用户名: 密码: 验证码:
方辉橄榄岩高温高压相变实验研究:对中国东部地幔转换带结构的启示
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
方辉橄榄岩是俯冲大洋岩石圈的重要组成部分,在板块的俯冲和地幔对流过程中占据重要地位,通过俯冲作用进入地幔深部的方辉橄榄岩不但会改造原生地幔岩的化学成分、矿物组成和热状态,还与中深源地震的成因、地幔深部水循环等一系列地球动力学问题密切相关,具有重要的地球动力学意义。全球层析成像研究结果表明,地幔深部(从上地幔至下地幔底部)存在广泛分布的高速异常,由于这些高速异常多与俯冲带密切相关,因此通常被认为是滞留在地幔中的俯冲大洋板块。然而,目前国际上还没有对真正意义上的方辉橄榄岩在高温高压下的相变行为开展实验研究,这在一定程度上限制了我们对方辉橄榄岩在地幔深部条件下的相变、演化和物理性质以及相关地球动力学问题的认识。为了探索俯冲方辉橄榄岩在地幔转换带条件下的矿物学特征及其物理性质和赋存状态,我们以天然方辉橄榄岩为实验起始材料,在高温高压相变、超声波速度测量和矿物物理计算等方面开展了一些初步的工作,主要包含以下三个方面的研究内容:方辉橄榄岩高温高压相变实验研究、方辉橄榄岩窒温高压超声波速度测量实验研究和中国东部地幔转换带滞留板块的速度和密度特征。
     (1)对方辉橄榄岩的高温高压相变实验研究初步确定了方辉橄榄岩在地幔转换带条件下的矿物组成,在此基础上我们初步建立了俯冲方辉橄榄岩的密度和速度剖面。1400℃时:在约14-16GPa条件下,方辉橄榄岩的主要矿物组成为瓦兹利石、石榴石和高压单斜辉石,其中石榴石的含量随着压力的升高而增加,高压单斜辉石的含量随着压力的升高而而减少;至约19GPa时,高压单斜辉石消失,石榴石的含量达到最多:随着压力的继续升高(-20GPa),瓦兹利石相变为林伍德石,部分石榴石相变为斯石英+林伍德石,这导致林伍德石含量增加和石榴石含量的减少;在22GPa时,斯石英与林伍德石反应生成秋本石,造成林伍德石含量的减少和石榴石含量的增加;随着压力的升高,秋本石的含量逐渐减少,在约24GPa时,剩余的秋本石相变为钙钛矿(严格讲为具钙钛矿结构的硅酸盐,本文简称“钙钛矿”),林伍德石也分解为富镁钙钛矿和铁方镁石,部分石榴石也逐渐相变为钙钛矿。1200℃时:在18-20GPa条件下,方辉橄榄岩主要由林伍德石、斯石英和石榴石组成,且斯石英和石榴石密切共生;当压力升高至22GPa时,部分斯石英和林伍德石反应生成秋本石,但仍有部分斯石英和石榴石共生;在约24GPa时,秋本石消失,林伍德石开始分解为钙钛矿和铁方镁石
     在高温高压相变实验的基础上,我们利用三阶高温Birch-Murnaghan状态方程以及前大对相关矿物热弹性参数的结果计算了方辉橄榄岩沿典型俯冲带地温曲线的密度剖面。结果表明,在约420-650km深度范围内,俯冲方辉橄榄岩的密度比正常地幔岩的密度要高约0.1g/cm3;在约650-680km深度范围内,方辉橄榄岩的密度约比周围地幔低0.2g/cm3,这意味着密度是大洋板块深俯冲的重要驱动力;在地幔转换带底部,由于方辉橄榄岩温度较低,后尖晶石相变的压力偏高,导致方辉橄榄岩的密度低于周围地幔岩,这为俯冲板块在转换带中的滞留提供了浮力作用;方辉橄榄岩在转换带底部所受浮力随着滞留板块厚度的增加而减小,当方辉橄榄岩层的厚度达到一定程度时(>-70-80km),浮力逐渐小于重力,此时方辉橄榄岩将在自身重力的拖动下进入下地幔。
     我们还利用Voigt-Reuss-Hill (V-R-H)公式计算了方辉橄榄岩沿典型俯冲带地温曲线的速度剖面。结果表明,在地幔转换带中俯冲方辉橄榄岩的速度比止常地幔岩高。在转换带上部,方辉橄榄岩P波速度约比Pyrolite高5-6%,S波速度比Pyrolite高6-8%;在转换带下部,方辉橄榄岩P波速度比地震学模型高约3-4%,S波速度比地震学模型高约4-5%;这意味着俯冲方辉橄榄岩是地幔深部高速异常的重要来源。结果还表明,方辉橄榄岩相变难以在转换带下部形成地震波速度不连续面,这意味着转换带’下部与俯冲板块相关的复杂地震波不连续面(比如中国国东北地区地幔转换带)可能并非是方辉橄榄岩相变造成的。
     (2)在二维俯冲板块热动力学模型的基础上,将方辉橄榄岩高温高压相变实验结果和矿物物理参数相结合,建立了中国东部地幔转换带滞留板块的矿物物理模型。1)滞留板块的矿物学模型表明,在水平层状模型中(模型Ⅰ),滞留板块的主要矿物组成为林伍德石、斯石英、石榴石。波浪形滞留板块模型(模型Ⅱ)相对复杂一些,在转换带上部主要有瓦兹利石、石榴石和高压单斜辉石组成,在转换带底部主要由伍德石、斯石英、石i榴石和部分秋本石组成。2)密度模型结果表明,在模型Ⅰ中,玄武质洋壳的密度比周围地幔高约5-8%,方辉橄榄岩由于具有较低的温度,因此其密度比正常地幔高约1-3%,而下部二辉橄榄岩层的密度仅比正常地幔高约0-1%。对于模型Ⅱ,在转换带中上部,滞留板块的密度比正常地幔高约4-6%,这主要是由于方辉橄榄岩中含有有较多的瓦兹利石,在转换带底部,由于方辉橄榄岩具有较低的温度以及较高的林伍德石含量,因此其密度比正常地幔高约0-2%。3)速度模型结果表明,在模型Ⅰ中,玄武质洋壳的P-和S-波速度比正常地幔岩低约2-3%,中部方辉橄榄岩的P-和S-波速度分别比正常地幔岩高约3-5%和4.5-7.5%,这主要是因为方辉橄榄岩的温度相对较低,且含有较多的林伍德石以及部分斯石英。在模型Ⅱ中,方辉橄榄岩部分P-和S-波速度分别比正常地幔高约2-3.5%和3-5%,二辉橄榄岩的速度和密度和周围地幔比较接近。
     为了把根据矿物物理模型计算的结果和地震波层析结果相对比,我们分别对模型Ⅰ和模型Ⅱ中的P波速度异常数据进行高斯滤波,以消除高频信号的影响。结果表明,模型Ⅰ中玄武质洋壳产生的低速异常消失,方辉橄榄岩层产生的高速异常约为1.5-3.5%,比滤波之前降低了约2倍,但从整体上看,滤波之后的结果依然明显高于地震波层析成像的结果,因此作者认为模型Ⅰ难以代表中国东部地幔转换带滞留板块的真实赋存形态。仡模型Ⅱ中,滤波之后由波浪形滞留板块产生的比较尖锐的速度异常特征消失了,P波异常在整体上也呈近似水平的形态,最大异常值约为1-2%(俯冲板块刚进入转换带的部分除外):与模型相比,模型Ⅱ的P波异常幅度大大减小,与中国东部地震波层析成像的最新研究结果十分接近。从整体上看,模型Ⅱ比模型Ⅰ更接近地震波层析成像的结果,这意味着中国东部地幔转换带的滞留板块很可能也经历了一定程度的弯曲变形。
     (3)为了进一步约束中国东部地幔转换带高速异常的成因,我们计算了俯冲pyrolite模型的地震波速度特征。计算结果表明,水平层状模型(模型Ⅲ)引起的P波速度异常约为+1-3%,弯曲波浪形滞留板块模型(模型Ⅳ)引起的P波速度异常约为+0.5-1.5%,这意味着地幔岩中单独的温度异常也可以引起与滞留大洋板块类似的速度异常,因此仅从地震波速度异常方面难以区分中国东部地幔转换带高速异常的成因(温度异常还是化学成分异常?)。为了厘清中国东部转换带内高速异常的成因,我们计算了不同滞留板块模型中Vp/Vs的分布特征,并探讨了利用Vp/Vs是识别地幔中不同起源速度异常的可行性。计算结果表明,滞留Pyrolite板块模型(模型Ⅲ和Ⅳ)形成的Vp/Vs异常低于最近地震波层析成像的研究结果;弯曲波浪形滞留大洋岩石圈模型(模型Ⅱ)所引起的Vp/Vs异常约比正常地幔低1-2%左右,与地震学研究结果比较一致。这意味着中国东部地幔转换带的高速异常应该代表滞留的太平洋俯冲板块,而非单纯的温度异常现象。同时,这一结果再次表明,波浪形的滞留板块模型(模型Ⅱ)比水平层状滞留板块模型(模型Ⅰ)更能代表中国东部地幔转换带滞留板块的真实赋存状态。
     (4)我们在室温高压条件下对具有“林伍德石+斯石英+石榴石”组分的方辉橄榄岩进行了超声波速度测量实验。结果表明,方辉橄榄岩的零压P和S波速度分别约为VP0=9.8km/s和Vso=5.7km/s,波速对压力的导数分别约为aVp/(?)P=6.8×10-2kms-1GPa-1,(?)Vs/(?)P=2.4×10-2.kms-1GPa-1;方辉橄榄岩的零压体积模量K0和剪切模量G0分别约为194GPa和123GPa,体积模量和剪切模量对压力的导数分别约为(?)K/(?)P=4.9和(?)G/(?)P=1.5。与具有MORB成分的石榴石岩相比,方辉橄榄岩的P和S波速度分别要高8%和10%左右;与pyrol ite地幔岩相比,方辉橄榄岩的P和s波速度分别要高5-7.5%和5.5-9.5%左右,这意味着转换带滞留方辉橄榄岩和周围pyrolite地幔岩之间的岩性界面能够引起较大的速度突变。作者认为在利用相变成因解释与滞留板块相关的速度不连续面时,地幔岩-方辉橄榄岩这一岩性界面对地幔转换带速度结构的影响也不能被忽视,这很可能是形成俯冲带区域复杂速度不连续面的重要原因之一。
Harzburgite is generally accepted as an important part of subducting oceanic plate. In subduction zones, the oceanic plate was subducting into the deep mantle and stagnated in the mantle transition zone (MTZ) or core mantle boundary, e.g., circum-Pacific subduction zone. These subducted or stagnated materials have significant effect on the physical and chemical properties of the pyrolitic mantle due to thermal and compositional heterogeneities, e.g., cause slow (subducted basalt material) or fast anomalies (subducted harzburgite material), intensive hydration or partial melting in the deep mantle, and complex velocity structures in the MTZ. However, high pressure and high temperature (HPHT) experimental studies on harzburgite are still rarely by now, which limited our understanding of the geodynamics of subducting plate and the nature of the stagnant slabs. In order to explore the phase transitions of harzburgite and the physical properties of stagnant slabs in the MTZ, we conducted HPHT phase transition experiments by using a natural harzburgite, then calculated the velocity and density properties in different stagnant slab models and measured the ultrasonic sound velocity of hazrburgite under high pressure and room temperature conditions. The main contents of this thesis include the following three points:HPHT phase transformation in harzburgite. physical properties of the stagnant slabs beneath eastern China, ultrasonic sound velocity measurement of harzburgite under high pressure and room temperature conditions.
     (1). We determined the mineral constituents of harzburgite in the mantle transition zone through HPHT experiments and provided the velocity and density profiles of subducting plate. Under1400℃:harzburgite is mainly composed of wadsleyite, garnet and some amount of high pressure clinopyroxene at~14-19GPa. the proportion of garnet increased with the increase of pressure and the proportion of clinopyroxene decreased with pressure. Between20and22GPa, some stishovite crystals formed within large garnet grains, in association with an increase in the volume proportion of ringwoodite. When pressure increased to22-23GPa, about10vol%of akimotoite were observed in the run products, accompanied by the disappearance of stishovite. The volume fraction of akimotoite decreased with increasing pressure. At24.2GPa, perovskite and magnesiowilstite were formed together with majoritic garnet. Under1200℃:harzburgite was mainly composed of ringwoodite, stishovite and garnet, and some amount of akimotoite was formed when pressure increased to22GPa. All akimotoite disappeared and ringwoodite decomposed into perovskite+magnesiowilstite at circa24GPa.
     Density profile of harzburgite was calculated along a chosen subductiing geotherm by using the third-order high-temperature Birch-Murnaghan equation of state. The results indicate that harzburgite is~0.1g/cm3denser than pyrolite between~420and650km, and~0.2g/cm3less dense between650and680km, indicating that buoyancy is an important driving force during the subduction of oceanic plate. For various thicknesses from20to60km, the harzburgite layer is denser in the MTZ until~660km depth owing to combined effects of composition, thermal, and phase relations. When the subducting harzburgite layer has a thickness of greater than~70-80km, the subducitng harzburgite will become denser than the surrounding mantle and the stagnant slab will be driven to the lower mantle.
     The widely used Voigt-Reuss-Hill (V-R-H) method was used to calculate the velocity profile of harzburgite along a subducting slab geotherm, the results indicate that sound velocities of harzburgite is higher than those of the surrounding mantle. In the upper part of MTZ, sound velocities of harzburgite are about5-6%and6-8%higher than normal pyrolitic mantle for P and S waves respectively. In the bottom of MTZ, sound velocities of harzburgite are about3-4%and4-5%higher than the surrounding mantle for P and S wave velocities respectively; this indicates that subducting harzburgite is an important source for high velocity anomalies in the deep mantle. Our results also indicate that phase transitions in harzburgite can not form seismic velocity discontinues in the lower part of MTZ, this may have some implications for the formation of complex velocity structures beneath eastern China.
     (2). Mineral physics models of the stagnant slabs beneath eastern China were established based on the phase transition experimental results and2-D thermal dynamic subdcuting slab models. The calculation results indicate that:1) the main minerals in the horizontal slab model (Model Ⅰ) were ringwoodite, stishovite and garnet; the buckled slab model (Model Ⅱ) were mainly composed of ringwoodite, stishovite, garnet and some amount of akimotoite.2) The densities of the upper basaltic crust in Model I were about5-8%higher than the surrounding mantle, harzburgite is about1-3%denser than normal pyrolitci mantle, and the lower Iherzolite is circa0-1%denser than normal mantle. In Model Ⅱ, the stagnant slab is about4-6%denser than surrounding mantle in the middle to upper part of MTZ, and harzburgite is about0-2%higher than the surrounding mantle in the lower part of MTZ.3) In Model I, the upper oceanic crust is about2-3%slower than normal pyrolitic mantle; the middle harzburgite layer is about3-5%and4.5-7.5%faster than the surrounding mantle for P and S wave velocities respectively, due to lower temperature and higher ringwoodite content in the harzburgite layer. In Model Ⅱ, harzburgite is about2-3.5%and3-5%faster than normal pyrolitic mantle for P and S wave velocities respectively, the lower lherzolite layer have very similar P and S wave velocities with the surrounding mantle.
     Before comparing mineral physics results with seismic tomography results, low-pass spatial Gaussian filters were used to filter the P wave velocity anomaly images in the two models. The results indicate that:In Model I, the low-velocity region caused by the upper basalt layer disappeared due to the reduction in spatial resolution; amplitudes of the P-wave anomalies caused by the harzburgite layer are reduced by a factor of~2for the horizontal slab model to about1.5-3.5%, still significantly higher than seismic tomography results. In Model II, the sharp, sinusoidal velocity anomalies are smeared to a smooth near-horizontal feature. The amplitude of P-wave velocity anomalies is reduced to about1-2%throughout the slab except for the kneel point of the subducting slab. The horizontal extent of the fast anomaly is greatly reduced compared to Model I. Overall, the buckled model (after filtering) better matches the P-wave anomalies observed in seismic tomography images.
     (3). We calculated the velocity structures in two subducting pyrolite models. The P wave velocity anomaly is about+1-3%in the horizontal slab model (Model Ⅲ), and that in the buckled slab model (Model IV) is about0.5-1.5%1. These indicate that temperature anomalies along can also cause velocity anomalies that observed in seismic tomography studies. In order to determine the origin of the fast velocity anomalies beneath eastern China, we then calculated the Vp/Vs properties in the above four mineral physics models. The calculation results show that the Vp/Vs anomalies in the stagnant pyrolite models (Model Ⅲ and Ⅳ) are lower than recent tomography studies, while the Vp/Vs anomalies in Model Ⅱ are very similar to that observed in tomography studies (~1-2%). These implicate that temperature anomalies along can not account for the velocity anomalies beneath eastern China, and the stagnated buckled oceanic plate may represent the nature of the fast velocity anomalies under eastern China.
     (4). We conducted ultrasonic sound velocity measurements for harzburgite under high pressure and room temperature conditions. The harzburgite sample was mainly composed of ringwoodite, stishovite and garnet. Our experimental results indicate that the zero pressure P and S wave velocities of the tarzburgite sample are VP0=9.8km/s and VS0=5.7km/s, the pressure derivative of P and S wave velocities are about (?)Vp/(?)P=6.8×10-2kms-1GPa-1and (?)Vs/(?)P=2.4×10-2kms-1GPa-1. The zero pressure bulk and shear modulus are about K0=194GPa and Go=123GPa, the pressure derivative of bulk and shear modulus are about (?)K/(?)P=4.9and (?)G/(?)P=1.5. The sound velocities of harzburgite are about8%and10%higher than that of garnetite with MORB composition, and are about5-7.5%and5.5-9.5%higher than that of pyrolite. These indicate that the velocity jump across the interface between hazrburgite and the surrounding pyrolitic mantle is large enough for seismic detecting. The author believes that the harzburgite-pyrolite interface around the stagnant slabs must contribute to the complex velocity structures in the lower part of MTZ beneath eastern China.
引文
[1]杜建国,李营,王传远等.2010.高压地球科学.北京:地震出版社,136-137,201-203.
    [2]金振民.1997.我国高温高压实验研究进展和展望.地球物理学报,40(增刊),71-81.
    [3]王雁宾.2006.地球内部物质性质的原位高温高压研究:大体积压机与同步辐射源的结合.地学前缘,2006,13(2):1-36.
    [4]谢鸿森等著.1997.地球深部物质研究科学导论.北京:科学出版社,130-140,145-149.
    [5]郑军卫,张志强,赵纪东.2008.21世纪地球科学研究的重大科学问题.地球科学进展,23(12):1260-1267.
    [6]朱日祥,郑天愉.2009.华北克拉通破坏机制与古元古代板块构造体系.科学通报,54(14),1950-1961.
    [7]周春银,金振民,章军锋.2010.地幔转换带:地球深部研究的重要方向.地学前缘,17(3),90-113.
    [8]Abramson, E. H., Brown, J. M., Slutsky, L. J., et al.1997. The elastic constants of San Carlos olivine to 17 GPa. Journal of Geophysical Research,102,12253-12263.
    [9]Adkings, J. N.1940. The Alaska earthquake of July 22,1937. Bull. Seism. Soc. Am.30, 353-76.
    [10]Afonso, J.C., Ranalli, G., Fernandez, M., et al.2010, On the Vp/Vs-Mg# correlation in mantle peridotites:Implications for the identification of thermal and compositional anomalies in the upper mantle. Earth and Planetary Science Letters,289:606-618.
    [11]Ai, Y., and Zheng, T.2003. The upper mantle discontinuity structure beneath eastern China: Geophysical Research Letters,30,2089.
    [12]Ai, Y., Zheng, T., Xu, W., et al.2003. A complex 660 km discontinuity beneath northeast China. Earth and Planetary Science Letters,212,63-71.
    [13]Akaogi, M., Ito, E., and Navrotsky, A.,1989, Olivine-modified spinel-spinel transitions in the system Mg2SiO4-Fe2SiO4:Calorimetric measurments, thermochemical calculation, and geophysical application. Journal of Geophysical Research,94,15671-15685.
    [14]Akaogi, M.2007. Phase transitions of minerals in the transition zone and upper part of the lower mantle:in Ohtani, E., ed., Advances in High-Pressure Mineralogy:Geological Society of America Special Paper 421, p.1-13.
    [15]Akaogi, M., Kojitani, H., Morita, T., et al.2008. Low-temperature heat capacities, entropies and high-pressure phase relations of MgSiO3 ilmenite and perovskite. Physical and Chemistry of Minerals,35,287-297.
    [16]Albarede, F. and van der Hilst, R.D.2002. Zoned mantle convection:Philosophical Transactions of the Royal Society of London. Series A:Mathematical, Physical and Engineering Sciences,360,2569-2592.
    [17]Bean, V. E., Akimoto, S., Bell, P. M., et al.1986. Another step toward an international practical pressure scale. Physica,139:52-54.
    [18]Bell, D. R., Ihinger, P. D. and Rossman, G. R.1995. Quantitative analysis of trace OH in garnet and pyroxenes. America Mineralogist,80,465-474.
    [19]Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D. and Rauch, F.2003. Hydroxide in olivine:A quantitative determination of the absolute amount and calibration of the IR spectrum. Journal of Geophysical Research,108,2105.
    [20]Bellahsen, N., Faccenna, C. and Funiciello, F.2005. Dynamics of subduction and plate motion in laboratory experiments:Insights into the "plate tectonics" behavior of the Earth. Journal of Geophysical Research,110, B01401.
    [21]Bina, C. R. and Helffrich, G. R.1992. Calculation of Elastic Properties from Thermodynamic Equation of State Principles. Annual Review of Earth and Planetary Sciences,20,527-552.
    [22]Bina, C. R. and Kawakatsu, H.2010. Buoyancy, bending, and seismic visibility in deep slab stagnation. Physics of The Earth and Planetary Interiors,183,330-340.
    [23]Birch, F.1952. Elasticity and constitution of the Earth's interior. Journal of Geophysical Research,57:227-286.
    [24]Block, S.1978. Round-robin study of the high pressure phase transition in ZnS. Acta Crystallographica (Supplement), A34:S316.
    [25]Bose, K. and Ganguly, J.1995. Quartz-coesite transition revisited; reversed experimental determination at 500-1200 degrees C and retrieved thermochemical properties. American Mineralogist,80,231-238.
    [26]Brown, J. M.1999. The NaCl pressure standard. Jounal of Applied Physics,86,5801.
    [27]Byerly. P.1926. The Montana earthquake of June 28,1925. Bulletin of the Seismological Society of America 16:209-265.
    [28]Chantel, J., Mookherjee, M. and Frost, D. J.2012. The elasticity of lawsonite at high pressure and the origin of low velocity layers in subduction zones. Earth and Planetary Science Letters, 349-350,116-125.
    [29]Chen, L. and Ai, Y.2009. Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. Journal of Geophysical Research,114, B06307.
    [30]Chen, L., Zheng, T., Xu, W.2006. Receiver function migration image of the deep structure in the Bohai Bay Basin, eastern China. Geophysical Research Letters,33:L20307.
    [31]Chen, P. F., Bina, C. R. and Okal, E. A.2004. A global survey of stress orientations in subducting slabs as revealed by intermediate-depth earthquakes. Geophysical Journal International,159,721-733.
    [32]Chudinovskikh, L. and Boehler, R.2004. MgSiOj phase boundaries measured in the laser-heated diamond cell. Earth and Planetary Science Letters,219,285-296.
    [33]Christensen, U.2001. Geodynamic models of deep subduction. Physics of The Earth and Planetary Interiors,127,25-34.
    [34]Cizkova, H. and Bina, C.R.2012. Time-varying subduction and rollback velocities in slab stagnation and buckling. Eos Trans. AGU,93, Fall Meet. Suppl., abst., D111A-2394.
    [35]Contenti, S., Gu, Y. J., Okeler, A., et al.2012. Shear wave reflectivity imaging of the Nazca-South America subduction zone:Stagnant slab in the mantle transition zone? Geophysical Research Letters,39, L02310.
    [36]Cook, R. K.1957. Variation of Elastic Constants and Static Strains with Hydrostatic Pressure; a Method for Calculation from Ultrasonic Measurements. Journal of the Acoustical Society of America,29,445-449.
    [37]Deuss, A. and Woodhouse, J.2001. Seismic Observations of Splitting of the Mid-Transition Zone Discontinuity in Earth's Mantle. Science,294:354-357.
    [38]Deuss, A., Redfern, S.A.T., Chambers, K., et al.2006. The Nature of the 660-Kilometer Discontinuity in Earth's Mantle from Global Seismic Observations of PP Precursors. Science, 311,198-201.
    [39]Dick, H. J. B. and Natland, J. H.1996. Late-state melting evolution and transport in the shallow mantle beneath the east pacific rise, in Proceedings of the Ocean Drilling Program, Scientific Results, vo.147, edited by C. Mevel, K. M. Gilus, J. F. Allan and P. S. Meyer, pp.103-134, College Station, TX (Ocean Drilling Program).
    [40]Doyle, H.A. and Webb, J.P.1963. Travel times to Australian stations from Pacific nuclear explosions in 1958. Journal of Geophysical Research,68:1115-1120.
    [41]Duffy, T. S. and Anderson, D. L.1989. Seismic Velocities in Mantle Minerals and the Mineralogy of the Upper Mantle. Journal of Geophysical Research,94,1895-1912.
    [42]Dziewonski, A.M.. and Anderson, D.L.1981. Preliminary reference Earth model. Physics of The Earth and Planetary Interiors,25,297-356.
    [43]Fabrichnaya, O. B.1995. Thermodynamic data for phases in the FeO-MgO-SiO2 system and phase relations in the mantle transition zone. Physics and Chemistry of Minerals,22, 323-332.
    [44]Fei, Y. and Bertka, C. M.1999. Phase transitions in the Earth's mantle and mantle mineralogy, in Mantle Petrology:Field Observations and High Pressure Experimentation, edited by Y. Fei and C. M. Bertka, pp.189-207, The Geochemical Society, Houston.
    [45]Fei, Y., Mao, H. K., Shu, J.. et al.1992. P-V-T equation of state of magnesiowustite (Mg0.6,Fe0.4)O. Physics and Chemistry of Minerals,18,416-422.
    [46]Fei, Y., Van Orman. J., Li. J., et al.2004. Experimentally determined postspinel transformation boundary in Mg2SiO4 using MgO as an internal pressure standard and its geophysical implications. Journal of Geophysical Research,109, B02305.
    [47]Flanagan, M.P. and Shearer, P.M.1998. Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. Journal of Geophysical Research, Solid Earth,103:2673-2692.
    [48]Fukao, Y., Obayashi, M., Inoue, H., et al.1992. Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research,97,4809-4822.
    [49]Fukao, Y., Obayashi, M., Nakakuki, T., et al.2009. Stagnant slab:A review. Annual Review of Earth and Planetary Sciences,37,19-46.
    [50]Fukao, Y., Widiyantoro, S. and Obayashi, M.2001. Stagnant slabs in the upper and lower mantle transition region. Reviews of Geophysics,39,291-323.
    [51]Gasparik, T.1989. Transformation of enstatite-diopside-jadeite pyroxenes to garnet. Contributions to Mineralogy and Petrology,102:389-505.
    [52]Gasparik, T.1990. Phase Relations in the Transition Zone. Journal of Geophysical Research, 95,15751-15769.
    [53]Green, D.H. and Liebermann, R.C.1976. Phase equilibria and elastic properties of a pyrolite model for the oceanic upper mantle. Tectonophysics,32,61-92.
    [54]Green, D.H. and Ringwood, A. E.1967. The stability fields of aluminous pyroxene peridotite and garnet peridotite and their relevance in upper mantle structure. Earth and Planetary Science Letters,3,151-160.
    [55]Green, H.W., W. P. Chen, and M. R. Brudzinski (2010), Seismic evidence of negligible water carried below 400-km depth in subducting lithosphere. Nature,467,828-831.
    [56]Gu, Y., Dziewonski, A.M. and Agee, C.B.1998. Global de-correlation of the topography of transition zone discontinuities. Earth and Planetary Science Letters,157:57-67.
    [57]Gu, Y.J., A. Okeler, and R. Schultz (2012), Tracking slabs beneath northwestern Pacific subduction zones. Earth and Planetary Science Letters,331-332,269-280.
    [58]Guyot, F., Wang, Y., Gillet, P. and Ricard, Y.1996. Quasi-harmonic computations of thermodynamic parameters of olivines at high-pressure and high-temperature:A comparison with experiment data. Physics of The Earth and Planetary Interiors,98,17-29.
    [59]Gwanmesia, G. D., Zhang, J., Darling, K., et al.2006. Elasticity of polycrystalline pyrope (Mg3Al2Si3O12) to 9 GPa and 1000℃. Physics of The Earth and Planetary Interiors,155, 179-190.
    [60]Hacker, B. R., Abers, G. A. and Peacock, S. M.2003. Subduction factory 1. Theoretical mineralogy, densities, seismic wave speeds, and H2O contents. Journal of Geophysical Research,108,2029.
    [61]Hafkenscheid, E., Buiter, S. J. H. M., Wortel, J. R., et al.2001. Modelling the seismic velocity structure beneath Indonesia:a comparison with tomography. Tectonophysics,333, 35-46.
    [62]Hales, A.L., Muirhead, K.J. and Rynn, J.M.W.1980, A compressional velocity distribution for the upper mantle. Tectonophysics,63:309-348.
    [63]Helffrich, G. R. and Wood, B. J.2001. The Earth's mantle. Nature,412,501-507.
    [64]Helmberger, D.V. and Engen, G.R.1974. Upper mantle shear structure. Journal of Geophysical Research,79:4017-4028.
    [65]Helmberger, D., and Wiggins, R.A.1971, Upper mantle structure of midwestern United States. Journal of Geophysical Research,76:3229-3245.
    [66]Higo, Y., Inoue, T., Irifune, T., et al.2008. Elastic wave velocities of (Mg0.91Fe0.09)2SiO4 ringwoodite under P-T conditions of the mantle transition region. Physics of The Earth and Planetary Interiors,166,167-174.
    [67]Higo, Y., Inoue, T., Li, B., et al.2006. The effect of iron on the elastic properties of ringwoodite at high pressure. Physics of The Earth and Planetary Interiors,159,276-285.
    [68]Hirose, K.2002. Phase transitions in pyrolitic mantle around 670-km depth:Implications for upwelling of plumes from the lower mantle. Journal of Geophysical Research,107,2078, doi:10.1029/2001jb000597.
    [69]Hirose, K., Fei, Y, Ma, Y., et al.1999. The fate of subducted basaltic crust in the Earth's lower mantle. Nature,397,53-56.
    [70]Hirose, K., Komabayashi, T., Murakami, M., et al.2001. In situ measurements of the majorite-akimotoite-perovskite phase transition boundaries in MgSiO3. Geophysical Research Letters,28,4351-4354.
    [71]Hoffman, J.P., Berg, J.W. and Cook, K.L.1961. Discontinuities in the earth's upper mantle as indicated by reflected seismic energy. Bulletin of the Seismological Society of America, 51:17-27.
    [72]Hofmeister, A.M. and Mao, H.K. 2003. Pressure derivatives of shear and bulk moduli from the thermal Gruneisen parameter and volume-pressure data. Geochimica et Cosmochimica Acta,67,1215-1235.
    [73]Huang, J. and Zhao, D.2006. High-resolution mantle tomography of China and surrounding regions. Journal of Geophysical Research,111, B09305.
    [74]Inoue, T., Tanimoto, Y., Irifune, T., et al.2004. Thermal expansion of wadsleyite, ringwoodite, hydrous wadsleyite and hydrous ringwoodite. Physics of The Earth and Planetary Interiors,143-144:279-290.
    [75]Irifune, T. and Isshiki, M.1998. Iron partitioning in a pyrolite mantle and the nature of the 410-km seismic discontinuity. Nature,392,702-705.
    [76]Irifune. T. and Ringwood, A. E.1987a. Phase transformations in primitive MORB and pyrolite compositions to 25 GPa and some geophysical implications, in High-Pressure Research in Mineral Physics:A Volume in Honor of Syun-iti Akimoto, Geophys. Monogr. Sen. vol.39, edited by M. H. Manghnani and Y. Syono, pp.231-242, AGU, Washington, D. C.
    [77]Irifune, T. and Ringwood, A. E.1987b. Phase transformations in a harzburgite composition to 26 GPa:implications for dynamical behaviour of the subducting slab. Earth and Planetary Science Letters,86,365-376.
    [78]Irifune, T., Ringwood, A.E. and Hibberson, W.O.1994. Subduction of continental crust and terrigenous and pelagic sediments:an experimental study. Earth and Planetary Science Letters,126:351-368.
    [79]Irifune, T., Higo, Y., Inoue, T., et al.2008. Sound velocities of majorite garnet and the composition of the mantle transition region. Nature,451,814-817.
    [80]Irifune. T., Shinmei. T., McCammon, C.A., et al.2010. Iron Partitioning and Density Changes of Pyrolite in Earth's Lower Mantle. Science,327,193-195.
    [81]Isaak, D. G.1992. High-Temperature Elasticity of Iron-Bearing Olivines. Journal of Geophyscal Research,97,1871-1885.
    [82]Ishii, T., Kojitani, H. and Akaogi, M.2011. Post-spinel transitions in pyrolite and Mg2SiO4 and akimotoite-Perovskite transition in MgSiO3:Precise comparison by high-pressure high-temperature experiments with multi-sample cell technique. Earth and Planetary Science Letters,309,185-197.
    [83]Ishii, T., Kojitani, H. and Akaogi, M.2012. High-pressure phase transitions and subduction behavior of continental crust at pressure- temperature conditions up to the upper part of the lower mantle. Earth and Planetary Science Letters,357-358:31-41.
    [84]Ita, J. and Stixrude, L.1992. Petrology, elasticity, and composition of the mantle transition zone. Journal of Geophysical Research,97:6849-6866.
    [85]Ito, E.2007. Theory and Practice-Multianvil Cells and High-Pressure Experimental Methods. Treatise on Geophysics,2:197-229.
    [86]Ito, E. and Yamada, H.1982. Stability relations of silicate spinels, ilmenites, and perovskites, in High-Pressure Research in Geophysics:Advances in Earth and Planetary Sciences, edited by S. Akimoto and M. H. Manghnani, pp.405-419, Center for Academic Publication, Japan.
    [87]Ito, E. and Navrotsky, A.1985. MgSiO3 ilmenite; calorimetry, phase equilibria, and decomposition at atmospheric pressure. American Mineralogist,70,1020-1026.
    [88]Ito, E. and Takahashi, E.1989. Postspinel Transformations in the System Mg2SiO4-Fe2SiO4 and Some Geophysical Implications, Journal of Geophysical Research,94,10637-10646.
    [89]Jackson, J.M., Palko, J.W., Andrault, D., et al.2003. Thermal expansion of natural orthoenstatite to 1473 K. European Journal of Mineralogy,15,469-473.
    [90]Jeanloz, R. and Thompson, A. B.1983. Phase transitions and mantle discontinuities. Reviews of Geophysics,1,51-74.
    [91]Jeffreys, H.1939. The times of P, S, and SKS, and the velocities of P and S, Monthly Notices of the Royal Astronomical Society Geophysical Supplement.4,498-533.
    [92]Jiang, F., Gwanmesia, G.D., Dyuzheva, T.I., et al.2009. Elasticity of stishovite and acoustic mode softening under high pressure by Brillouin scattering. Physics of The Earth and Planetary Interiors,172,235-240.
    [93]Johnson, L.R.1967. Array measurements of P velocities in the upper mantle. Journal of Geophysical Research,72:6309-6325.
    [94]Karato, S.1993. Importance of anelasticity in the interpretation of seismic tomography. Geophysical Research Letters,20,1623-1626.
    [95]Karato, S.1997. On the separation of crustal component from subducted oceanic lithosphere near the 660 km discontinuity. Physics of The Earth and Planetary Interiors,99,103-111.
    [96]Karato, S.2011. Water distribution across the mantle transition zone and its implications for global material circulation. Earth and Planetary Science Letters.301:413-423.
    [97]Katsura, T. and Ito. E.1989. The System Mg2SiO4-Fe2SiO4 at High Pressures and Temperatures:Precise Determination of Stabilities of Olivine, Modified Spinel, and Spinel. Journal of Geophysical Research,94,15663-15670.
    [98]Katsura, T., Yamada, H., Nishikawa, O., et al.2004. Olivine-wadsleyite transition in the system (Mg,Fe)2SiO4. Journal of Geophysical Research,109, B02209.
    [99]Katsura, T., Yokoshi, S., Song, M., et al.2004. Thermal expansion of Mg2SiO4 ringwoodite at high pressures. Journal of Geophysical Research:Solid Earth,109, B12209.
    [100]Katsura, T., Yoneda, A., Yamazaki, D., et al.2010. Adiabatic temperature profile in the mantle. Physics of The Earth and Planetary Interiors,183,212-218.
    [101]Kawai, N., Endo, S.1970. The generation of ultrahigh hydrostatic pressures by a split sphere apparatus. Review of Scientific Instruments,41:1178-1181.
    [102]Kawai, N., Togaya, M. and Onodera, A.1973. A new device for pressure-vessels. Proceedings of the Japan Academy,8:623-626.
    [103]Kawai, K., Tsuchiya, T. and Maruyama, S.2010. The Second Continent. Journal of Geography,119:1-18.
    [104]Kennett, B. L. N. and Engdahl, E. R.1991. Traveltimes for global earthquake location and phase identification. Geophysical Journal International,105,429-465.
    [105]Kennett, B.L.N., Engdahl, E.R. and Buland, R.1995. Constraints on seismic velocities in the Earth from traveltimes. Geophysical Journal International,122,108-124.
    [106]Kono, Y., Higo, Y., Ohfuji, H., et al.2007. Elastic wave velocities of garnetite with a MORB composition up to 14 GPa. Geophysical Research Letters,34, L14308.
    [107]Kono, Y., Irifune. T., Ohfuji, H., et al.2012, Sound velocities of MORB and absence of a basaltic layer in the mantle transition region. Geophysical Research Letters,39, L24306.
    [108]Kung, J., Jackson, I. and Liebermann, R.C.2011. High-temperature elasticity of polycrystalline orthoenstatite (MgSiO3). American Mineralogist,96.577-585.
    [109]Kung, J., Li, B., Uchida, T. and Wang.Y.2005. In-situ elasticity measurement for the unquenchable high-pressure clinopyroxene phase:Implication for the upper mantle. Geophysical Research Letters,32, L01307.
    [110]Kung, J., Li, B., Uchida, T., et al.2004. In situ measurements of sound velocities and densities across the orthopyroxene -high-pressure clinopyroxene transition in MgSiO3 at high pressure. Physics of The Earth and Planetary Interiors,147,27-44.
    [111]Kung, J., Li, B., Weidner, D. J., Zhang, J., et al.2002. Elasticity of (Mg0.83,Fe0.17)O ferropericlase at high pressure:ultrasonic measurements in conjunction with X-radiation techniques. Earth and Planetary Science Letters,203,557-566.
    [112]Kuritani, T., Ohtani, E. and Kimura, J. I.2011. Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation. Nature Geoscience,4, 713-716.
    [113]Lebedev, S., Chevrot, S. and van der Hilst, R.D.2002. The 660-km discontinuity within the subducting NW-Pacific lithospheric slab. Earth and Planetary Science Letters,205,25-35.
    [114]Lee, C. and King, S. D.2011. Dynamic buckling of subducting slabs reconciles geological and geophysical observations. Earth and Planetary Science Letters,312,360-370.
    [115]Lei, J.2012. Upper-mantle tomography and dynamics beneath the North China Craton. Journal of Geophysical Research,117, B06313.
    [116]Leinenweber, K. D., Tyburczy, J.A., Sharp, T.G., et al.2012. Cell assemblies for reproducible multi-anvil experiments (the COMPRES assemblies). American Mineralogist, 97,353-368.
    [117]Li, B.2003. Compressional and shear wave velocities of ringwoodite γ-Mg2SiO4 to 12 GPa. American Mineralogist,88,1312-1317.
    [118]Li, B., Chen, K., Kung, J., et al.,2002. Sound velocity measurement using transfer function method. Jounal of Physics:Condensed Matter,14:11337-11342.
    [119]Li, B., Gwanmesia, G. D. and Liebermann, R.C.1996a. Sound velocities of olivine and beta polymorphs of Mg2SiO4 at Earth's transition zone pressures. Geophysical Research Letterrs,23,2259-2262.
    [120]Li, B., Rigden, S.M. and Liebermann, R.C.1996b. Elasticity of stishovite at high pressure. Physics of The Earth and Planetary Interiors,96,113-127.
    [121]Li, B. and Liebermann, R.C.2007. Indoor seismology by probing the Earth's interior by using sound velocity measurements at high pressures and temperatures. Proceedings of the National Academy of Sciences,104,9145-9150.
    [122]Li, B., Liebermann, R. C. and Weidner, D. J.1998. Elastic Moduli of Wadsleyite (β-Mg2Si04) to 7 Gigapascals and 873 Kelvin. Science,281,675-677.
    [123]Li, B., Liebermann, R. C. and Weidner, D. J.2001. P-V-Vp-Vs-T measurements on wadsleyite to 7 GPa and 873 K:Implications for the 410-km seismic discontinuity. Journal of Geophysical Research,106,30579-30591.
    [124]Li, B. and Zhang, J.2005. Pressure and temperature dependence of elastic wave velocity of MgSiO3 perovskite and the composition of the lower mantle. Physics of The Earth and Planetary Interiors,151,143-154.
    [125]Li, C. and van der Hilst, R.D.2010. Structure of the upper mantle and transition zone beneath Southeast Asia from traveltime tomography. Journal of Geophysical Research,115, B07308.
    [126]Li, Z. H. and Ribe, N.M.2012. Dynamics of free subduction from 3-D boundary element modeling. Journal of Geophysical Research,117, B06408.
    [127]Liebermann, R. C.2011. Multi-anvil, high pressure apparatus:a half-century of development and progress. High Pressure Research,31(4),493-532.
    [128]Litasov, K. D., Ohtani, E. and Sano, A.2006. Influence of water on major phase transitions in the Earth's mantle, in Earth's Deep Water Cycle, Geophys. Monogr. Ser., vol.168, edited by S. D. Jacobsen and S. van der Lee, pp.95-111, AGU, Washington, D. C.
    [129]Liu, J., Chen, G., Gwanmesia, G.D. and Liebermann, R.C.2000. Elastic wave velocities of pyrope-majorite garnets (Py62Mj38 and Py30Mj50) to 9 GPa. Physics of The Earth and Planetary Interiors,120,153-163.
    [130]Liu, L.G.1976. The post-spinel phase of forsterite. Nature,262,770-772.
    [131]Liu, Y., Gao, S., Lee, C.T.A.,et al.2005. Melt-peridotite interactions:Links between garnet pyroxenite and high-Mg# signature of continental crust. Earth and Planetary Science Letters,234,39-57.
    [132]Liu, W., Kung, J. and Li, B.2005. Elasticity of San Carlos olivine to 8 GPaand 1073 K. Geophysical Research Letters,32, L16301.
    [133]Luo, Y., Xu, Y. and Yang, Y.2012, Crustal structure beneath the Dabie orogenic belt from ambient noise tomography. Earth and Planetary Science Letters,313-3114:12-22.
    [134]Mao, Z., Jacobsen, S.D., Jiang, F.M., et al.2008a. Single-crystal elasticity of wadsleyites, β-Mg2Si04, containing 0.37-1.66wt.% H2O. Earth and Planetary Science Letters, 268:540-549.
    [135]Mao, Z., Jacobsen, S.D., Jiang, F., et al.2008b. Elasticity of hydrous wadsleyite to 12 GPa:Implications for Earth's transition zone. Geophysical Research Letters,35:L21305.
    [136]Mao, Z., Lin, J.-F., Jacobsen, et al.2012. Sound velocities of hydrous ringwoodite to 16 GPa and 673 K. Earth and Planetary Science Letters,331-332:112-119.
    [137]McDonough, W. F. and Sun, S.S.1995. The composition of the Earth. Chemical Geology,120,223-253.
    [138]Meng, Y., Fei, Y., Weidner, D. J., et al.1994. Hydrostatic compression of y-Mg2SiO4 to mantle pressures and 700 K:Thermal equation of state and related thermoelastic properties. Physics and Chemistry of Minerals,21,407-412.
    [139]Michael, P. J. and Bonatti, E.1985. Peridotite composition from the North Atlantic: regional and tectonic variations and implications for partial melting. Earth and Planetary Science Letters,73,91-104.
    [140]Miller, M.S., Kennett, B.L.N. and Toy, V.G.2006. Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin. Journal of Geophysical Research, 111, B02401.
    [141]Morishima, H., Kato, T., Suto, M., et al.1994. The Phase Boundary Between a-and (3-Mg2SiO4 Determined by in Situ X-ray Observation. Science.265,1202-1203.
    [142]Murakami, M., Ohishi, Y., Hirao, N., et al.2012. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature,485,90-94.
    [143]Nakakukia, T., Tagawaa, M. and Iwaseb, Y.2010. Dynamical mechanisms controlling formation and avalanche of a stagnant slab. Physics of the Earth and Planetary Interiors,183,309-320.
    [144]Negredo, A. M., Valera, J.L. and Carminati, E.2004. TEMSPOL:A MATLAB thermal model for deep subduction zones including major phase transformations. Computers & Geosciences,30,249-258.
    [145]Niazi, M. and Anderson, D.L.1965. Upper mantle structure of western North America from apparent velocities of P waves. Journal of Geophysical Research,70:4633-4640.
    [146]Nishi, M., Kubo, T, Ohfuji, et al.2013. Slow Si-Al interdiffusion in garnet and stagnation of subducting slabs. Earth and Planetary Science Letters,361:44-49.
    [147]Nishihara, Y., Nakayama, K., Takahashi, E., et al.2005. P-V-T equation of state of stishovite to the mantle transition zone conditions. Physics and Chemistry of Minerals,31, 660-670.
    [148]Nishimura, E., Kishimoto, Y. and Kamitsuki, A.1958. On the nature of the 20° discontinuity in the Earth's mantle. Tellus,10,137-44.
    [149]Niu, F. and Kawakatsu, H.1996. Complex structure of the mantle discontinuities at the tip of the subducting slab beneath the northeast China:A preliminary investigation of broadband receiver functions. Jounal of Physics of the Earth,44,701-711.
    [150]Ono, S., Katsura, T., Ito, E., et al.2001. In situ Observation of ilmenite-perovskite phase transition in MgSiO3 using synchrotron radiation. Geophysical Research Letters,28, 835-838.
    [151]Pei, S. and Chen, Y.2010. Tomographic structure of East Asia:I. No fast (slab) anomalies beneath 660 km discontinuity. Earthque Science,23,597-611.
    [152]Piermarini, G. J., Block, S.1975. Ultra high pressure diamond-anvil cell and several semiconductor phase transition pressures in reliation to fixed point pressure scale. Reviews of Scientific Instruments,46:973-980.
    [153]Poli, S. and Schmidt, M.W.2002. Petrology of subducted slabs. Annual Review of Earth and Planetary Sciences,30,207-235.
    [154]Revenaugh, J., Sipkin, S.A.,1994. Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature,369:474-476.
    [155]Ribe, N. M., Stutzmann, E., Ren, Y., et al.2007. Buckling instabilities of subducted lithosphere beneath the transition zone. Earth and Planetary Science Letters,254,173-179.
    [156]Ricard, Y., Mattern, E. and Matas, J.2005. Synthetic tomographic images of slabs from mineral physics, in Earth's Deep Interior:Structure, Composition, and Evolution, Geophys. Monogr. Ser., vol.160, edited by R. D. van der Hilst, J. D. Bass, and J. Trampert, pp283-300, AGU, Washington, D. C.
    [157]Ringwood, A.E.1968. Phase transformations in the mantle. Earth and Planetary Science Letters,5,401-412.
    [158]Ringwood, A. E.1982. Phase transformations and differentiation in subducted lithosphere:Implications for mantle dynamics, basalt petrogenesis, and crustal evolution. Jounal of Geology,90,611-643.
    [159]Ringwood, A. E., and Irifune, T.1988. Nature of the 650-km seismic discontinuity: Implications for mantle dynamics and differentiation. Nature,331,131-136.
    [160]Ritsema, J., Cupillard, P., Tauzin, B., et al.2009. Joint mineral physics and seismic wave traveltime analysis of upper mantle temperature. Geology,37,363-366.
    [161]Saikia, A., Frost, D.J. and Rubie, D.C.2008. Splitting of the 520-Kilometer Seismic Discontinuity and Chemical Heterogeneity in the Mantle. Science,319:1515-1518.
    [162]Sawamoto, H.1987. Phase diagram of MgSiO3 at pressures up to 24 GPa and temperatures up to 2200℃:phase stability and properies of tetragonal garnet, in High-Pressure Research in Mineral Physics:A Volume in Honor of Syun-iti Akimoto, Geophys. Monogr. Ser., vol.39, edited by M. H. Manghnani and Y. Syono, pp.209-219, AGU, Washington, D. C.
    [163]Schmerr, N. and Garnero, E.J.2007. Upper Mantle Discontinuity Topography from Thermal and Chemical Heterogeneity. Science,318,623-626.
    [164]Schmerr, N. and Thomas, C.2011. Subducted lithosphere beneath the Kuriles from migration of PP precursors. Earth and Planetary Science Letters,311,101-111.
    [165]Schmid, C., Goes, S., van der Lee, S., et al.2002. Fate of the Cenozoic Farallon slab from a comparison of kinematic thermal modeling with tomographic images. Earth and Planetary Science Letters,204,17-32.
    [166]Shen, Y. and Blum, J.2003. Seismic evidence for accumulated oceanic crust above the 660-km discontinuity beneath southern Africa. Geophysical Research Letters,30,1925.
    [167]Shearer, P.M.1990. Seismic imaging of upper-mantle structure with new evidence for a 520-km discontinuity. Nature,344:121-126.
    [168]Shearer, P.M.1991. Constraints on upper mantle discontinuities from observations of long-period reflected and converted phases. Journal of Geophysical Research, 96:18147-18182.
    [169]Shearer, P.M.2000. Upper mantle seismic discontinuities, in Earth's Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale, Geophys. Monogr. Ser., vol.117, edited by S. Karato et al.,115-131, AGU, Washington, D. C.
    [170]Simmons, N.A. and Gurrola, H.2000. Multiple seismic discontinuities near the base of the transition zone in the Earth's mantle. Nature,405,559-62.
    [171]Sinogeikin, S. V. and Bass, J.D.2002. Elasticity of pyrope and majorite-Pyrope solid solutions to high temperatures. Earth and Planetary Science Letters,203,549-555.
    [172]Sinogeikin, S.V., Bass, J.D. and Katsura, T.2003. Single-crystal elasticity of ringwoodite to high pressures and high temperatures:implications for 520 km seismic discontinuity. Physics of The Earth and Planetary Interiors,136,41-66.
    [173]Speziale, S., Jiang, F. and Duffy, T.S.2005. Compositional dependence of the elastic wave velocities of mantle minerals:Implications for seismic properties of mantle rocks, Earth's Deep Mantle:Structure, Composition, and Evolution, Volume 160:Geophys. Monogr. Ser.:Washington, DC, AGU, p.301-320.
    [174]Susaki, J., Akaogi, M., Akimoto, S., et al.1985. Garnet-Perovskite transformation in CaGeO3: in situ x-ray measurements using synchrotron radiation. Geophysical Research Letters,12:729-732.
    [175]Suzuki, T., Yagi, T., Akimoto, S.1981. Precise determination of transition pressure of GaAs. Abstr.22nd High Pressure Conf. Jpn.8-9.
    [176]Suzuki, A., Ohtani. E., Morishima, H., et al.2000. In situ determination of the phase boundary between Wadsleyite and Ringwoodite in Mg2SiO4. Geophysical Research Letters, 27,803-806.
    [177]Tajima, F., Katayama, I. and Nakagawa, T.2009. Variable seismic structure near the 660 km discontinuity associated with stagnant slabs and geochemical implications. Physics of The Earth and Planetary Interiors,172,183-198.
    [178]Tajima, F. and Nakagawa, T.2006. Implications of seismic waveforms:Complex physical properties associated with stagnant slab. Geophysical Research Letters,33, L03311.
    [179]van der Hist, R., Engdahl, R., Spakman, W., et al.1991. Tomographic imaging of subducted lithosphere below northwest Pacific island arcs. Nature,353,37-43, doi:10.1038/353037a0.
    [180]Walker, D., Carpenter, M. A., and Hitch, C. M.1990. Some simplifications to multianvil devices for high pressure experiments. American Mineralogist,75:1020-1028.
    [181]Wang, C., Jin, Z., Gao, S., et al.2010. Eclogite-melt/peridotite reaction:Experimental constrains on the destruction mechanism of the North China Craton. SCIENCE CHINA-Earth Science,53,797-809.
    [182]Watt, J. P., Davies, G.F. and O'Connell, R.J.1976. The elastic properties of composite materials. Review of Geophysics,14,541-563.
    [183]Wang, B. and Niu, F.2010. A broad 660 km discontinuity beneath northeast China revealed by dense regional seismic networks in China. Jounal of Geophysics Research,115, B06308.
    [184]Wang, B. and Niu, F.2011. Spatial variations of the 660-km discontinuity in the western Pacific subduction zones observed from CEArray triplication data. Earthque Science,24, 77-85.
    [185]Wang, T. and Chen, L.2009. Distinct velocity variations around the base of the upper mantle beneath northeast Asia. Physics of Earth and Planetary Interior,172,241-256.
    [186]Wang, Y., Weidner, D.J., Zhang, J., et al.1998. Thermal equation of state of garnets along the pyrope-majorite join. Physics of Earth and Planetary Interior,105,59-71.
    [187]Wang, Y., Weidner, D. J., Liebermann, R.C., et al.1994. P-V-T equation of state of (Mg,Fe)SiO3 perovskite:constraints on composition of the lower mantle. Physics of Earth and Planetary Interior,83,13-40.
    [188]Wang, Y., Uchida, T., Zhang, J., et al.2004. Thermal equation of state of akimotoite MgSiO3 and effects of the akimotoite-garnet transformation on seismic structure near the 660 km discontinuity. Physics of Earth and Planetary Interior,143-144,57-80.
    [189]Weidner, D.J. and Ito, E.1985. Elasticity of MgSiO3 in the ilmenite phase. Physics of Earth and Planetary Interior,40,65-70.
    [190]Weidner, D.J. and Wang, Y.2000. Phase transformations:Implications for mantle structure, in Earth's Deep Interior:Mineral Physics and Tomography from the Atomic to the Global Scale, Geophys. Monogr. Ser., vol.117, edited by S. Karato, A. M. Forte, R. C. Liebermann. G. Masters and L. Stixrude, pp.117-235, AGU, Washington, D. C.
    [191]Whitcomb, J.H. and Anderson, D.L.1970. Reflection of P'P' seismic waves from discontinuities in the mantle. Journal of Geophysical Research,75:5713-5728.
    [192]Wiggins, R.A. and Helmberger, D.V.1973. Upper mantle structure of the western United States. Journal of Geophysical Research,78:1870-1880.
    [193]Woodland, A. B. and Angel, R.J.1997. Reversal of the orthoferrosilite-high-P clinoferrosilite transition:a phase diagram for FeSiO3 and implications for the mineralogy of the Earth's upper mantle. European Jounal of Mineralogy,9,245-254.
    [194]Wu, Y., Fei, Y., Jin, Z. and Liu, X.2009. The fate of subducted Upper Continental Crust: An experimental study. Earth and Planetary Science Letters,282:275-284.
    [195]Xu, W., Lithgow-Bertelloni, C., Stixrude, L., et al.2008. The effect of bulk composition and temperature on mantle seismic structure. Earth and Planetary Science Letters,275,70-79.
    [196]Yagi, T., Akaogi, M., Shimomura, O., et al.1987. In situ observation of the olivine-spinel transformation in Fe2SiO4 using synchrotron radiation. Journal of Geophysical Research,92:6207-6213.
    [197]Yamazaki, D.T., Yoshino, T., Matsuzaki, T., et al.2009. Texture of (Mg,Fe)SiO3 perovskite and ferro-periclase aggregate:Implications for rheology of the lower mantle. Physics of Earth and Planetary Interior,174,138-144.
    [198]Yoneda, A. and Endo. S.1980. Phase transitions in barium and bismuth under high pressure. Jounal of Applied Physics,51,3216-3221.
    [199]Yu, Y.G., Wentzcovitch, R.M., Vinograd, V.L., et al.2011. Thermodynamic properties of MgSiO3 majorite and phase transitions near 660 km depth in MgSiO3 and Mg2SiO4: A first principles study. Jounal of Geophysical Research,116, B02208.
    [200]Yusa, H., Akaogi, M. and Ito, E.1993. Calorimetric Study of MgSiO3 Garnet and Pyroxene:Heat Capacities, Transition Enthalpies, and Equilibrium Phase Relations in MgSiO3 at High Pressures and Temperatures. Jounal of Geophysical Research,98, 6453-6460.
    [201]Yoshioka. S. and Naganoda. A.2010. Effects of trench migration on fall of stagnant slabs into the lower mantle. Phys. Earth Planet. Inter.,183,321-329.
    [202]Zang, S.X., Chen, Q.Y., Ning, J.Y., et al.2002. Motion of the Philippine Sea plate consistent with the NUVEL-1A model, Geophysical Jounal of Intenatinal,150,809-819.
    [203]Zha, C.S., Duffy, T.S., Downs. R.T., et al.1998. Brillouin scattering and X-ray diffraction of San Carlos olivine:direct pressure determination to 32 GPa. Earth and Planetary Science Letters,159,25-33.
    [204]Zha, C.S., Mao. H.K. and Hemley, R.J.2000. Elasticity of MgO and a primary pressure scale to 55 GPa. Proceedings of the National Academy of Sciences,97:13494-13499.
    [205]Zhang. J., Li, B., Utsumi, W., et al.1996. In situ X-ray observations of the coesite-stishovite transition:reversed phase boundary and kinetics. Physics and Chemistry of Minerals,23,1-10.
    [206]Zhao, D.2004. Global tomographic images of mantle plumes and subducting slabs: Insight into deep Earth dynamics. Physics of Earth and Planetary Interior,146,3-34.
    [207]Zhao, D., Tian, Y., Lei, J., Liu, L., et al.2009. Seismic image and origin of the Changbai intraplate volcano in East Asia:Role of big mantle wedge above the stagnant Pacific slab. Physics of Earth and Planetary Interior,173,197-206.
    [208]Zhao, L., Allen, R.M., Zheng, T., et al.2012. High-resolution body wave tomography models of the upper mantle beneath eastern China and the adjacent areas. Geochemistry Geophysics Geosystems,13, Q06007.
    [209]Zhou, C., Nishiyama, N., Irifune, T., et al.2011. Equation of state and ultrasonic measurement of MgSiO3 akimotoite at high pressures. Eos Trans. AGU, Fall Meet. Suppl., Abstract MR41A-2089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700