用户名: 密码: 验证码:
稀土掺杂氟化物纳米材料的合成及其光学性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
稀土掺杂氟化物纳米材料具有优异的光学特性,在高清显示、固体激光器、防伪识别、红外探测、生物分析和医学诊断等诸多领域有着重要的应用前景,引起了人们的广泛关注。
     本文采用水热法,以CTAB、PEG、SDS为表面活性剂制备了不同形貌YF3:Yb3+/Er3+,LaF3:Yb3+/Tm3+,YF3:Yb3+/Tm3+上转换纳米晶体。探讨了纳米晶的制备工艺,并讨论了表面活性剂的浓度和pH值对形貌和粒径的调控能力。
     用X射线衍射分析、透射电子显微镜、扫描电子显微镜对样品进行物相、结构和形貌分析。XRD表征确认了样品YF3为斜方晶系,LaF3为六方晶系。SEM和TEM图片显示YF3:Yb3+/Er3+为簇状结构,LaF3:Yb3+/Tm3+为纳米片或纳米颗粒,YF3:Yb3+/Tm3+为纳米颗粒、微米管和微米棒。
     以978nm的半导体激光器为光源,用Hitachi F-4500分光光度仪测量样品的上转换发射光谱。YF3:Yb3+/Er3+棒状纳米簇具有很强的蓝色(4F5/2→4I15/2和2P3/2→4I11/2)和绿色(4S3/2,2H11/2→4I15/2)上转换发射光。LaF3:Yb3+/Tm3+纳米颗粒和纳米片可以观测到很强的紫外和蓝色上转换发射光。YF3:Yb3+/Tm3+微米管和微米棒有六个发射带:291nm、345nm、361nm、450nm、475nm和651nm。紫外发射带的中心在291nm、345nm、361nm处,与其对应的辐射跃迁分别是1I6→3H6、1I6→3F4、1D2→3H6。
     研究了泵浦功率与上转换发光强度的关系,通过相对光强与泵浦激发功率的双对数曲线,确定了样品的发射均为多光子过程。讨论了稀土离子的基态吸收、激发态吸收以及稀土离子之间能量传递的关系,建立了相关的上转换机制模型。
For unique luminescence of the rare earth doped fluoride nanomaterials, these nanoparticles may find great applications in the fields of 3-D displays, bio-detection, solid-state lasers, anti-counterfeiting, infrared detection, and so on。
     The fluoride nanomaterials were synthesized by the sovlethermal method. The phase, stucture and morphology were analysised by X-ray diffraction, scansion electron microscopy (SEM), transmission electron microscopy (TEM). The XRD patterns were indexed to a pure YF3 orthorhombic phase and a pure LaF3 hexagonal phase. TEM and SEM images showed the morphology of YF3:Yb3+/Er3+, LaF3:Yb3+/Tm3+ and YF3:Yb3+/Tm3+, which were nanoclusters, nanosheets nanoparticles, microtubes, microrods.
     The ability of agent CTAB controlling the particle morphology and size were discussed.
     The upconversion spectrum was measured by Hitachi F-4600 spectrophotometer, under 978nm diode laser excitation. Stronger blue (4F5/2→4I15/2 and 2P3/2→4I11/2) and green (4S3/2, 2H11/2→4I15/2) upconversion emissions of Yb3+?Er3+ codoped YF3 rod-like nanoclusters were observed. The nanoparticles and nanosheets present strong ultraviolet and blue upconversion luminescence. There were six emission bands in the upconversion emission spectra of YF3:Yb3+/Tm3+, which peak at 291nm, 345nm, 361nm, 450nm, 475nm and 651nm. And they were corresponded to the 1I6→3H6, 1I6→3F4, 1D2→3H6 of Tm3+ cations.
     The relationship between upconversion relative intensity and pump power was also studied. Ground state absorption, excitation state absorption and energy transfer were used in discussing the upconversion mechanism of the nanocrystals and the pertinent upconversion mechanism models of the nanocrystals were proposed.
引文
[1]Sheppard L M. Aluminum nitride: a versatile but challenging material[J]. Am.Ceram.Bull, 1990,69(11):1801-1803.
    [2]李建宇.稀土发光材料及其应用[M].北京:化学工业出版社,2003.
    [3]Christopher M.Bender, James M. Burlitch, Duane Barber, Clifford Pollock.Synthesis and fluorescence of neodymium-doped barium fluoride nanoparticles[J].Chem. Mater, 2000, 12:1969-1976.
    [4]Ruinian Hua, Chunyu Zang, Chen Shao, et al.Synthesis of barium fluoride nanoparticles from microemulsion[J]. Nanotechnology, 2003, 14:588–591.
    [5]Chunxia Li, Jun Yang, Jun Lin, et al. Hydrothermal synthesis of lanthanide fluorides LnF3(Ln :La to Lu) nano-/microcrystals with multiform structures and morphologies[J].Chem. Mater, 2008, 20:4317–4326.
    [6]R. Dekker, D. J. W. Klunder, A. Borreman, et al. Stimulated emission and optical gain in LaF3:Nd nanoparticle-doped polymer-based waveguides[J]. Appl. Phys. Lett., 2004, 85(25): 6104-6106.
    [7]Kumar G.A, Chen C.W., Riman R.E..Spectroscopic studies of solvothermally derived LaF3:Nd nanocrystals[J]. Nanoscience and Nanotechnology, 2008,8(12) : 6558-6563.
    [8]Jan W. Stouwdam, Gerald A. Hebbink, Jurriaan Huskens, et al. Lanthanide-doped nanoparticles with excellent luminescent properties in organic media[J].Chem. Mater, 2003, 15:4604-4616.
    [9]Jan W. Stouwdam , Frank C. J. M. van Veggel.Near-infrared emission of redispersible Er3+, Nd3+, and Ho3+ doped LaF3 nanoparticles [J].Nano Lett., 2002, 2(7): 733-737.
    [10]Dmitry G. Shchukin , Gleb B. Sukhorukov. Selective YF3 nanoparticle formation in polyelectrolyte capsules as microcontainers for yttrium recovery from aqueous solutions[J]. Langmuir, 2003, 19, 4427-4431.
    [11]Masih Darbandi, Thomas Nann. One-pot synthesis of YF3@silica core/shell nanoparticles[J].Chem. Commun., 2006, 55:776-778.
    [12]John-Christopher Boyer, Louis A. Cuccia, John A. Capobianco. Synthesis of colloidal upconverting NaYF4: Er3+/Yb3+ and Tm3+/Yb3+ monodisperse nanocrystals[J]. Nano Lett., 2007,7(3):847-852.
    [13]Zhao Junwei, Sun Yajuan, Kong Xianggui, et al. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level [J]. Phys Chem B, 2008, 112: 15666-15672.
    [14] Chunxia Li, Jun Yang, Jun Lin, et al. Hydrothermal Synthesis of lanthanide fluorides LnF3 (Ln:Lato Lu) nano-/microcrystals with multiform structures and morphologies[J]. Chem. Mater., 2008, 20:4317-4326.
    [15]Guangshun Yi, Huachang Lu, Shuying Zhao, et al. Synthesis, characterization, and biological application of size-controlled nanocrystalline NaYF4:Yb,Er infrared-to-visible up-conversion phosphors[J]. Nano Lett., 2004,4(11):2191-2196.
    [16]Feng Wang, Xiaogang Liu. Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles[J]. Am.Chem. Soc., 2008, 130 (17):5642-5643.
    [17]Pushpal Ghosh, Amitava Patra. Influence of crystal phase and excitation wavelength on luminescence properties of Eu3+ doped sodium yttrium fluoride nanocrystals[J]. Phys. Chem. C, 2008, 112(9):3223-3231.
    [18]Rafik Naccache, Vetrone Fiorenzo, Capobianco A John. Chem. Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+,Yb3+ nanoparticles[J]. Chem Mater, 2009, 21: 717-723.
    [19]Minhua Cao, Changwen Hu, Enbo Wang. The first fluoride one-dimensional nanostructures: microemulsion-mediated hydrothermal synthesis of BaF2 whiskers[J]. AM. CHEM. SOC., 2003, 125, 11196-11197.
    [20]Minhua Cao, Yonghui Wang, Yanjuan Qi, at el. Synthesis and characterization of MgF2 and KMgF3 nanorods[J]. Solid State Chemistry,2004,177:2205-2209.
    [21]Lifang Liang, Huifang Xu, Qiang Su, et al. Hydrothermal synthesis of prismatic NaHoF4 microtubes and NaSmF4 nanotubes[J]. Inorg. Chem., 2004, 43:1594-1596.
    [22]Yuanbing Mao, Fen Zhang, and Stanislaus S. Wong, et al. Ambient template-directed synthesis of single-crystalline alkaline-earth metal fluoride nanowires[J]. Adv. Mater., 2006, 18: 1895-1899
    [23]Chunxia Li, Jun Yang, Zewei Quan, et al. Different microstructures ofα-NaYF4 fabricated by hydrothermal process: effects of pH values and fluoride sources[J]. Chem. Mater., 2007, 19: 4933-4942.
    [24]Guofeng Wang, Weiping Qin, Jisen Zhang, et al. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles [J]. Phys. Chem. C ,2008, 112: 12161-12167.
    [25]Lili Wang, Xiaojie Xue, Feng Shi, et al. Ultraviolet and violet upconversion fluorescenceof europium (III) doped in YF3 nanocrystals[J]. OPTICS LETTERS, 2009, 34(18):2781-2783.
    [26]Fan Zhang, Ying Wan, Yifeng Shi, et al. Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence[J]. Chem. Mater. ,2008, 20:3778-3784
    [27]Shinobu Fujihara, Yoko Kishiki, Toshio Kimura. Sol–gel processing of BaMgF4-Eu2+ thin filmsand their violet luminescence[J]. Alloys and Compounds ,2002,333:76-80.
    [28]Jianle Zhuang, Jing Wang, Xianfeng Yang, et al. Tunable thickness and photoluminescence of bipyramidal hexagonal NaYF4 microdisks[J]. Chem. Mater. ,2009, 21:160-168.
    [29]Leyu Wang, Yadong Li. Controlled synthesis and luminescence of lanthanide doped NaYF4 nanocrystals[J]. Chem. Mater., 2007, 19: 727-734.
    [30]Ya-Wen Zhang, Xiao Sun, Rui Si, et al. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor[J]. Am. CHem. Soc., 2005, 127:3260-3261.
    [31]Hao-Xin Mai, Ya-Wen Zhang, Rui Si, et al. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J]. AM. CHEM. SOC., 2006, 128:6426-6436.
    [32]Chunxia Li, Zewei Quan, Piaoping Yang, et al. Shape-controllable synthesis and upconversion properties of lutetium fluoride (doped with Yb3+/Er3+) microcrystals by hydrothermal process[J]. Phys. Chem. C, 2008, 112: 13395-13404.
    [33]Ruifei Qin, Hongwei Song, Guohui Pan, et al. Polyol-mediated synthesis of hexagonal LaF3 nanoplates using NaNO3 as a mineralizer[J]. Crystal Growth & Design, 2009, 9(4):1750-1756
    [34]Fan Zhang, Ying Wan, Ting Yu, et al. Uniform nanostructured arrays of sodium rare-earth fluorides for highly efficient multicolor upconversion luminescence[J]. Angew. Chem. Int. Ed., 2007, 46: 7976-7979
    [35]Zhang Fan, Wan Ying, Shi Yifeng, et al. Ordered mesostructured rare-earth fluoride nanowire arrays with upconversion fluorescence [J]. Chem Mater, 2008, 20: 3778- 3784.
    [36]Fiorenzo Vetrone, Venkataramanan Mahalingam, Capobianco A John. Near-infrared-to-blue upconversion in colloidal BaYF5:Tm3+,Yb3+ nanocrystals [J]. Chem. Mater., 2009, 21: 1847- 1851.
    [37]Rafik Naccache, Vetrone Fiorenzo, Capobianco A John.Chem. Controlled synthesis and water dispersibility of hexagonal phase NaGdF4:Ho3+,Yb3+ nanoparticles[J]. Chem Mater, 2009, 21: 717- 723.
    [38]Zhao Junwei, Sun Yajuan, Kong Xianggui, et al. Controlled synthesis, formation mechanism, and great enhancement of red upconversion luminescence of NaYF4:Yb3+, Er3+ nanocrystals/submicroplates at low doping level [J]. Phys Chem B, 2008, 112: 15666- 15672.
    [39]Sri Sivakumar, Frank C J M van Veggel, P Stanley May, et al. Near-infrared (NIR) to red and green up-conversion emission from silica Sol-Gel thin films made with La0.45Yb0.50Er0.05F3 nanoparticles, hetero-looping-enhanced energy transfer (hetero-LEET): a New up-conversionProcess [J]. Am Chem Soc, 2007, 129: 620- 625.
    [40]杨梅,刘其鹏,李东风,等. Y0.78Yb0.2Er0.02F3多孔纳米粒子的合成与上转换发光[J].中国稀土学报, 2008, 26(4): 426- 431.
    [41]Pollnau M, Gamelin D R, Güdel H U, et al. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems [J]. Phys Rev B, 2000, 61: 3337- 3346.
    [42]Wang Y H, Junichi Ohwaki. New transparent vitroceramics codoped with Er3+ and Yb3+ for efficient frequency upconversion [J].Appl Phys Lett, 1993,63:3268-3270.
    [43]Ferber S, Gaebler V, Eichler H J. Violet and blue upconversion-emission from erbium-doped ZBLAN-fibers with red diode laser pumping [J]. Opt Mater, 2002, 20: 211- 215.
    [44]Song H, Sun B, Wang T, et al. Three-photon upconversion luminescence phenomenon for the green levels in Er3+/Yb3+ codoped cubic nanocrystalline yttria [J]. Solid State Commun, 2004, 132: 409- 413.
    [45]Vetrone F, Boyer J C, Capobianco J A, et al. Concentration-dependent near-infrared to visible upconversion in nanocrystalline and bulk Y2O3:Er3+ [J]. Chem Mater, 2003, 15(14): 2737- 2743.
    [46]M.A. Noginov, M. Curley, P. Venkateswarlu, et al. Color-center powder laser: the effect of pulverization on color-center characteristics [J]. Opt.Soc. Am. B , 1997,14:2153-2160.
    [47]Brian M. Walsh, Norman P. Barnes, Baldassare Di Bartolo. Branching ratios, cross sections, and radiative lifetimes of rare earth ions in solids: application to Tm3+ and Ho3+ ions in LiYF4 [J]. J. Appl. Phys., 1998, 83(5):2772-2787.
    [48] S. Tanabe, K. Tamai, K. Hirao, et al. Branching ratio of uv and blue upconversions of Tm3+ ions in glasses[J] Phys. Rev. B, 1996,53:8358-8362.
    [49]S. Tanabe, T. Ohayagi, N. Soga, et al. Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses[J].Phys. Rev. B, 1992,46:3305-3310.
    [50]Dmitry G. Shchukin , Gleb B. Sukhorukov. Selective YF3 nanoparticle formation in polyelectrolyte capsules as microcontainers for yttrium recovery from aqueous solutions[J].Langmuir, 2003, 19, 4427-4431.
    [51]Masih Darbandi, Thomas Nann. One-pot synthesis of YF3@silica core/shell nanoparticles[J].Chem. Commun., 2006,56:776-778.
    [52]Guofeng Wang, Weiping Qin, Jisen Zhang ,et al. Synthesis, growth mechanism, and tunable upconversion luminescence of Yb3+/Tm3+-codoped YF3 nanobundles[J]. Phys. Chem. C, 2008, 112: 12161-12167.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700