用户名: 密码: 验证码:
复合材料点阵结构吸能特性和抗低速冲击性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
夹芯结构一般是由两个强度/刚度较大的薄面板和中间轻质、较厚的芯材粘接组成。在工程应用中,夹芯结构的上下面板,由于强度高、模量大,主要承受面内拉压载荷,而中间较厚的轻质芯材主要承受剪切载荷。由于夹芯结构设计合理,因此在航空航天等领域得到了广泛的应用。与传统的泡沫、蜂窝等夹芯结构相比,点阵结构作为一种新型的轻质结构材料,具有更高的比强度、比刚度,并且芯子内部具有较大的孔隙率,使得其在多功能结构应用方面具有更广阔的前景。本文采用碳纤维增强树脂基复合材料层合板作为夹芯结构的上下面板、铝合金板材作为芯子原材料,制备了一种新型的金字塔点阵夹芯结构,并对其基本力学性能进行了研究,主要工作包括以下内容:
     首先,基于嵌锁组装工艺,制备了碳纤维增强树脂基复合材料面板、铝合金芯子的金字塔点阵夹芯结构。通过平压试验评估其压缩能力和吸能特性,通过剪切试验研究其剪切性能。此外,采用有限元软件ABAQUS对金字塔点阵夹芯结构的平压过程进行了数值仿真。
     其次,采用试验和数值仿真相结合的方法,对复合材料金字塔点阵夹芯结构的抗低速冲击性能进行了研究。通过落锤低速冲击试验研究了冲击能量、冲击位置以及芯子密度对点阵夹芯结构冲击损伤的影响。考虑到冲击过程中复合材料复杂的失效模式以及多个部件之间的接触等影响因素,仿真结果与试验结果吻合较好。
     然后,采用试验和数值仿真相结合的方法,研究了冲击能量、冲击位置以及芯子密度对金字塔点阵夹芯结构冲击后剩余压缩强度的影响。试验发现:小能量的冲击对金字塔点阵夹芯结构冲击后的剩余压缩强度基本上没有影响;冲击能量、冲击位置的不同造成了试件在冲击后压缩试验中表现出了不同的失效模式;芯子密度较大的试件的冲击容限更高。在数值分析中,将金字塔点阵夹芯结构在低速冲击分析步中得到的损伤状态传递给压缩分析步,实现了对金字塔点阵夹芯结构的低速冲击以及冲击后压缩试验的全程分析。数值仿真结果较好地预测了金字塔点阵夹芯结构在冲击后压缩试验中的失效模式。
     最后,为了提高金字塔点阵夹芯结构的吸能特性和抗冲击能力,设计制备了芯子内部填充聚氨酯泡沫的金字塔点阵夹芯结构,并研究了其吸能特性和抗低速冲击性能。试验发现填充聚氨酯泡沫的金字塔点阵夹芯结构的承载能力不再是未填充泡沫的金字塔点阵夹芯结构和聚氨酯泡沫两者承载能力的线性叠加,而是强于两者的累加。落锤低速冲击试验发现填充聚氨酯泡沫对金字塔点阵夹芯结构的抗冲击性能基本没有影响。
Sandwich structures are commonly composed of two thin but stiff skin layers separated by the soft lightweight core material. In engineering applications, the tensile and compressive stresses are usually balanced by the top and bottom facesheets while the shear loads are mainly supported by the core. At present, sandwich structures are widely used in aerospace and astronautic industries due to the designable characteristic. Compared with the conventional sandwich structures, such as the foam and honeycomb sandwich panels, the lattice core sandwich structures have higher specific strength and stiffness. Except that, the unique open cell architecture allows for lattice core sandwich structures have the potential in multi-functional applications. In this dissertation, the pyramidal lattice core sandwich structures consisting of carbon fiber reinforced polymer (CFRP) facesheets and aluminum alloy cores are manufactured. Then, the basic mechanical properties are also investigated by the experimental and numerical methods. The main contents are as follows:
     Firstly, based on the slot-fitting method, the pyramidal lattice core sandwich structures are manufactured. Quasi-static compression tests are conducted to get the stress-strain curves and to evaluate the energy absorption mechanism. While, the shear properties are investigated by the shear tests. Furthermore, the finite element method is employed to simulate the compressive behavior.
     Secondly, a combined experimental and numerical method is conducted to assess the damage resistance of such structures subjected to low velocity impact. The effects of impact energy, impact site and core density are considered in the low velocity impact tests. In view of the complicated composite failure and contact involved in the tests, in general, the numerical results give a good agreement when compared with the experiments, which can be helpful in the structural design.
     Then, the compression-after-impact (CAI) strength of pyramidal lattice core sandwich structures is explored by the experimental and numerical methods. The parameters affecting the CAI strength, such as impact energy, impact site and core density, are considered in this research. It is observed that the small energy impact has negligible effect on the CAI strength. In addition, the failure modes of such structures are distinct during the CAI tests when the impact site is different and that the specimens with higher density cores have slightly lower normalized CAI strength reduction. In the finite element analysis, the impact damage of impact-damaged sandwich structures are initially obtained in the impact analytical step and then transferred to the compression step to forecast the residual compressive strength. Generally speaking, the numerical results are satisfied.
     Finally, the polyurethane foam filled pyramidal lattice core sandwich panel is fabricated in order to improve the energy absorption and low velocity impact resistance. Based on the compression tests, a synergistic effect that the foam filled sandwich panels have a greater load carrying capacity compared with the sum of the unfilled specimens and the filled polyurethane block is found. During the impact tests, it is found that the filled polyurethane foam does not demonstrate significant influence on the impact resistance.
引文
[1] D. Zenkert. An introduction to sandwich construction. London: EMAS,1997.
    [2] D. Zenkert. The handbook of sandwich construction[M]. London, UK:Chameleon Press Ltd.,1997.
    [3]王兴业,杨孚标,曾竟成,肖加余.夹层结构复合材料设计原理及其应用[M].北京:化学工业出版社,2007.
    [4] G. Evans. Lightweight materials and structures[J]. MRS bulletin.2001:790-797
    [5] Allen H G. Analysis and design of structural sandwich panels[M]. Oxford:Pergamon Press,1969.
    [6] Ahmed K Noor, W Scott Burton and Charles W Bert. Computational models forsandwich panels and shells[J]. Applied Mechanics Review.1996,49:155-199.
    [7] Vinson J R. Sandwich structures[J]. Applied Mechanics Review.2001,54:201-214.
    [8]颜鸣嗥.现代飞机主要用材料[J].航空材料.1980,4:1-7.
    [9] Bitzer T. Honeycomb Technology: materials, design, manufacturing,applications and testing[M]. Chapman&Hall, the Netherlands,1997.
    [10] Xu X F, Qiao P Z. Homogenized elastic properties of honeycomb sandwich withskin effect[J]. International Journal of Solids and Structures.2002,39:2153-2188.
    [11] Lestari W, Qiao P Z. Damage detection of fiber-reinforced polymer honeycombsandwich beams[J]. Composite Structures.2005,67:365-373.
    [12] Foo C C, Seah LK and Chai G B. Low-velocity impact failure of aluminumhoneycomb sandwich panels[J]. Composite Structures.2008,85:20-28.
    [13] Gibson LJ, Ashby M F. Cellular solids: structure and properties,2nd Edition[M].Cambridge University Press, Cambridge, UK,1997.
    [14] Deshpande V S and Fleck N A. Isotropic constitutive models for metallicfoams[J]. Journal of the Mechanics and Physics of Solid.2000,48:1253-1283.
    [15]徐元铭,黄英兰,万青.先进复合材料格栅结构制造工艺技术的研究进展[J].飞机设计.2007,27:33-36.
    [16] Lu T J, Valdevit L, Evans A G. Active cooling by metallic sandwich structureswith periodic cores[J]. Progress in Materials Science.2005,50:789-815.
    [17]方岱宁,张一慧,崔晓东.轻质点阵材料力学与多功能设计[M].北京:科学出版社,2009.
    [18] Evans A G, Hutchinson J W, Ashby M F. Multifunctionality of cellular metalsystems[J]. Progress in Materials Science.1999,43:171-221.
    [19] Barnett D, Rawal S. Multifunctional structures(MFS) technology demonstrationon new millennium program(NMP) deep space1(DS1): DS1technologyvalidation report[J]. Lockheed Martin, Astronautics Division, Denver CO,16.
    [20] A.G. Evans, J.W. Hutchinson, N. A. Fleck, M.F. Ashby, H.N.G. Wadley. Thetopological design of multifunctional cellular metals. Progress in MaterialsScience[J].2001,46:309-327.
    [21] V.S. Deshpande, N.A. Fleck, M.F. Ashby. Effective properties of the octet-trusslattice material. Journal of the Mechanics and Physics of Solids[J].2001,49:1747-1769.
    [22] Wadley H N G. Multifunctional periodic cellular metals[J]. PhilosophicalTransactions of the Royal Society A: Mathmatical, Physical and EngineeringSciences.2006,364:31-68.
    [23]杜善义.先进复合材料与航空航天[J].复合材料学报.2007,24:1-12.
    [24]杜善义,章继峰,张博明.先进复合材料格栅结构(AGS)应用与研究进展[J].航空学报.2007,28:419-424.
    [25]春胜利,黄榴红,李勇峰.碳纤维及其在复合材料方面的应用[J].玻璃钢.2005,2:5-14.
    [26] Hou A, Gramoll Kurt. Design and fabrication of CFRP interstage attach fittingfor launch vehicles[J]. Journal of Aerospace Engineering.1999,12:83-91.
    [27] Sakata K, Ben G. Fabrication method and compressive properties of CFRPisogrid cylindrical shells[J]. Advanced Composite Materials.2012,21:445-457.
    [28] Budiansky B, Compressive failure of fiber composites[J]. Journal of theMechanics and Physics of Solids.1993,41:183-211.
    [29] Huber O, Klaus H. Cellular composites in lightweight sandwich applications[J].Materials Letters.2009,63:1117-1120.
    [30] Ashish S Bambal. Mechanical evaluation and FE modeling of compositesandwich panels[D]. Morgantown: West Virginia University,2008.
    [31] Chen L M, Fan H L, Sun F F, et al. Improved manufacturing method andmechanical performances of carbon fiber reinforced lattice-core sandwichcylinder[J]. Thin-Walled Structures.2013,68:75-84.
    [32] M.A. Dweib, B. Hu, A. ODonnell, H.W. Shenton, R.P. Wool. All naturalcomposite sandwich beams for structural applications[J]. Composite Structures.2004,63:147-157.
    [33] Ramakrishna S, Mayer J. Wintermantel E, Leong KW. Biomedical applicationof polymer-composite materials: a review[J]. Composites Science andTechnology.2001,61:1189-1224.
    [34] Mouritz A P, Gellert E, Burchill P, Challis K. Review of advanced compositestructures for naval ships and submarines[J]. Composite structures.2001,53:21-41.
    [35] Pendhari S S, Kant T, Desai Y M. Application of polymer composites in civilconstruction: A general review [J]. Composite Structures.2008,84:114-124.
    [36] Zweben C. Advanced composites for aerospace applications: a review ofcurrent status and future prospects[J]. Composites.1984,81:235-240.
    [37] Kay B F. RWSTD air frame technology foundation for the21st century[R].American Helicopter Society57th Annual Forum. Washington: AmericanHelicopter Society,2001.
    [38] Georgiadis S, Gunnion A J, Thomson R S, Gartwright B K. Bird-strikesimulation for certification of the Boeing787composite moveable trailingedge[J]. Composite Structures.2008,86:258-268.
    [39] G. Di Bella, L. Calabrese, C. Borsellino. Mechanical characterisation of aglass/polyester sandwich structure for marine applications[J]. Materials andDesign.2012,42:486-494.
    [40] M.S. Scholz, et al. The use of composite materials in modern orthopaedicmedicine and prosthetic devices: A review[J]. Composites Science andTechnology.2011,71:1791-1803.
    [41] C. Colombo, L. Vergani. Experimental and numerical analysis of a buscomponent in composite material[J]. Composite Structures.2010,92:1706-1715.
    [42] Cesim Atas, Cenk Sevim. On the impact response of sandwich composites withcores of balsa wood and PVC foam[J]. Composite Structures.2010,93:40-48.
    [43] Jovan Obradovic, Simonetta Boria, Giovanni Belingardi. Lightweight designand crash analysis of composite frontal impact energy absorbing structures[J].Composite Structures.2012,94:423-430.
    [44] Croft K, Lessard L, Pasini D et al. Experimental study of the effect ofautomated fiber placement induced defects on performance of compositelaminates[J]. Composites: Part A.2011,42:484-491.
    [45] A.G. Mamalis, K.N. Spentzas, N.G. Pantelelis, D.E. Manolakos, M.B. Ioannidis.A new hybrid concept for sandwich structures[J]. Composite Structures.2008,83:335-340.
    [46] R. Tiberkak, M. Bachene, S. Rechak, B. Necib. Damage prediction in compositeplates subjected to low velocity impact[J]. Composite Structures.2008,83:73-82.
    [47] Y. Aminanda, B. Castanie, Barrau, P. Thevenet. Experimental and numericalstudy of compression after impact of sandwich structures with metallic skins[J].Composites Science and Technology.2009,69:50-59.
    [48] Patrick M. Schubel, Jyi-Jiin Luo, Isaac M. Daniel. Low velocity impactbehavior of composite sandwich panels[J]. Composites: Part A.2005,36:1389-1396.
    [49] M. Meo, A.J. Morris, R. Vignjevic, G. Marengo. Numerical simulations oflow-velocity impact on an aircraft sandwich panel[J]. Composite Structures.2003,62:353-360.
    [50] J.P. Hou, N. Petrinic, C. Ruiz, S.R. Hallett. Prediction of impact damage incomposite plates[J]. Composites Science and Technology.2000,60:273-281.
    [51] M. Meoa, R. Vignjevica, G. Marengo. The response of honeycomb sandwichpanels under low-velocity impact loading[J]. International Journal ofMechanical Sciences.2005,47:1301-1325.
    [52]崔海坡,温卫东,崔海涛.复合材料层合板冲击损伤及剩余强度分析方法[J].固体力学学报.2006,27:237-242.
    [53]储建恒.含分层损伤复合材料结构逐渐损伤分析研究[D].南京:南京航空航天大学,2007.
    [54] Peter H. Bulla, Fredrik Edgren. Compressive strength after impact ofCFRP-foam core sandwich panels in marine applications[J]. Composites: Part B.2004,35:535-541.
    [55] Youngkeun Hwang. Numerical analysis of impact-damaged sandwichcomposites[D]. United States: Wichita State University,2003.
    [56] G.A. Schoeppnera, S. Abrateb. Delamination threshold loads for low velocityimpact on composite laminates[J]. Composites: Part A.2000,31:903-915.
    [57] Giovanni Belingardi, Roberto Vadori. Low velocity impact tests of laminateglass-fiber-epoxy matrix composite material plates[J]. International Journal ofImpact Engineering.2002,27:213-229.
    [58] Kevin A.Finnegan. Carbon fiber composite pyramidal lattice structures[D].United States: University of Virginia,2007.
    [59] A.G.Evens, J.W.Hutchinson, N.A.Fleck, M.F.Ashby, H.N.G.Wadley. Thetopological design of multifunctional cellular metals[J]. Progress in MaterialScience.2001,46:309-327.
    [60] Gibson L J, Ashby MF. Cellular solids: structure and properties,2nd edition[M].Cambridge University Press, Cambridge, UK,1997.
    [61] V.S. Deshpande, N.A. Fleck, M.F. Ashby. Effective properties of the octet-trusslattice material[J]. Journal of the Mechanics and Physics of Solids.2001,49:1747-1769.
    [62] Gibson, L. J., Ashby, M. F., Harley, B. A. Cellular materials in nature andmedicine[M]. Cambridge, UK: Cambridge Press,2010.
    [63] Jinxiang Chen, Guangze Dai, Yinglian Xu, Masaharu Iwamoto. Optimalcomposite structures in the forewings of beetles[J]. Composite Structures.2007,81:432-437.
    [64] Jinxiang Chen, Gang Wu. Beetle forewings: Epitome of the optimal design forlightweight composite materials[J]. Carbohydrate Polymers.2013,91:659-665.
    [65]杨志贤.甲虫鞘翅材料微结构、力学性能及联接机制的研究[D].南京:南京航空航天大学,2008.
    [66] V.S. Deshpande, N.A.Fleck. Collapse of truss core sandwich beams in3-pointbending[J]. International Journal of Solids and Structures.2001,38:6275-6305.
    [67] Francois Cote, Russell Biagi, Hilary Bart-Smith, Vikram S. Deshpande.Structural response of pyramidal core sandwich columns[J]. InternationalJournal of Solids and Structures[J].2007,44:3533-3556.
    [68] J. Xiong, L. Ma, S. Pan, L. Wu, J. Papadopoulos, A. Vaziri. Shear and bendingperformance of carbon fiber composite sandwich panels with pyramidal trusscores[J]. Acta Materialia.2012,60:1455-1466.
    [69] Jian Xiong, Li Ma, Linzhi Wua, Jiayi Liu, Ashkan Vaziri. Mechanical behaviorand failure of composite pyramidal truss core sandwich columns[J]. Composites:Part B.2011,42:938-945.
    [70] Li M, Wu LZ, Ma L, Wang B and Guan ZX. Structural response ofall-composite pyramidal truss core sandwich columns in end compression[J].Composite structures.2011,93:1964-1972.
    [71] Li M, Wu LZ, Ma L, Xiong J, Guan ZX. Torsion of carbon fiber compositepyramidal core sandwich plates[J]. Composite Structures.2011,93:2358-2367.
    [72] Li M, Wu LZ, Ma L, Wang B, Guan ZX. Structural design of pyramidal trusscore sandwich beams loaded in3-point bending. Journal of mechanics ofmaterials and structures[J].2011,6:1255-1266.
    [73] V.S. Deshpande, N.A. Fleck, M.F. Ashby. Effective properties of the octet-trusslattice material. Journal of the Mechanics and Physics of Solids[J].2001,49:1747-1769.
    [74] Kooistra GW, Wadley HNG. Lattice truss structures from expanded metalsheet[J]. Materials and Design.2007,28:507-514.
    [75] G. W. Kooistra, V.S.Deshpande, H.N.G. Wadle. Compressive behavior of agehardenable tetrahedral lattice truss structures made from aluminum[J]. ActaMaterialia.2004,52:4229-4237.
    [76] Haydn N.G. Wadley, Norman A. Fleck, Anthony G. Evans. Fabrication andstructural performance of periodic cellular metal sandwich structures[J].Composites Science and Technology.2003,63:2331-2343.
    [77] Yong-Hyun Lee, Byung-Kon Lee, Insu Jeon, Ki-Ju Kang. Wire-woven bulkKagome truss cores[J]. Acta Materialia.2007,55:6084-6094.
    [78] Ji-Hyun Lim, Ki-Ju Kang. Mechanical behavior of sandwich panels withtetrahedral and Kagome truss cores fabricated from wires[J]. InternationalJournal of Solids and Structures.2006,43:5228-5246.
    [79] Byung-Kon Lee, Ki-Ju Kang. A parametric study on compressive characteristicsof Wire-woven bulk Kagome truss cores[J]. Composite Structures.2010,92:445-453.
    [80] Douglas T. Queheillalt, Yellapu Murtyb, Haydn N.G. Wadley. Mechanicalproperties of an extruded pyramidal lattice truss sandwich structure[J]. ScriptaMaterialia.2008,58:76-79.
    [81] Hualin Fan, Tao Zeng, Daining Fang, Wei Yang. Mechanics of advanced fiberreinforced lattice composites[J]. Acta Mechanica Sinica.2010,26:825-835.
    [82] Fan H L, Meng F H, Yang W. Mechanical behaviors and bending effects ofcarbon fiber reinforced lattice materials[J]. Archive of applied mechanics.2006,75:635-647.
    [83] Fan HL, Yang W, Wang B, Yan Y, Fu Q, Fang DN, Zhuang Z. Design andmanufacturing of a composite lattice structure reinforced by continuous carbonfibers[J]. Tsinghua Science Technology.2006,11:515-522.
    [84] Fan HL, Yang W. An equivalent continuum method of lattice structures[J]. ActaMechanica Solida Sinica.2006,19:103-113.
    [85]范华林,杨卫,方岱宁,庄茁,陈祥宝,邢丽英,李斌太,蒋诗才.新型碳纤维点阵复合材料技术研究[J].航空材料学报.2007,27:46-50.
    [86] Fan H L, Jing F N, Fang D N. Mechanical properties of hierarchical cellularmaterials Part I: Analysis[J]. Composites Science and Technology.2008,68:3380-3387.
    [87] Fan H L, Jing F N, Fang D N. Nonlinear mechanical properties of lattice trussmaterials[J]. Materials and Design.2009,30:511-517.
    [88] Fan H L, Fang D N. Enhancement of mechanical properties of hollow-strutfoams: Analysis[J]. Materials and Design.2009,30:1659-1666.
    [89] Bing Wang, Linzhi Wu, Li Ma, Qiang Wang, Shanyi Du. Fabrication and testingof carbon fiber reinforced truss core sandwich panels[J]. Journal of MaterialsScience and Technology.2009,25:547-550.
    [90] Bing Wang, Linzhi Wu, Li Ma, Yuguo Sun, Shanyi Du. Mechanical behavior ofthe sandwich structures with carbon fiber-reinforced pyramidal lattice trusscore[J]. Materials and Design.2010,31:2659-2663.
    [91] Bing Wang, Guoqi Zhang, Qilin He, Li Ma, Linzhi Wu, Jicai Feng. Mechanicalbehavior of carbon fiber reinforced polymer composite sandwich panels with2-D lattice truss cores[J]. Materials and Design.2014,55:591-596.
    [92] Jian Xiong, Li Ma, Linzhi Wu, Bing Wang, Ashkan Vaziri. Fabrication andcrushing behavior of low density carbon fiber composite pyramidal trussstructures[J]. Composite Structures.2010,92:2695-2702.
    [93] Haydn Wadley et al. Compressive response of multilayered pyramidal latticesduring underwater shock loading[J]. International Journal of ImpactEngineering.2008,35:1102-1114.
    [94] Wallach JC, Gibson LJ. Mechanical behavior of a three-dimensional trussmaterial[J]. International Journal of Solids and Structures.2001,38:7181-7196.
    [95] Valdevit L, Wei Z, Mercer C, Zok FW, Evans AG. Structural performance ofnear-optimal sandwich panels with corrugated cores[J]. International Journal ofSolids and Structures.2006,43:4888-4905.
    [96] Chiras S, Mumm DR, Evans AG, Wicks N, Hutchinson JW, Dharmasena K,Wadley HNG, Fichter S. The structural performance of near-optimized trusscore panels[J]. International Journal of Solids and Structure.2002,39:4093-4115.
    [97]熊健.轻质复合材料新型点阵结构设计及其力学行为研究[D].哈尔滨:哈尔滨工业大学,2012.
    [98] Guoqi Zhang, Li Ma, Bing Wang, Linzhi Wu. Mechanical behaviour of CFRPsandwich structures with tetrahedral lattice truss cores[J]. Composites Part B:Engineering.2012,43:471-476.
    [99] Sugimura Yuki. Mechanical response of single-layer tetrahedral trusses undershear loading[J]. Mechanics of Materials.2004,36:715-721.
    [100] Gregory W. Kooistra, Douglas T. Queheillalt, Haydn N.G. Wadley. Shearbehavior of aluminum lattice truss sandwich panel structures[J]. MaterialsScience and Engineering.2008,472:242-250.
    [101] Tochukwu George, Vikram S. Deshpande, Haydn N.G. Wadley. Mechanicalresponse of carbon fiber composite sandwich panels with pyramidal trusscores[J]. Composites: Part A.2013,47:31-40.
    [102] Wang J, Evans AG, Dharmasena K, Wadley HNG. On the performance of trusspanels with Kagome cores[J]. International Journal of Solids Structures.2003,40:6981-6988.
    [103] Kumar P. Dharmasena, Haydn N.G. Wadley, Keith Williams, Zhenyu Xue, JohnW. Hutchinson. Response of metallic pyramidal lattice core sandwich panels tohigh intensity impulsive loading in air[J]. International Journal of ImpactEngineering.2011,38:275-289.
    [104] Zhenyu Xue, John W. Hutchinson. A comparative study of impulse-resistantmetal sandwich plates[J]. International Journal of Impact Engineering.2004,30:1283-1305.
    [105] Christian J. Yungwirth, Darren D. Radford, Mark Aronson, Haydn N.G. Wadley.Experiment assessment of the ballistic response of composite pyramidal latticetruss structures[J]. Composites: Part B.2008,39:556-569.
    [106] C.Y. Ni, Y.C. Li, F.X. Xin, F. Jin, T.J. Lu. Ballistic resistance of hybrid-coredsandwich plates: Numerical and experimental assessment[J]. Composites: PartA.2013,43:69-79.
    [107] Qiu X, Deshpande V S, Fleck N A. Impulsive loading of clamped monolithicand sandwich beams over a central patch[J]. Journal of the Mechanics andPhysics of Solids.2005,53:1015-1046.
    [108] Long Zhao et al. Dynamic compression failure mechanisms and dynamic effectsof integrated woven sandwich composites[J]. Journal of Composite material.DOI:10.1177/0021998312473859.
    [109] Bing Wang, Lin-Zhi Wu, Li Ma, Ji-Cai Feng. Low-velocity impactcharacteristics and residual tensile strength of carbon fiber composite latticecore sandwich structures[J]. Composites: Part B.2011,42:891-897.
    [110] F.Cote, N.A. Fleck, V.S. Deshpande. Fatigue performance of sandwich beamswith a pyramidal core[J]. International Journal of Fatigue.2007,29:1402-1412.
    [111] Biagi R, Bart-Smith H. Imperfection sensitivity of pyramidal core sandwichstructures[J]. International Journal of Solids and Structure.2007,44:4960-4706.
    [112] Jiayi Liu, Zhengong Zhou, Li Ma, Jian Xiong, Linzhi Wu. Temperature effectson the strength and crushing behavior of carbon fiber composite truss sandwichcores[J]. Composites Part B: Engineering.2011,42:1860-1866.
    [113] Jia Lou, Li Ma, Linzhi Wu. Free vibration analysis of simply supportedsandwich beams with lattice truss core[J]. Materials Science and Engineering B:Advanced Functional Solid-state Materials.2012,177:1712-1716.
    [114] Jia Lou, Bing Wang, Li Ma, Linzhi Wu. Free vibration analysis of latticesandwich beams under several typical boundary conditions[J]. Acta MechanicaSolida Sinica.2014,26:458-461.
    [115] Jinshui Yang, Jian Xiong, Li Ma, Bing Wang, Guoqi Zhang, Linzhi Wu.Vibration and damping characteristics of hybrid carbon fiber compositepyramidal truss sandwich panels with viscoelastic layers[J]. CompositeStructures.2013,106:570-580.
    [116] Nathan Wicks, John W. Hutchinson. Optimal truss plates[J]. InternationalJournal of Solids and Structures.2001,38:5165-5183.
    [117] Liu JS, Lu TJ. Multi-objective and multi-loading optimization ofultralightweight truss materials[J]. International Journal of Solids andStructures.2004,41:619-635.
    [118] Liu T, Deng Z C, Lu T J. Design optimization of truss-cored sandwiches withhomogenization[J]. International Journal of Solids and Structure.2006,43:7891-7918.
    [119] Liu T, Deng Z C, Lu T J. Minimum weights of pressurized hollow sandwichcylinders with ultralight cellular cores[J]. International Journal of Solids andStructures.2007,44:3231-3266.
    [120] Liu T, Deng Z C, Lu T.J. Analytical modeling and finite element simulation ofthe plastic collapse of sandwich beams with pin-reinforced foam cores[J].International Journal of Solids and Structures.2008,45:5127-5151.
    [121] Sypeck D J. Wrought aluminum truss core sandwich structures[J]. Metallurgicaland Materials Transactions B.2005,36:125-131.
    [122] T.J. Lu, L. Valdevit, A.G. Evans. Active cooling by metallic sandwich structureswith periodic cores[J]. Progress in Materials Science.2005,50:789-815.
    [123] M. El-Raheb, P. Wagner. Transmission of sound across a truss-like periodicpanel:2d analysis[J]. Journal of the Acoustical Society of America.1997,102:2176-2183.
    [124] M. El-Raheb, P. Wagner. Effects of end cap and aspect ratio on transmission ofsound across a truss-like periodic double panel[J]. Journal of Sound andVibrations.2002,250:299-322.
    [125]范华林.碳纤维点阵复合材料制备及其性能研究[D].北京:清华大学,2006.
    [126] D.D. Symons, J. Shieh1, N.A. Fleck. Actuation of the Kagome double-Layergrid Part2: Effect of imperfections on the measured and predicted actuationstiffness[J]. Journal of the Mechanics and Physics of Solids.2005,3:1875-1891.
    [127] Lucato S L D, McMeeking R M, Evans A G. Actuator placement optimization ina Kagome based high authority shape morphing structure[J]. Smart Materialsand Structures.2005,14:869-875.
    [128] Ju Wang. Performance of truss panels with Kagome cores and design of a highauthority shape morphing structure[D]. United States: Princeton University,2005.
    [129]中国航空材料手册.第3卷:铝合金镁合金[M].北京:中国标准出版社,2001.
    [130]金属材料室温拉伸试验方法(GB/T228-2002).北京:中国国家标准出版社,2002.
    [131]铝合金胶接前磷酸阳极氧化膜层工艺规范(QJ2908-97).北京:中国航天工业总公司航天行业标准,1997.
    [132] ASTM: C365/C365M-05. Standard test method for flatwise compressiveproperties of sandwich cores. West Conshohocken (PA): ASTM Int.,2006.
    [133] Zheng Jingjing, Zhao Long, Fan Hualin. Energy absorption mechanisms ofhierarchical woven lattice composites[J]. Composites Part B: Engineering.2012,43:1516-1522.
    [134] McKown S, Shen Y, Brookes W K, et al. The quasi-static and blast loadingresponse of lattice structures[J]. International Journal Impact Engineering.2008,35:795-810.
    [135] Jacobsen A J, Carter W B, Nutt S. Compression behavior of micro-scale trussstructures formed from self-propagating polymer waveguides[J]. ActaMaterialia.2007,55:6724-6733.
    [136] Queheillalt D T, Wadley H N G. Cellular metal lattices with hollow trusses[J].Acta Materialia.2005,53:303-313.
    [137] Queheillalt D T, Wadley H N G. Pyramidal lattice truss structures with hollowtrusses[J]. Materials Science and Engineering A.2005,397:132-137.
    [138] ASTM: C273/C273M-06. Standard test method for shear properties of sandwichcore materials. West Conshohocken (PA): ASTM Int.,2006.
    [139] ABAQUS.ABAQUS Version6.10, Dessault systems. Providence, RI,2010.
    [140] Shiuh-Chuan Her, Yu-Cheng Liang. The finite element analysis of compositelaminates and shell structures subjected to low velocity impact[J]. CompositeStructures.2004,66:277-285.
    [141] Patrick M. Schubel, Jyi-Jiin Luo, Isaac M. Daniel. Low velocity impactbehavior of composite sandwich panels[J]. Composites: Part A.2005,36:1389-1396.
    [142] Shiladitya Basu, Anthony M. Waas, Ambur. Prediction of progressive failure inmultidirectional composite laminated panels[J]. International Journal of Solidsand Structures.2007,44:2648-2676.
    [143] Y. Shi, T. Swait, C. Soutis. Modelling damage evolution in composite laminatessubjected to low velocity impact[J]. Composite Structures.2012,94:2902-2913.
    [144] Costantino Menna et al. Numerical simulation of impact tests on GFRPcomposite laminates[J]. International Journal of Impact Engineering.2011,38:677-685.
    [145] Volnei Tita, Jonas de Carvalho, Dirk Vandepitte. Failure analysis of lowvelocity impact on thin composite laminates: Experimental and numericalapproaches[J]. Composite Structures.2008,83:413-428.
    [146] Huang Chien-Hua, Lee Ya-Jung. Experiments and simulation of the staticcontact crush of composite laminated plates[J]. Composite Structures.2003,61:265-270.
    [147] Xiao JR, Gama B A, Gillespie Jr J W. Progressive damage and delamination inplain weave S-2glass/SC-15composites under quasi-static punch-shearloading[J]. Composite Structures.2007,78:182-196.
    [148] James G. Ratcliffe, Wade C. Jackson. A finite element analysis for predictingthe residual compressive strength of impact-damaged sandwich panels[J].NASA/TM-2008-215341.
    [149]王杰.复合材料泡沫夹层结构低速冲击与冲击后压缩性能研究[D].上海:上海交通大学,2013.
    [150] NASA. Standard test for toughened resin composites. NASA ReferencePublication1092,1983.
    [151] Boeing. Advanced composite compression test. Boeing specification supportstandard BSS7260,1988.
    [152] ASTM C364/C364M-07. Standard test method for edgewise compressivestrength of sandwich constructions. In:2008Annual Book of ASTM Standards,vol.15.03,2008.
    [153] Andrey Shipsha, Dan Zenkert. Compression-after-Impact strength of sandwichpanels with core crushing damage[J]. Applied Composite Materials.2005,12:149-164.
    [154] Mcquigg Thomas D, Kapania Rakesh K. Compression after impact onhoneycomb core sandwich panels with thin facesheets, Part1: experiments[C].In:53rd AIAA/ASME/ASCE/AHS/ASC structures, structural dynamics andmaterials conference, Honolulu, Hawaii, April2012.
    [155] A.G. Mamalis, D.E. Manolakos, M.B. Ioannidis, P.K. Kostazos. Crushing ofhybrid square sandwich composite vehicle hollow body shells with reinforcedcore subjected to axial loading: numerical simulation[J]. Composite Structures.2003,61:175-186.
    [156]张海波,孙金坤,谭立伟,刘宏伟.聚氨酯泡沫塑料吸能特性研究[J].材料科学与工程学报.2004,22:117-120.
    [157] Royan J. D’Mello, Anthony M. Waas. Synergistic energy absorption in the axial
    crush response of filled circular cell honeycombs[J]. Composite Structures.
    2012,94:1669-1676.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700