PGF2α and PGE2modulate the inflammation-related factors expression during normal pregnancy based on the cultured myometrialsmooth muscle cells.
     The contractility of uterus is influenced by changes of hormones level, expression ofcontractile proteins and other factors. The alteration of contractile protein family onexpression and function represents the contract ability of uterus. PGs have been discoveredinvolved in the regulation of some contractile proteins. However more studies are requiredfor the possible activated signal pathway mechanism triggered by PGF2α and PGE2inmyometrial cells. Here in our study, PTGS-2, CX43, OTR and PTGFR are taken as fourproxies for the uterine activation protein family (UAPs).
     In the third part, the role of transcriptional factor,Zinc E box binding homeobox,(ZEB) was taken into consideration that particicpated in the effect of PGs on uterineactivation process. Evidences indicated that ZEBs could directly bind to the promoters ofOTR and CX43and futher regulated their protein abundance. Therefore, we focused onwhether ZEBs medicatd partially the regulation of PGs on uterine activation proteinsexpression. Main results:
     1. Regulation of inflammatory cytokines expression mediated by prostaglandinsvia different receptors
     1) In the uterine activation process, PGF2α stimulated the outputs of pro-inflammatory cytokines, such as IL-6, IL-1β, the outputs of chemokines, like IL-8, MCP-1,and growth factor VEGF output, while decreased the output of cytokine TNFα.
     2) PGF2α receptor, PTGFR, trigger the intracellular multiple signal pathways toregulate the outputs of cytokines and chemokines. The outputs of IL-6,IL-1β, IL-8,MCP-1,VEGF and TNFα were modulated by PLC-β-PKC pathway. While the activationof Calcineurin-NFAT pathway involved in the regulation on MCP-1and TNFα outputs.The output of MCP-1was also mediated by P38-STATs pathway, while the PI3K activationparticipated in the regulation of MCP-1and VEGF outputs.
     3) PGE2via EP1/3up-regulated the outputs of IL-6, VEGF, TNFα, while decreasedIL-1β output. EP2agonist stimulated the outputs of IL-6, IL-8, IL-1β, and VEGF dose-dependently. But there exist the dual effect of EP2mediating the output of TNFα, i.e itshowed the stimulatory effect at the low concentration while decreased TNFα output at thehigh concenctration. And EP4agonist mainly down-regulated VEGF output and increasedIL-1β and TNFα outputs. Compared withhere is no significant effect on chemokine MCP-1output by PGE2.
     2. Regulation of uterine activation proteins expression mediated byprostaglandins via different receptors
     1) PGF2α via its Gq protein-coupled receptor PTGFR, activated intracellular PLCβ-PKC pathway and other signal factors to up-regulate the expression of uterine activationproteins, such as CX43, PTGS-2, OTR. Meanwhile PGF2α showed the negative feedbackmodulation on its own receptor expression.
     2) The contractile receptors EP1/3of PGE2mediated the stimulatory effect on UAPsexpression. While the relaxant receptor EP2and EP4mainly reduced the sensitivity ofmyometrial cells on oxytocin and PGs by down-regulating their receptor expression.Therefore PGE2achieved the subtle regulation on the uterine activation proteinsabundance by the balanced coordination among receptors.
     3. Regulation of transcript factor--ZEBs expression mediated by prostaglandinsvia different receptors
     1) PGF2α downregulated ZEB1and ZEB2protein abundances in pregnant myomtrial cells.
     2) PGE2mainly decreased ZEB1expression while ZEB2abundance remained at thesimilar level. However the contractile receptor EP1/3specific agonist increased ZEBsexpression while EP2and EP4agonists downregulated their abundances.Conclusion
     In concluation, our study demonstrated that the arising level of PGF2α and PGE2inamnion fluid of pregnant women, took act on myometrium via autocrine or paracrine mean.On one hand, PGs contributed the micro inflammatory environment in intrauterine organsby promoting inflammation-related cytokines and chemokines expression. Meanwhile theupregulated VEGF level may contribute to the permeability of myometrial cells allowingmigration of leukocytes to uterus. On the other hand, the up-regulation of uterus contractileproteins can activate myometrium and prepare for the parturition.
引文
1. Stamatelou, F., et al., Abnormal progesterone and corticotropin releasing hormone levels areassociated with preterm labour. Ann Acad Med Singapore,2009.38(11): p.1011-6.
    2. Mitchell, S.M., et al., High frequencies of elevated alkaline phosphatase activity and rickets exist inextremely low birth weight infants despite current nutritional support. BMC Pediatr,2009.9: p.47.
    3. Santos, G.H., et al.,[Impact of maternal age on perinatal outcomes and mode of delivery]. Rev BrasGinecol Obstet,2009.31(7): p.326-34.
    4. Nkansah-Amankra, S., et al., Maternal Social Support and Neighborhood Income Inequality asPredictors of Low Birth Weight and Preterm Birth Outcome Disparities: Analysis of South CarolinaPregnancy Risk Assessment and Monitoring System Survey,2000-2003. Matern Child Health J,2009.
    5. Bittar, R.E. and M. Zugaib,[Risk predictors for preterm birth]. Rev Bras Ginecol Obstet,2009.31(4): p.203-9.
    6. Hille, E.T., et al., School performance at nine years of age in very premature and very low birthweight infants: perinatal risk factors and predictors at five years of age. Collaborative Project onPreterm and Small for Gestational Age (POPS) Infants in The Netherlands. J Pediatr,1994.125(3):p.426-34.
    7. Abrams, B. and V. Newman, Small-for-gestational-age birth: maternal predictors and comparisonwith risk factors of spontaneous preterm delivery in the same cohort. Am J Obstet Gynecol,1991.164(3): p.785-90.
    8. Abd Eldaim, M.A., et al., Retinol binding protein4in dairy cows: its presence in colostrum andalteration in plasma during fasting, inflammation, and the peripartum period. J Dairy Res,2010.77(1): p.27-32.
    9. Myatt, L. and S.J. Lye, Expression, localization and function of prostaglandin receptors inmyometrium. Prostaglandins Leukot Essent Fatty Acids,2004.70(2): p.137-48.
    10. McLaren, J., D.J. Taylor, and S.C. Bell, Prostaglandin E2-dependent production of latent matrixmetalloproteinase-9in cultures of human fetal membranes. Molecular Human Reproduction,2000.6(11): p.1033-1040.
    11. Olson, D.M., J.E. Mijovic, and D.W. Sadowsky, Control of human parturition. Semin Perinatol,1995.19(1): p.52-63.
    12. Ulug, U., et al., Matrix metalloproteinase (MMP)-2and MMP-9and their inhibitor, TIMP-1, inhuman term decidua and fetal membranes: the effect of prostaglandin F2α and indomethacin.Molecular Human Reproduction,2001.7(12): p.1187-1193.
    13. Fletcher, H.M., et al., Intravaginal misoprostol as a cervical ripening agent. Br J Obstet Gynaecol,1993.100(7): p.641-4.
    14. Noort, W.A., et al., Changes in plasma of PGF2α and PGI2metabolites at and after delivery at term.prostaglandins,1989.37(1): p.3-12.
    15. Lindell, J.O., et al., Post-partum release of prostaglandin F2α and uterine involution in the cow.Theriogenology,1982.17(3): p.237-245.
    16. Xie, W.L., et al., Expression of a mitogen-responsive gene encoding prostaglandin synthase isregulated by mRNA splicing. Proceedings of the National Academy of Sciences,1991.88(7): p.2692-2696.
    17. Sadovsky, Y., et al., Effective diminution of amniotic prostaglandin production by selectiveinhibitors of cyclooxygenase type2. Am J Obstet Gynecol,2000.182(2): p.370-6.
    18. Poore, K.R., I.R. Young, and J.J. Hirst, Efficacy of the selective prostaglandin synthase type2inhibitor nimesulide in blocking basal prostaglandin production and delaying glucocorticoid-induced premature labor in sheep. Am J Obstet Gynecol,1999.180(5): p.1244-53.
    19. Moldenhauer, L.M., J.D. Hayball, and S.A. Robertson, Utilising T cell receptor transgenic mice todefine mechanisms of maternal T cell tolerance in pregnancy. J Reprod Immunol,2010.87(1-2): p.1-13.
    20. Aluvihare, V.R., M. Kallikourdis, and A.G. Betz, Regulatory T cells mediate maternal tolerance tothe fetus. Nat Immunol,2004.5(3): p.266-71.
    21. Guerin, L.R., J.R. Prins, and S.A. Robertson, Regulatory T-cells and immune tolerance in pregnancy:a new target for infertility treatment? Hum Reprod Update,2009.15(5): p.517-35.
    22. Tribe, R.M., et al., Interleukin-1beta induces calcium transients and enhances basal and storeoperated calcium entry in human myometrial smooth muscle. Biol Reprod,2003.68(5): p.1842-9.
    23. Oger, S., et al., Interleukin-1β Induces Phosphodiesterase4B2Expression in Human MyometrialCells through a Prostaglandin E2-and Cyclic Adenosine3′,5′-Monophosphate-Dependent Pathway.Journal of Clinical Endocrinology&Metabolism,2002.87(12): p.5524-5531.
    24. Hansen, W.R., et al., Key enzymes of prostaglandin biosynthesis and metabolism. Coordinateregulation of expression by cytokines in gestational tissues: a review. Prostaglandins Other LipidMediat,1999.57(4): p.243-57.
    25. Phillips, R.J., et al., Genes for prostaglandin synthesis, transport and inactivation are differentiallyexpressed in human uterine tissues, and the prostaglandin F synthase AKR1B1is induced inmyometrial cells by inflammatory cytokines. Molecular Human Reproduction,2011.17(1): p.1-13.
    26. Sato, T.A., J.A. Keelan, and M.D. Mitchell, Critical Paracrine Interactions Between TNF-α and IL-10Regulate Lipopolysaccharide-Stimulated Human Choriodecidual Cytokine and Prostaglandin E2Production. The Journal of Immunology,2003.170(1): p.158-166.
    27. Ledingham, M.A., et al., Cell adhesion molecule expression in the cervix and myometrium duringpregnancy and parturition. Obstet Gynecol,2001.97(2): p.235-42.
    28. Rath, W., M. Winkler, and B. Kemp, The importance of extracellular matrix in the induction ofpreterm delivery. J Perinat Med,1998.26(6): p.437-41.
    29. Thomson, A.J., et al., Leukocytes infiltrate the myometrium during human parturition: furtherevidence that labour is an inflammatory process. Hum Reprod,1999.14(1): p.229-36.
    30. Osman, N.I., et al., The effects of breed, neonatal age and pregnancy on the plasma copper status ofgoats in Oman. Vet Res Commun,2003.27(3): p.219-29.
    31. Norman, J.E., et al., Inflammatory pathways in the mechanism of parturition. BMC PregnancyChildbirth,2007.7Suppl1: p. S7.
    32. Henkes, L.E., et al., Acid sphingomyelinase involvement in tumor necrosis factor alpha-regulatedvascular and steroid disruption during luteolysis in vivo. Proc Natl Acad Sci U S A,2008.105(22):p.7670-5.
    33. Nagamatsu, T. and D.J. Schust, Review: The Immunomodulatory Roles of Macrophages at theMaternal—Fetal Interface. Reproductive Sciences,2010.17(3): p.209-218.
    34. Medeiros, A., et al., Prostaglandin E2and the suppression of phagocyte innate immune responses indifferent organs. Mediators Inflamm,2012.2012: p.327568.
    35. Skinner KA and C. JR., Changes in the synthesis and metabolism of prostaglandins by human fetalmembranes and decidua at labor. Am J Obstet Gynecol.,1985.151(4): p.519-23.
    36. Lee, S.E., et al., Amniotic fluid prostaglandin concentrations increase before the onset ofspontaneous labor at term. Journal of Maternal-Fetal and Neonatal Medicine,2008.21(2): p.89-94.
    37. Durn, J.H., et al., Lipidomic analysis reveals prostanoid profiles in human term pregnantmyometrium. Prostaglandins Leukot Essent Fatty Acids,2010.82(1): p.21-6.
    38. Arulkumaran, S., et al., The roles of prostaglandin EP1and3receptors in the control of humanmyometrial contractility. J Clin Endocrinol Metab,2012.97(2): p.489-98.
    39. Hoffman, H.J. and L.S. Bakketeig, Risk factors associated with the occurrence of preterm birth. ClinObstet Gynecol,1984.27(3): p.539-52.
    40. Giannopoulos, G., et al., Prostaglandin E and F2alpha receptors in human myometrium during themenstrual cycle and in pregnancy and labor. Am J Obstet Gynecol,1985.153(8): p.904-10.
    41. Keelan, J.A., et al., Cytokines, prostaglandins and parturition--a review. Placenta,2003.24Suppl A:p. S33-46.
    42. Golightly, E., H.N. Jabbour, and J.E. Norman, Endocrine immune interactions in human parturition.Molecular and Cellular Endocrinology,2011.335(1): p.52-59.
    43. Keelan, J.A., et al., Cytokines, Prostaglandins and Parturition—A Review. Placenta,2003.24: p.S33-S46.
    44. Mitchell, M.D., S. Edwin, and R.J. Romero, Prostaglandin biosynthesis by human decidual cells:effects of inflammatory mediators. Prostaglandins Leukot Essent Fatty Acids,1990.41(1): p.35-8.
    45. Hertelendy, F., et al., Cytokine-initiated signal transduction in human myometrial cells. Am JReprod Immunol,1993.30(2-3): p.49-57.
    46. Basu, S. and M. Eriksson, Oxidative injury and survival during endotoxemia. FEBS Lett,1998.438(3): p.159-60.
    47. Basu, S., et al., Development of a novel biomarker of free radical damage in reperfusion injury aftercardiac arrest. FEBS Lett,2000.470(1): p.1-6.
    48. Handelman, G.J., et al., Elevated plasma F2-isoprostanes in patients on long-term hemodialysis.Kidney Int,2001.59(5): p.1960-6.
    49. Cottone, S., et al., Endothelin-1and F2-isoprostane relate to and predict renal dysfunction inhypertensive patients. Nephrol Dial Transplant,2009.24(2): p.497-503.
    50. Kristensen, D.M., M. Kalisz, and J.H. Nielsen, Cytokine signalling in embryonic stem cells. APMIS,
    2005.113(11-12): p.756-72.
    51. Singh, M., P. Chaudhry, and E. Asselin, Bridging endometrial receptivity and implantation: networkof hormones, cytokines, and growth factors. J Endocrinol,2011.210(1): p.5-14.
    52. Kelly, R.W., A.E. King, and H.O. Critchley, Cytokine control in human endometrium. Reproduction,
    2001.121(1): p.3-19.
    53. Zourbas, S., et al., Localization of pro-inflammatory (IL-12, IL-15) and anti-inflammatory (IL-11,IL-13) cytokines at the foetomaternal interface during murine pregnancy. Clinical&ExperimentalImmunology,2001.126(3): p.519-528.
    54. Heikkinen, J., et al., Cytokine levels in midtrimester amniotic fluid in normal pregnancy and in theprediction of pre-eclampsia. Scand J Immunol,2001.53(3): p.310-4.
    55. Munno, I., et al., Spontaneous and induced release of prostaglandins, interleukin (IL)-1beta, IL-6,and tumor necrosis factor-alpha by placental tissue from normal and preeclamptic pregnancies. AmJ Reprod Immunol,1999.42(6): p.369-74.
    56. Galazios, G., et al., Interleukin-6levels in umbilical artery serum in normal and abnormalpregnancies. Int J Gynaecol Obstet,2002.78(2): p.147-51.
    57. Mitchell, M.D., et al., Interleukin-6stimulates prostaglandin production by human amnion anddecidual cells. Eur J Pharmacol,1991.192(1): p.189-91.
    58. Jaattela, M., P. Kuusela, and E. Saksela, Demonstration of tumor necrosis factor in human amnioticfluids and supernatants of placental and decidual tissues. Lab Invest,1988.58(1): p.48-52.
    59. Hunt, J.S., Expression and regulation of the tumour necrosis factor-alpha gene in the femalereproductive tract. Reprod Fertil Dev,1993.5(2): p.141-53.
    60. Hunt, J.S., et al., Tumor necrosis factor-alpha messenger ribonucleic acid and protein in humanendometrium. Biol Reprod,1992.47(1): p.141-7.
    61. Yelavarthi, K.K., et al., Tumor necrosis factor-alpha mRNA and protein in rat uterine and placentalcells. J Immunol,1991.146(11): p.3840-8.
    62. Molnar, M., R. Romero, and F. Hertelendy, Interleukin-1and tumor necrosis factor stimulatearachidonic acid release and phospholipid metabolism in human myometrial cells. Am J ObstetGynecol,1993.169(4): p.825-9.
    63. Silver, R.M., et al., Lipopolysaccharide-induced fetal death: the role of tumor-necrosis factor alpha.Biol Reprod,1994.50(5): p.1108-12.
    64. Leroy, M.J., et al., Inflammation of choriodecidua induces tumor necrosis factor alpha-mediatedapoptosis of human myometrial cells. Biol Reprod,2007.76(5): p.769-76.
    65. Osmers, R.G., et al., Interleukin-8synthesis and the onset of labor. Obstet Gynecol,1995.86(2): p.223-9.
    66. Khatun, S., et al., Interleukin-8potentiates the effect of interleukin-1-induced uterine contractions.Hum Reprod,1999.14(2): p.560-5.
    67. Chwalisz, K., et al., Pregnancy: Cervical ripening with the cytokines interleukin8, interleukin1βand tumour necrosis factor α in guinea-pigs. Human Reproduction,1994.9(11): p.2173-2181.
    68. el Maradny E, et al., Expression of interleukin-8receptors in the gestational tissues before and afterinitiation of labor: Immunohistochemical study. Acta Obstet Gynecol Scand,1996.75(9): p.790-
    796.
    69. He, Y.Y., et al., Regulation of C-C motif chemokine ligand2and its receptor in human decidualstromal cells by pregnancy-associated hormones in early gestation. Hum Reprod,2007.22(10): p.2733-42.
    70. Tornblom, S., et al., Non-infected preterm parturition is related to increased concentrations of IL-6,IL-8and MCP-1in human cervix. Reproductive Biology and Endocrinology,2005.3(1): p.39.
    71. Kaczmarek, M.M., et al., Expression of VEGF-receptor system in conceptus during peri-implantation period and endometrial and luteal expression of soluble VEGFR-1in the pig.Theriogenology,2009.71(8): p.1298-1306.
    72. Kalay, S., et al., The role of VEGF and its soluble receptor VEGFR-1in preterm newborns ofpreeclamptic mothers with RDS. Journal of Maternal-Fetal and Neonatal Medicine.0(0): p.1-6.
    73. Medina, J., et al., Angiogenesis in chronic inflammatory liver disease. Hepatology,2004.39(5): p.1185-1195.
    74. Abramovitz, M., et al., Cloning and expression of a cDNA for the human prostanoid FP receptor.Journal of Biological Chemistry,1994.269(4): p.2632-2636.
    75. Watanabe, T., et al., Prostaglandin F2alpha enhances tyrosine phosphorylation and DNA synthesisthrough phospholipase C-coupled receptor via Ca(2+)-dependent intracellular pathway in NIH-3T3cells. J Biol Chem,1994.269(26): p.17619-25.
    76. Pierce, K.L., et al., Activation of FP prostanoid receptor isoforms leads to Rho-mediated changes incell morphology and in the cell cytoskeleton. J Biol Chem,1999.274(50): p.35944-9.
    77. Sales, K.J., et al., Expression, localization, and signaling of prostaglandin F2alpha receptor inhuman endometrial adenocarcinoma: regulation of proliferation by activation of the epidermalgrowth factor receptor and mitogen-activated protein kinase signaling pathways. J Clin EndocrinolMetab,2004.89(2): p.986-93.
    78. Fujino, H. and J.W. Regan, FP prostanoid receptor activation of a T-cell factor/beta-cateninsignaling pathway. J Biol Chem,2001.276(16): p.12489-92.
    79. Sales, K.J., et al., Prostaglandin F(2alpha)-F-prostanoid receptor regulates CXCL8expression inendometrial adenocarcinoma cells via the calcium-calcineurin-NFAT pathway. Biochim BiophysActa,2009.1793(12): p.1917-28.
    80. Gardiner, P.J., Characterization of prostanoid relaxant/inhibitory receptors (psi) using a highlyselective agonist, TR4979. Br J Pharmacol,1986.87(1): p.45-56.
    81. Walch, L., et al., Prostanoid EP(1)-and TP-receptors involved in the contraction of humanpulmonary veins. Br J Pharmacol,2001.134(8): p.1671-8.
    82. Davis, R.J., et al., EP4prostanoid receptor-mediated vasodilatation of human middle cerebralarteries. Br J Pharmacol,2004.141(4): p.580-5.
    83. Sastry, B.V., et al., Dual messenger function for prostaglandin E2(PGE2) in human placenta. CellMol Biol (Noisy-le-grand),1997.43(3): p.417-24.
    84. Nishijima, M., et al., Macrophage activation by monosaccharide precursors of Escherichia colilipid A. Proc Natl Acad Sci U S A,1985.82(2): p.282-6.
    85. Montine, T.J., et al., Neuronal oxidative damage from activated innate immunity is EP2receptor-dependent. J Neurochem,2002.83(2): p.463-70.
    86. Snyder, D.S., D.I. Beller, and E.R. Unanue, Prostaglandins modulate macrophage Ia expression.Nature,1982.299(5879): p.163-5.
    87. Takayama, K., et al., Prostaglandin E2suppresses chemokine production in human macrophagesthrough the EP4receptor. J Biol Chem,2002.277(46): p.44147-54.
    88. Akaogi, J., et al., Prostaglandin E2receptors EP2and EP4are up-regulated in peritonealmacrophages and joints of pristane-treated mice and modulate TNF-alpha and IL-6production. JLeukoc Biol,2004.76(1): p.227-36.
    89. Smith, G.C., et al., Regional variations in contractile responses to prostaglandins and prostanoidreceptor messenger ribonucleic acid in pregnant baboon uterus. Am J Obstet Gynecol,1998.179(6Pt1): p.1545-52.
    90. Erkinheimo, T.L., et al., Expression of cyclooxygenase-2and prostanoid receptors by humanmyometrium. J Clin Endocrinol Metab,2000.85(9): p.3468-75.
    91. Leonhardt, A., et al., Expression of prostanoid receptors in human lower segment pregnantmyometrium. Prostaglandins Leukot Essent Fatty Acids,2003.69(5): p.307-13.
    92. Grigsby, P.L., et al., Regional expression of prostaglandin E2and F2alpha receptors in humanmyometrium, amnion, and choriodecidua with advancing gestation and labor. Biol Reprod,2006.75(2): p.297-305.
    93. Matsumoto, T., et al., The prostaglandin E2and F2alpha receptor genes are expressed in humanmyometrium and are down-regulated during pregnancy. Biochem Biophys Res Commun,1997.238(3): p.838-41.
    94. Astle, S., S. Thornton, and D.M. Slater, Identification and localization of prostaglandin E2receptors in upper and lower segment human myometrium during pregnancy. Mol Hum Reprod,2005.11(4): p.279-87.
    95. Kotani, M., et al., Multiple signal transduction pathways through two prostaglandin E receptor EP3subtype isoforms expressed in human uterus. J Clin Endocrinol Metab,2000.85(11): p.4315-22.
    96. Mosher, A.A., et al., Prostaglandin E2represses interleukin1beta-induced inflammatory mediatoroutput from pregnant human myometrial cells through the EP2and EP4receptors. Biol Reprod,2012.87(1): p.7,1-10.
    97. Challis, J.R.G., et al., Endocrine and Paracrine Regulation of Birth at Term and Preterm. EndocrRev,2000.21(5): p.514-550.
    98. Matsumoto, T., et al., The Prostaglandin E2and F2αReceptor Genes Are Expressed in HumanMyometrium and Are Down-regulated during Pregnancy. Biochemical and Biophysical ResearchCommunications,1997.238(3): p.838-841.
    99. Brodt-Eppley J and M. L, Prostaglandin receptors in lower segment myometrium during gestationand labor. Obstet Gynecol,1999.93(1): p.89-93.
    100. Grigsby, P.L., et al., Localization and expression of prostaglandin E2receptors in human placentaand corresponding fetal membranes with labor. Am J Obstet Gynecol,2006.195(1): p.260-9.
    101. Astle, S., et al., Expression and regulation of prostaglandin E synthase isoforms in humanmyometrium with labour. Mol Hum Reprod,2007.13(1): p.69-75.
    102. J. Senior, et al., In vitro characterization of prostanoid receptors on human myometrium at termpregnancy. Br J Pharmacol.,1993.108(2): p.6.
    103. Fetalvero, K.M., et al., Prostacyclin primes pregnant human myometrium for an enhancedcontractile response in parturition. J Clin Invest,2008.118(12): p.3966-79.
    104. Abramovitz, M., et al., The utilization of recombinant prostanoid receptors to determine theaffinities and selectivities of prostaglandins and related analogs. Biochim Biophys Acta,2000.1483(2): p.285-93.
    105. Kelly, A.J., et al., Vaginal prostaglandin (PGE2and PGF2a) for induction of labour at term.Cochrane Database Syst Rev,2009(4): p. CD003101.
    106. Stjernholm, Y.M., et al., Cervical ripening after treatment with prostaglandin E2or antiprogestin(RU486). Possible mechanisms in relation to gonadal steroids. European journal of obstetrics,gynecology, and reproductive biology,1999.84(1): p.83-88.
    107. Ji, H., et al., Prostaglandin E2–regulated cervical ripening: analysis of proteoglycan expression inthe rat cervix. American Journal of Obstetrics and Gynecology,2008.198(5): p.536.e1-536.e7.
    108. Sahlin, L., et al., Impaired leukocyte influx in cervix of postterm women not responding toprostaglandin priming. Reproductive Biology and Endocrinology,2008.6(1): p.36.
    109. Chiossi, G., et al., The Effects of Prostaglandin E1and Prostaglandin E2on in vitro MyometrialContractility and Uterine Structure. Amer J Perinatol,2012.29(08): p.615-622.
    110. Kumar, N.M. and N.B. Gilula, The Gap Junction Communication Channel. Cell,1996.84(3): p.381-388.
    111. Khanam, T. and G. Burnstock, Changes in expression of P2X1receptors and connexin43in the ratmyometrium during pregnancy. Fertility and Sterility,2007.88(4, Supplement1): p.1174-1179.
    112. Tabb, T., et al., An immunochemical and immunocytologic study of the increase in myometrial gapjunctions (and connexin43) in rats and humans during pregnancy. Am J Obstet Gynecol,1992.167(2): p.559-67.
    113. Civitelli, R., et al., Regulation of connexin43expression and function by prostaglandin E2(PGE2)and parathyroid hormone (PTH) in osteoblastic cells. Journal of Cellular Biochemistry,1998.68(1):p.8-21.
    114. Zakar, T. and F. Hertelendy, Regulation of prostaglandin synthesis in the human uterus. J MaternFetal Med,2001.10(4): p.223-35.
    115. Herschman, H.R. and W. Hall, Regulation of prostaglandin synthase-1and prostaglandin synthase-2.Cancer and Metastasis Reviews,1994.13(3): p.241-256.
    116. Sales, K.J., V. Grant, and H.N. Jabbour, Prostaglandin E2and F2α activate the FP receptor and up-regulate cyclooxygenase-2expression via the cyclic AMP response element. Molecular and CellularEndocrinology,2008.285(1–2): p.51-61.
    117. Brodt-Eppley, J. and L. Myatt, Changes in Expression of Contractile FP and Relaxatory EP2Receptors in Pregnant Rat Myometrium during Late Gestation, at Labor, and Postpartum. Biologyof Reproduction,1998.59(4): p.878-883.
    118. Cook, J.L., et al., Mouse Placental Prostaglandins Are Associated with Uterine Activation and theTiming of Birth. Biology of Reproduction,2003.68(2): p.579-587.
    119. Cook, J.L., et al., Mouse placental prostaglandins are associated with uterine activation and thetiming of birth. Biol Reprod,2003.68(2): p.579-87.
    120. Molnar, M. and F. Hertelendy, PGF2alpha and PGE2binding to rat myometrium during gestation,parturition, and postpartum. American Journal of Physiology-Endocrinology And Metabolism,
    1990.258(5): p. E740-E747.
    121. Zaragoza, D.B., et al., The interleukin1beta-induced expression of human prostaglandin F2alphareceptor messenger RNA in human myometrial-derived ULTR cells requires the transcription factor,NFkappaB. Biol Reprod,2006.75(5): p.697-704.
    122. Ivell, R. and N. Walther, The role of sex steroids in the oxytocin hormone system. Mol CellEndocrinol,1999.151(1-2): p.95-101.
    123. Silvia, W.J., J.S. Ottobre, and E.K. Inskeep, Concentrations of prostaglandins E2, F2alpha and6-keto-prostaglandin F1alpha in the utero-ovarian venous plasma of nonpregnant and early pregnantewes. Biol Reprod,1984.30(4): p.936-44.
    124. Andley, U.P. and J.G. Weber, ULTRAVIOLET ACTION SPECTRA FOR PHOTOBIOLOGICALEFFECTS IN CULTURED HUMAN LENS EPITHELIAL CELLS. Photochemistry and Photobiology,
    1995.62(5): p.840-846.
    125. Lee, J., et al., Early pregnancy induced expression of prostaglandin E2receptors EP2and EP4inthe ovine endometrium and regulated by interferon tau through multiple cell signaling pathways.Molecular and Cellular Endocrinology,2012.348(1): p.211-223.
    126. Ogbourne, S. and T.M. Antalis, Transcriptional control and the role of silencers in transcriptionalregulation in eukaryotes. Biochem J,1998.331(Pt1): p.1-14.
    127. Eckner, R., p300and CBP as transcriptional regulators and targets of oncogenic events. Biol Chem,1996.377(11): p.685-8.
    128. Alland, L., et al., Role for N-CoR and histone deacetylase in Sin3-mediated transcriptionalrepression. Nature,1997.387(6628): p.49-55.
    129. Luo, R.X., A.A. Postigo, and D.C. Dean, Rb Interacts with Histone Deacetylase to RepressTranscription. Cell,1998.92(4): p.463-473.
    130. Swirnoff, A.H., et al., Nab1, a corepressor of NGFI-A (Egr-1), contains an active transcriptionalrepression domain. Mol Cell Biol,1998.18(1): p.512-24.
    131. Postigo, A.A. and D.C. Dean, ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negativeregulator of muscle differentiation. EMBO J,1997.16(13): p.3935-3943.
    132. Postigo, A.A., et al., c-Myb and Ets proteins synergize to overcome transcriptional repression byZEB. EMBO J,1997.16(13): p.3924-3934.
    133. Dallot, E., et al., Contraction of cultured human uterine smooth muscle cells after stimulation withendothelin-1. Biol Reprod,2003.68(3): p.937-42.
    134. Rosivatz, E., et al., Differential expression of the epithelial-mesenchymal transition regulators snail,SIP1, and twist in gastric cancer. Am J Pathol,2002.161(5): p.1881-91.
    135. Elloul, S., et al., Snail, Slug, and Smad-interacting protein1as novel parameters of diseaseaggressiveness in metastatic ovarian and breast carcinoma. Cancer,2005.103(8): p.1631-43.
    136. Mejlvang, J., et al., Direct repression of cyclin D1by SIP1attenuates cell cycle progression in cellsundergoing an epithelial mesenchymal transition. Mol Biol Cell,2007.18(11): p.4615-24.
    137. Sayan, A.E., et al., SIP1protein protects cells from DNA damage-induced apoptosis and hasindependent prognostic value in bladder cancer. Proc Natl Acad Sci U S A,2009.106(35): p.14884-9.
    138. Browne, G., A.E. Sayan, and E. Tulchinsky, ZEB proteins link cell motility with cell cycle controland cell survival in cancer. Cell Cycle,2010.9(5): p.886-91.
    139. Saini, S., et al., MicroRNA-708induces apoptosis and suppresses tumorigenicity in renal cancercells. Cancer Res,2011.71(19): p.6208-19.
    140. Chua, H.L., et al., NF-kappaB represses E-cadherin expression and enhances epithelial tomesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1and ZEB-2.Oncogene,2007.26(5): p.711-24.
    141. Wu, A., et al., Elevated expression of CDK4in lung cancer. J Transl Med,2011.9: p.38.
    142. Postigo, A.A., et al., Regulation of Smad signaling through a differential recruitment of coactivatorsand corepressors by ZEB proteins. EMBO J,2003.22(10): p.2453-2462.
    143. Renthal, N.E., et al., miR-200family and targets, ZEB1and ZEB2, modulate uterine quiescence andcontractility during pregnancy and labor. Proc Natl Acad Sci U S A,2010.107(48): p.20828-33.
    144. Pena, C., et al., The expression levels of the transcriptional regulators p300and CtBP modulate thecorrelations between SNAIL, ZEB1, E-cadherin and vitamin D receptor in human colon carcinomas.Int J Cancer,2006.119(9): p.2098-104.
    145. Postigo, A.A., Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signalingpathway. EMBO J,2003.22(10): p.2443-52.
    146. Williams, T.M., et al., Identification of a zinc finger protein that inhibits IL-2gene expression.Science,1991.254(5039): p.1791-4.
    147. Genetta, T., D. Ruezinsky, and T. Kadesch, Displacement of an E-box-binding repressor by basichelix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chainenhancer. Mol Cell Biol,1994.14(9): p.6153-63.
    148. Postigo, A.A. and D.C. Dean, ZEB represses transcription through interaction with the corepressorCtBP. Proc Natl Acad Sci U S A,1999.96(12): p.6683-8.
    149. Postigo, A.A. and D.C. Dean, ZEB, a vertebrate homolog of Drosophila Zfh-1, is a negativeregulator of muscle differentiation. EMBO J,1997.16(13): p.3935-43.
    150. Fontemaggi, G., et al., The transcriptional repressor ZEB regulates p73expression at the crossroadbetween proliferation and differentiation. Mol Cell Biol,2001.21(24): p.8461-70.
    151. Murray, D., et al., The transcription factor deltaEF1is inversely expressed with type II collagenmRNA and can repress Col2a1promoter activity in transfected chondrocytes. J Biol Chem,2000.275(5): p.3610-8.
    152. Williams, K.C., et al., The microRNA (miR)-199a/214cluster mediates opposing effects ofprogesterone and estrogen on uterine contractility during pregnancy and labor. Mol Endocrinol,
    2012.26(11): p.1857-67.
    1. Guerin LR, Prins JR, Robertson SA2009Regulatory T-cells and immune tolerance inpregnancy: a new target for infertility treatment? Hum Reprod Update15:517-535
    2. Munoz-Suano A, Hamilton AB, Betz AG2011Gimme shelter: the immune system duringpregnancy. Immunol Rev241:20-38
    3. Moldenhauer LM, Hayball JD, Robertson SA2010Utilising T cell receptor transgenic miceto define mechanisms of maternal T cell tolerance in pregnancy. J Reprod Immunol87:1-13
    4. Dimitriadis E, White CA, Jones RL, Salamonsen LA2005Cytokines, chemokines andgrowth factors in endometrium related to implantation. Hum Reprod Update11:613-630
    5. Aluvihare VR, Kallikourdis M, Betz AG2004Regulatory T cells mediate maternal toleranceto the fetus. Nat Immunol5:266-271
    6. Ledingham MA, Thomson AJ, Jordan F, Young A, Crawford M, Norman JE2001Celladhesion molecule expression in the cervix and myometrium during pregnancy and parturition.Obstet Gynecol97:235-242
    7. Rath W, Winkler M, Kemp B1998The importance of extracellular matrix in the induction ofpreterm delivery. J Perinat Med26:437-441
    8. Osman I, Young A, Ledingham MA, Thomson AJ, Jordan F, Greer IA, Norman JE2003Leukocyte density and pro‐inflammatory cytokine expression in human fetal membranes,decidua, cervix and myometrium before and during labour at term. Molecular HumanReproduction9:41-45
    9. Thomson AJ, Telfer JF, Young A, Campbell S, Stewart CJ, Cameron IT, Greer IA,Norman JE1999Leukocytes infiltrate the myometrium during human parturition: furtherevidence that labour is an inflammatory process. Hum Reprod14:229-236
    10. Yuan M, Jordan F, McInnes IB, Harnett MM, Norman JE2009Leukocytes are primed inperipheral blood for activation during term and preterm labour. Molecular HumanReproduction15:713-724
    11. Sennstr m MB, Ekman G, Westergren-Thorsson G, Malmstr m A, Bystr m B, EndrésenU, Mlambo N, Norman M, St bi B, Brauner A2000Human cervical ripening, aninflammatory process mediated by cytokines. Molecular Human Reproduction6:375-381
    12. Olsson J, Poles M, Spetz A-L, Elliott J, Hultin L, Giorgi J, Andersson J, Anton P2000Human Immunodeficiency Virus Type1Infection Is Associated with Significant MucosalInflammation Characterized by Increased Expression of CCR5, CXCR4, and β-Chemokines.Journal of Infectious Diseases182:1625-1635
    13. Allport VC, Slater DM, Newton R, Bennett PR2000NF-κB and AP-1are required for cyclo-oxygenase2gene expression in amnion epithelial cell line (WISH). Molecular HumanReproduction6:561-565
    14. Chapman NR, Europe-Finner GN, Robson SC2004Expression and Deoxyribonucleic Acid-Binding Activity of the Nuclear Factor κB Family in the Human Myometrium duringPregnancy and Labor. Journal of Clinical Endocrinology&Metabolism89:5683-5693
    15. Tan H, Yi L, Rote NS, Hurd WW, Mesiano S2012Progesterone receptor-A and-B haveopposite effects on proinflammatory gene expression in human myometrial cells: implicationsfor progesterone actions in human pregnancy and parturition. J Clin Endocrinol Metab97:E719-730
    16. Lee Y, Sooranna SR, Terzidou V, Christian M, Brosens J, Huhtinen K, Poutanen M,Barton G, Johnson MR, Bennett PR2012Interactions between inflammatory signals and theprogesterone receptor in regulating gene expression in pregnant human uterine myocytes. J CellMol Med16:2487-2503
    15. Elovitz MA, Brown AG, Breen K, Anton L, Maubert M, Burd I2011Intrauterineinflammation, insufficient to induce parturition, still evokes fetal and neonatal brain injury. Int JDev Neurosci29:663-671
    16. Aagaard-Tillery KM, Silver R, Dalton J2006Immunology of normal pregnancy. SeminFetal Neonatal Med11:279-295
    17. Luppi P2003How immune mechanisms are affected by pregnancy. Vaccine21:3352-3357
    18. Tranchot-Diallo J, Gras G, Parnet-Mathieu F, Benveniste O, Marce D, Roques P, Milliez J,Chaouat G, Dormont D1997Modulations of cytokine expression in pregnant women. Am JReprod Immunol37:215-226
    19. Youssef RE, Ledingham MA, Bollapragada SS, O'Gorman N, Jordan F, Young A,Norman JE2009The role of toll-like receptors (TLR-2and-4) and triggering receptorexpressed on myeloid cells1(TREM-1) in human term and preterm labor. Reprod Sci16:843-856
    20. Osman I, Young A, Ledingham MA, Thomson AJ, Jordan F, Greer IA, Norman JE2003Leukocyte density and pro-inflammatory cytokine expression in human fetal membranes,decidua, cervix and myometrium before and during labour at term. Mol Hum Reprod9:41-45
    21. R. Romero, C. Avila, U. Santhanam, and P. B. Sehgal,“Amnioticfluid interleukin6in pretermlabor. Association withinfection,” Journal of Clinical Investigation, vol.85, no.5, pp.1392–1399,1990.
    22. R. Romero, R. Gomez, F. Ghezzi et al.,“A fetal systemicinflammatory response is followed bythe spontaneous onsetof preterm parturition,” American Journal of Obstetrics andGynecology,vol.179, no.1, pp.186–193,1998.23R. E. Garfield, S. Sims, and E. E. Daniel,“Gap junctions: theirpresence and necessity inmyometrium during parturition,”Science, vol.198, no.4320, pp.958–960,1977.
    24. R. E. Garfield and R.H.Hayashi,“Appearance of gap junctionsin themyometrium of womenduring labor,” American JournalofObstetrics and Gynecology, vol.140, no.3, pp.254–260,
    1981.
    25. K. Zhao, L. Kuperman, E. Geimonen, and J. Andersen,“Progestinrepresses human connexin43gene expression similarlyin primary cultures of myometrial and uterine leiomyomacells,”Biology of Reproduction, vol.54, no.3, pp.607–615,1996.
    26. A. R. Fuchs, F. Fuchs, P. Husslein, M. S. Soloff, and M. J. Fernstrom,“Oxytocin receptorsand human parturition: a dualrole for oxytocin in the initiation of labor,” Science, vol.215,no.4538, pp.1396–1398,1982.
    27. A. R. Fuchs, F. Fuchs, P. Husslein, and M. S. Soloff,“Oxytocinreceptors in the human uterusduring pregnancy and parturition,”American Journal of Obstetrics and Gynecology, vol.150,no.6, pp.734–741,1984.
    28. M. S. Soloff, Y. J. Jeng, J. A. Copland, Z. Strakova, and S.Hoare,“Signal pathways mediatingoxytocin stimulation ofprostaglandin synthesis in select target cells,” ExperimentalPhysiology,vol.85, supplement1, pp.51S–58S,2000.
    29. I. Christiaens, D. B. Zaragoza, L. Guilbert, S. A. Robertson,B. F. Mitchell, and D. M. Olson,“Inflammatory processes inpreterm and term parturition,” Journal of ReproductiveImmunology,vol.79, no.1, pp.50–57,2008.
    30. A. Csapo,“Progesterone block,” American Journal of Anatomy,vol.98, no.2, pp.273–291,
    1956.27. B. F. Mitchell and M. J. Taggart,“Are animal models relevantto key aspects of humanparturition?” American Journal ofPhysiology, vol.297, no.3, pp. R525–R545,2009.
    31. A. A. Merlino, T. N. Welsh, H. Tan et al.,“Nuclear progesteronereceptors in the humanpregnancy myometrium:evidence that parturition involves functional progesteronewithdrawalmediated by increased expression of progesteronereceptor-A,” Journal of ClinicalEndocrinology and Metabolism,vol.92, no.5, pp.1927–1933,2007.
    32. J. Szekeres-Bartho, M. Halasz, and T. Palkovics,“Progesteronein pregnancy; receptor-ligandinteraction and signaling pathways,”Journal of Reproductive Immunology, vol.83, no.1-2,pp.60–64,2009.
    33. Vrachnis N, Malamas FM, Sifakis S, Tsikouras P, Iliodromiti Z.“Immune aspects andmyometrial actions of progesterone and CRH in labor.”Clin Dev Immunol.2012:937618.2012
    34. M. S. Mahendroo, A. Porter, D. W. Russell, and R. A. Word,“The parturition defect in steroid5α-reductase type1knockoutmice is due to impaired cervical ripening,”MolecularEndocrinology, vol.13, no.6, pp.981–992,1999.
    35. M. Ishida, J. H. Choi, K. Hirabayashi et al.,“Reproductivephenotypes in mice with targeteddisruption of the20α-hydroxysteroid dehydrogenase gene,” Journal of ReproductionandDevelopment, vol.53, no.3, pp.499–508,2007.36. S. Mesiano, Y. Wang, and E. R.Norwitz,“Progesteronereceptors in the human pregnancy uterus: do they hold the keyto birthtiming?” Reproductive Sciences, vol.18, no.1, pp.6–19,2011.
    37. S. Mesiano, E. C. Chan, J. T. Fitter, K. Kwek, G. Yeo, andR. Smith,“Progesterone withdrawaland estrogen activationin human parturition are coordinated by progesterone receptorAexpression in the myometrium,” Journal of ClinicalEndocrinology and Metabolism, vol.87, no.6, pp.2924–2930,2002.
    38. P. H. Giangrande, E. A. Kimbrel, D. P. Edwards, and D. P.McDonnell,“The opposingtranscriptional activities of thetwo isoforms of the human progesterone receptor are duetodifferential cofactor binding,” Molecular and Cellular Biology,vol.20, no.9, pp.3102–3115,
    2000.
    39. Y. Stjernholm-Vladic, H. Wang, D. Stygar, G. Ekman, and L.Sahlin,“Differential regulation ofthe progesterone receptorA and B in the human uterine cervix at parturition,”GynecologicalEndocrinology, vol.18, no.1, pp.41–46,2004.
    40. Y. Vladic-Stjernholm, T. Vladic, C. S. Blesson, G. Ekman-Ordeberg, and L. Sahlin,“Prostaglandin treatment is associatedwith a withdrawal of progesterone and androgen atthereceptor level in the uterine cervix,” Reproductive Biology andEndocrinology, vol.7, article116,2009.
    41. R. Raghupathy,“Th1-type immunity is incompatible withsuccessful pregnancy,” ImmunologyToday, vol.18, no.10, pp.478–482,1997.
    42. R. Druckmann and M. A. Druckmann,“Progesterone and theimmunology of pregnancy,” Journalof Steroid Biochemistryand Molecular Biology, vol.97, no.5, pp.389–396,2005.
    43. M. A. Elovitz and C. Mrinalini,“Can medroxyprogesteroneacetate alter Toll-like receptorexpression in a mouse modelof intrauterine inflammation?” American Journal of ObstetricsandGynecology, vol.193, no.3, pp.1149–1155,2005.
    44. A. R. Fuchs, F. Fuchs, P. Husslein, and M. S. Soloff,“Oxytocinreceptors in the human uterusduring pregnancy and parturition,”American Journal of Obstetrics and Gynecology, vol.150,no.6, pp.734–741,1984.
    45. M. S. Soloff, Y. J. Jeng, J. A. Copland, Z. Strakova, and S.Hoare,“Signal pathways mediatingoxytocin stimulation ofprostaglandin synthesis in select target cells,” ExperimentalPhysiology,vol.85, supplement1, pp.51S–58S,2000.
    46. B. W. Donesky, M. D. de Moura, C. Tedeschi, A. Hurwitz, E.Y. Adashi, and D. W. Payne,“Interleukin-1β inhibits steroidogenicbioactivity in cultured rat ovarian granulosa cellsbystimulation of progesterone degradation and inhibition ofestrogen formation,” Biology ofReproduction, vol.58, no.5, pp.1108–1116,1998.
    47. I. Christiaens, D. B. Zaragoza, L. Guilbert, S. A. Robertson,B. F. Mitchell, and D. M. Olson,“Inflammatory processes inpreterm and term parturition,” Journal of ReproductiveImmunology,vol.79, no.1, pp.50–57,2008.
    48. Z. Liang, S. R. Sooranna, N. Engineer et al.,“ProstaglandinF2-alpha receptor regulation inhuman uterine myocytes,”Molecular Human Reproduction, vol.14, no.4, pp.215–223,2008.
    49. M. Mclean, A. Bisits, J. Davies, R. Woods, P. Lowry, and R.Smith,“A placental clockcontrolling the length of humanpregnancy,” Nature Medicine, vol.1, no.5, pp.460–463,1995.
    50. X. Wu, H. Shen, L. Yu, M. Peng, W.-S. Lai, and Y.-L. Ding,“Corticotropin-releasing hormoneactivates connexin43viaactivator protein-1transcription factor in human myometrialsmoothmuscle cells,” American Journal of Physiology, vol.293,no.6, pp. E1789–E1794,2007.
    51. E. Karteris, E. W. Hillhouse, and D. Grammatopoulos,“UrocortinII Is expressed in humanpregnant myometrial cells andregulates myosin light chain phosphorylation: potential roleof thetype-2corticotropin-releasing hormone receptor in thecontrol of myometrial contractility,”Endocrinology, vol.145,no.2, pp.890–900,2004.
    52. M. Torricelli, R. Novembri, E. Bloise, M. de Bonis, J. R. Challis,and F. Petraglia,“Changes inplacental CRH, urocortins,and CRH-receptor mRNA expression associated withpretermdelivery and chorioamnionitis,” Journal of Clinical Endocrinologyand Metabolism, vol.96, no.2, pp.534–540,2011.
    53. A. Dubicke, A. Akerud, M. Sennstrom et al.,“Differentsecretion patterns of matrixmetalloproteinases and IL-8andeffect of corticotropin-releasing hormone in pretermandtermcervical fibroblasts,” Molecular Human Reproduction, vol.14,no.11, pp.641–647,2008.
    54. I. Christiaens, D. B. Zaragoza, L. Guilbert, S. A. Robertson,B. F. Mitchell, and D. M. Olson,“Inflammatory processes inpreterm and term parturition,” Journal of Reproductive Immunology,vol.79, no.1, pp.50–57,2008.
    55. A. Malamitsi-Puchner, N. Vrachnis, E. Samoli et al.,“Possibleearly prediction of preterm birthby determination of novelproinflammatory factors in midtrimester amniotic fluid,”Annals ofthe New York Academy of Sciences, vol.1092, pp.440–449,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700