用户名: 密码: 验证码:
钢渣重构及其组成、性能的基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钢渣由于矿物组成中C3S少,RO相含量多,其胶凝活性弱,同时又存在安定性不良的问题,使得钢渣在建材行业难以大量应用。本课题组提出了钢渣重构方法,即在钢渣出炉过程中,添加调节组分,利用高温使调节组分与熔态钢渣发生化学反应,改变钢渣的组成及结构,从源头上将钢渣变为一种胶凝活性高的混凝土掺合料。
     本论文从基础理论出发,分析认为掺加调节组分重构提高钢渣胶凝活性有两种措施:一是使RO相转变为C4AF,二是使铁还原为金属铁分离出来,两种方法同时都还需提高C3S的含量,论文对上述两种不同的钢渣重构方法进行了研究,旨在寻找一种具有普适性的调节组分及重构方法。论文分别采用XRD、SEM-BEI、岩相分析研究了重构钢渣的矿物组成,采用活性指数、SEM、TG-DTA研究了重构钢渣的胶凝活性,分析了重构过程发生的反应及规律,探讨了重构钢渣组成对性能的影响。
     论文首先以工业废渣及天然矿物为可选调节组分,参照水泥熟料化学成分,通过理论配料计算直接确定钢渣重构适宜的调节组分材料和掺量,模拟熟料煅烧制度进行重构,结果表明,RO相被分解,随CaO含量增多,分解越完全,生成C2F、C4AF,MgO主要以游离态方镁石存在;调节组分石灰掺量对重构效果影响很大;可获得生成较多C3S矿物、胶凝活性高的重构钢渣,活性指数可达95%。
     进而,采用石灰作为单一调节组分,逐渐增加其掺量,研究重构过程反应机理。研究结果表明:(1)重构过程中首先发生反应CaO + SiO2→C2S,接着在CaO作用下RO相分解,发生反应CaO + RO→CF+ MgO,分离出的Fe2O3只有被CaO完全饱和,即生成C2F、C2(A,F)或C4AF后,才进行C2S + CaO→C3S的反应。(2)重构钢渣的主要矿物有CF、C2F、C2(A,F)、C4AF、C2S、C3S、MgO。随石灰量增多,铁分别以CF和Fe3O4,C2F和C2(A,F),C2F和C4AF形式存在,MgO主要以游离态方镁石存在,少部分以固溶态形式存在于硅酸盐矿物和液相中,Al2O3生成C2(A,F)或C4AF。碱度高时,矿物生长发育良好,形成六方板状、长柱状的C3S自形晶和圆粒状的C2S自形晶,液相量多,以铁酸钙为主;碱度低时RO未分解完全,液相量少,形成形貌不规则的C2S。(3)石灰重构反应是造渣过程的“后续反应”,重构过程是在一个相对稳定的环境下进行的“二次造渣”反应。
     然后,根据钢渣在石灰作用下发生的重构反应和矿物组成变化,提出表征钢渣活性的钢渣石灰饱和系数计算公式KHs= [CaO-1.1Al2O3-0.7Fe2O3]/[2.8SiO2],设定KHs为0.9,对柳钢、宝钢、武钢三种钢渣进行石灰重构,并提出了重构钢渣矿物组成的石灰饱和系数计算法,探讨了重构钢渣组成-结构-性能的关系,结果表明:(1)三种钢渣重构矿物组成中液相主要是C2F、C2(A,F),MgO均以游离态存在,硅酸盐矿物均含有C2S,C3S,其中武钢重构钢渣C3S含量较多,胶凝活性最好,活性指数达85%。(2)单独以KHs为参数来考虑重构钢渣的石灰用量和重构效果是不够的,今后还需进一步完善石灰重构钢渣的控制参数,如以KHs值和硅率SM值共同控制。
     论文还对还原铁法重构钢渣进行了研究。作者对实验室现有的高温炉进行改造,安装氮气保护装置,采用直接还原法和熔融还原法进行钢渣重构,结果表明:(1)直接还原法重构钢渣能够将钢渣RO相和液相中Fe2O3还原成金属铁,但由于未发生熔融无法进行渣铁分离,还原得到的金属铁以尺寸为20μm-200μm的颗粒残留在钢渣中,均匀分布在硅酸盐矿物和液相之间;还原钢渣易磨性较差,但胶凝活性有明显提高。(2)熔融还原法重构钢渣的铁还原率接近100%,且易实现金属铁的分离;将熔融炉渣分别采取随炉冷却、铜瓦冷却、水淬冷却等三种处理方式,随炉冷却和铜瓦冷却所得炉渣主要是晶体,矿物组成主要为钙铝黄长石、镁长石、硅酸二钙,与硬矿渣相似,不具有胶凝活性;水淬冷却渣玻璃体含量较多,与矿渣组成结构相近,水淬还原渣具有较高的胶凝活性,活性指数可达85%以上。熔融还原法可使钢渣得到完全利用并创造出高的经济附加值,是一种极具推广意义的钢渣处理新技术。
Owing to the less content of C3S and high content of RO phase in the mineral composition, the weak cementitious activity and the unstable soundness, the steel slag is in difficult utilization with large number in the building materials industry. Our group put forward the reconstruction method of steel slag, that is, conditioning components are added to make chemical reaction with the molten slag under the high temperature entironment when steel slag is dumped from the converter, so the composition and structure of steel slag would be changed, and the steel slag would become a kind of high cementitious activity admixture.
     Based on the basic theory, we think that there are two measures to enhance the cementitious activity of the steel slag. First, RO phase should be changed into C4AF. Another, the iron should be separated from the slag by reduction. Two methods are also needed to improve the content of C3S. The two different reconstruction methods were studied in this paper in order to find a universal conditioning component and reconstruction method. XRD,SEM-BEI and petrographical analysis were used to study the mineral composition of reconstruction slag, activity index, SEM and TG-DTA were used to measure and analyse the cementitious activity of reconstruction slag, the chemical reaction occurred and its rule of the reconstruction process were analyzed, and the relationship between composition and performance of reconstruction slag was discussed.
     The industrial waste and natural minerals were chosen as the conditioning components. With reference to the chemical composition of cement clinker, the conditioning component materials and its content were directly determined by theoretical calculation, reconstruction test was developed by simulating clinker calcinations. The results showed that RO phase was decomposed, which tends to be more complete when CaO content increase. And C2F and C4AF, Mg produced mainly existed in free MgO crystal; Lime, as a kind of conditioning component, showed a great impact on reconstruction; Reconstruction could produce a lot of C3S minerals and improve cementitious activity of steel slag, the activity index of it could achieve 95%.
     Lime was shosen as the single conditioning component and the reaction mechanism of reconstruction was studied. The results showed that: (1) The first reaction in reconstruction process was CaO + SiO2→C2S, then, RO phase was decomposed under the action of the CaO, the reaction was CaO + RO→CF + MgO, C2S+CaO→C3S could react only if isolated Fe2O3 was fully saturated by CaO and then produced C2F, C2(A,F),C4AF. (2) The mainly minerals of reconstruction slag were CF, C2F, C2(A,F), C4AF, C2S, C3S, MgO. With the increase of lime content, Fe2O3 respectively existed in Fe3O4 and CF, C2F and C2(A,F), C2F and C4AF. MgO mainly existed in free periclase and minority existed in silicate minerals and liquid phase as solid solution and liquid phase. Al2O3 produced C2(A,F) or C4AF. Minerals grew and developed well when alkalinity was high, the shape of C3S was six-plate and long cylindrical, and the shape of C2S was round granular, when the content of liquid pahse is high, it mainly contained calcium ferrite but when RO phase did not decompose completely in the low alkalinity, and liquid content reduced, the shape of C2S was irregular. (3) Lime reconstruction reaction was "the follow-up reaction" of slagging process, and reconstruction process was a "second slagging" reaction in a relatively stable environment.
     Then, according to the reconstruction reaction and mineral composition of reconstruction slag, slag-lime saturation factor KHs= [CaO-1.1Al2O3-0.7Fe2O3] /[2.8SiO2] was proposed to characterize the activity of slag, BG, LG, WG steel slags were reconstructed by lime at KHs 0.9 , the mineral composition of reconstruction slag calculation which used slag-lime saturation was put forward, the relationship of composition- structure - performance of reconstruction slag was discussed. The results showed that: (1) The mainly liquid of three kinds of reconstruction slag were C2F and C2(A,F), MgO mainly existed in free periclase, silicate minerals were C2S, C3S. WG reconstruction slag had highest cementitious activity because it contented more C3S, its activity index was 85%. (2) It was not enough to use KHs as the single parameter to consider the amount of lime in reconstruction and effect of reconstruction. The control parameters of lime reconstruction slag should be further elaborated, e. g. to use KHs and SM simultaneously.
     The iron reduced reconstruction slag was also studied in this paper. The experimental furnace installed nitrogen protection was transformed, direct reduction method and smelting reduction method reconstructed slag were used. The results showed that: (1) RO phase and Fe2O3 in liquid could be reduced to iron by direct reduction method, iron and slag could not be separated because the slag did not melt, the iron reduced well-distributed between silicate minerals and liquid in steel slag as iron beads which size were 20μm-200μm, cementitious activity of reduced slag was increased, but its grindability got worse. (2) the iron reduction rate closed to 100% by smelting reduction method, iron and slag could be separated easily. The molten slag were taken to cool with the furnace, cool by copper tile, cool by water quenching. Composition of the slags cooled with the furnace and cooled by copper tile were mainly crystalline , it contend C2S, Ca2Al2SiO7, Ca3MgSi2O8 and Ca2Mg2Si2O7, which did not have cementitious activity. The slag processed by water quenching contained a lot of vitreous body, and because its composition and structure were similar to blast furnace slag, its had high cementitious activity, whose activity index could achieve more than 85%. Smelting reduction method could completely utilize steel slag and create high economic value, and it was a new technology of steel slag utilization and had a great sense of popularization.
引文
[1] (苏)E.B.特列恰柯夫等著.氧气转炉造渣制度[M].《氧气转炉造渣制度》翻译组.北京:冶金工业出版社,1975.1页, 11页
    [2] http://www.drcnet.com.cn/DRCNET.Channel.Web/
    [3]张圣弼.相图——原理、计算及在冶金中的应用[M].北京:冶金工业出版社,1986.267页
    [4]王晓龙.钢渣活化处理试验研究[D].西安:西安建筑科技大学, 2007
    [5]林永权.钢渣的粉磨与粉体特性、复合性能机理、活性激发及应用开发研究[D].广州:华南理工大学, 2008
    [6]李辽沙,曾晶,苏世怀等.钢渣预处理工艺对其矿物组成与资源化特性的影响[J].金属矿山,2006(12):71-74
    [7]欧阳东,谢宇平,何俊元,转炉钢渣的组成、矿物形貌及胶凝特性.硅酸盐学报.1991,vol.19(6).p488-494
    [8]王玉吉,叶贡欣,氧气转炉钢渣主要矿物相及其胶凝性能的研究.硅酸学报,1981,vol.9(3).p302-308.
    [9]徐光亮,钱光人,赖振宇,等.低碱度钢渣基油井及地热井胶凝材料的研究——Ⅰ低碱度钢渣的化学成分、矿物组成和矿相和矿相特征[J].西南工学院学报,2000,15(1): 10-14.
    [10]侯贵华,李伟峰,郭伟等.转炉钢渣的显微形貌及矿物相[J].硅酸盐学报, 2008, vol.36(4). p436-443
    [11]张桦,邢磊.某电炉氧化钢渣矿物学研究.江苏地矿信息.2002,27(2):27-28
    [12]唐明述,袁美栖,韩苏芬,沈兴.钢渣中MgO. FeO. MnO的结晶状态与钢渣的体积安定性.硅酸盐学报, 1979, vo1.7(1):37-45.
    [13] MasonB.The constitution of some open-heart slag. .Journal of Iron and steel institute. l944(11):69~80
    [14]侯贵华,李伟峰,王京刚.转炉钢渣中物相易磨性及胶凝性的差异[J].硅酸盐学报,2009,vol37(10):16131617
    [15]赵三银,李伟升,林永权等.转炉钢渣粉磨动力学的实验研究[J].水泥工程, 2006, (2):5~13
    [16]丁新榜,赵三银,黎载波等.转炉热闷罐钢渣粉磨特性和胶凝活性的试验研究[J].水泥工程,2008(5):16~18
    [17] http://www.custeel.com/Scripts/viewArticle.jsp?articleID=618280
    [18] http://www.cenews.com.cn/historynews/06_07/200712/t20071229_23826.html
    [19]ADOLFSSON D., MENAD N., VIGGH E. O. and BJORKMAN B., Steelmaking slags as raw material for sulphoaluminate belite cement, Adv in Cem Res, submitted September 2006.
    [20] http://www.cmepc.com/html/jishushichang/200901/09-3246.html
    [21]彭春元,彭忠,钟健,邓福添.转炉钢渣微粉的加工与品位分析研究[J].炼钢, 2006, 22(1): 57-60.
    [22]魏莹,陆栋,李兆锋,李丙明.转炉钢渣磁选综合利用试验研究[J].硅酸盐通报,2009,28(1):152-155.
    [23]钱强.转炉渣分离选别试验研究[J].矿冶,2009,18(1):19-22.
    [24]孙树彬.钢渣矿渣水泥研究.北京:内部资料.1983
    [25]潘奎勇等.预分解窑利用钢渣代替铁粉配料煅烧机理的研究[J].矿产综合利用2004, 8:36
    [26]吕新锋,王庆福,郑大鹏.钢渣作铁质校正原料在1000t/d熟料线上的应用[J].新世纪水泥导报.2007(3)16-18
    [27]邹俊甫.钢渣用于生料配料一料三代及其经济性分析[J].江西建材.2001(1): 17-22
    [28]李永鑫.含钢渣粉掺合料的水泥混凝土组成、结构与性能的研究[M].中国建筑材料科学研究院.2003.
    [29]陈荣欢,石磊,王如意,顾德仁.转炉钢渣的处理及利用技术简介.内部资料
    [30]郭家林,赵俊学,黄敏.钢渣综合利用技术综述及建议[J].中国冶金, 2009,19(2): 35-38.
    [31]徐光亮,钱光人,赖振宇,王海滨.低碱度钢渣基油井及地热井胶凝材料的研究—I低碱度钢渣的化学成分、矿物组成和矿相特征.西南工学院学报.2000 , 15(1):10-14,
    [32]徐光亮,赖振宇,钱光人等.低碱度钢渣基油井及地热井胶凝材料的研究—II CMS, CFS, C3MS2的水热反应.西南工学院学报.2000, 15(2):30-33
    [33]徐光亮,赖振宇,钱光人等.低碱度钢渣基油井及地热井胶凝材料的研究—III富镁低碱度钢渣的水热反应.西南工学院学报.2001, 16(2):1-4
    [34]钱光人,徐光亮,王海滨等.低碱度钢渣基油井及地热井胶凝材料的研究—N富铁低碱度钢渣的水热反应及胶凝性.西南工学院学报.2001, 16(3):1-6
    [35]钱光人,赖振宇,徐光亮等.低碱度钢渣基油井及地热井胶凝材料的研究—V钢渣的膨胀及抑制.西南工学院学报.2001, 16(4):25-28
    [36]肖琪仲.钢渣的膨胀破坏与抑制.硅酸盐学报, 1996, vo1.24(6):635-640
    [37]Tsuyaki. Naomitsu. Belite slag for concrete. Jpn Kakai Tokkyo Koho Jp11292578 ( 99292 578)
    [38]泊正雄,利光孝司等.炼钢渣的利用方法.中国专利,专利申请号:85105246
    [39]霍显刚,郑延春等利用高活性转炉钢渣生产高铁水泥的方法.中国专利,专利申请号:87100826
    [40]王晓龙.钢渣活化处理试验研究[M].西安建筑科技大学,2007
    [41]李东旭等复合外加剂对钢渣水泥性能的影响[J].南京化工学院学报, 1994 (16);68-72
    [42]黄振荣,王洪起,周维海,等.无熟料钢渣、矿渣水泥[P] .中国专利, CN 1166462A. 1997. 12.
    [43]赵旭光,赵三银,李宁,文梓芸,余其俊.高钢渣掺量和高强度钢渣水泥的研制[J].武汉理工大学学报, 2004 26(1):38-42
    [44]李彬,江景辉,隋智通.钢渣组成与胶凝性能的研究.房材与应用[J].1997(4):4-5
    [45]项长祥,陈亚辉,鹿霖.还原法处理转炉渣研究.环境工程[J].1997(3):54-57
    [46] A.艾德林格.由渣生产生铁或钢以及水泥熟料的方法[P].国际发明专利: WO96/24696德96.8.15
    [47]叶德敏.钢渣改质及钢渣水泥[P].中国发明专利: ZL02122578.8.
    [48]袁美栖,唐明述用钢渣作原料配烧水泥熟料的研究硅酸盐学报, 1979, vo1.7(1):37-45.
    [49] Ahmad Monshi, Masoud Kasiri Asgarani. Producing Portland cement from iron and steel slags and limestone[J]. Cement and Concrete Research ,1999(29)1373-1377
    [50] P.E. Tsakiridis, G.D. Papadimitriou,S. Tsivilis, C. Koroneos.Utilization of steel slag for Portland cement clinker production[J].Cement and Concrete Research, 2007, 33 (26):1851-1856
    [51] http://www.bmi001.com/news/infoview.aspx?infoid=37729
    [52]冶金部建筑研究总院环保所,中国金属学会冶金环保学会.冶金工业废渣处理工艺与利用科技成果汇编(一).北京:内部资料.1983
    [53]吴春丽.钢渣粒径和掺量对水泥熟料和烧成性能的影响D].北京:中国建筑材料科学研究院,2003
    [54]钱光人,徐光亮,李和玉.低碱度钢渣的矿物组成、岩相特征与膨胀研究.西南工学院学报.1997,12(3):35-39
    [55]建筑材料科学研究院编.水泥岩相检验[M].北京:中国建筑工业出版社. 1975. p117
    [56]廉慧珍,童良,陈恩义.建筑材料物相研究基础[M].北京:清华大学出版社.1996. p101
    [57] F.M.Lea.水泥和混凝土化学[M].唐明述等译.北京:中国建筑工业出版社. 1980. p223
    [58]沈威,黄文熙等.水泥工艺学[M].武汉:武汉理工大学出版社, 2005. p181, p24-29, p29-30
    [59]冯聚和.氧气顶吹转炉炼钢[M].北京:冶金工业出版社, 1995. p45-46
    [60] http://blog.sina.com.cn/s/blog_5a53af350100bcen.html
    [61]王筱留.钢铁冶金学:炼铁部分[M].北京:冶金工业出版社. 2000. p79-80,p103, p114
    [62]黄希祜.钢铁冶金原理[M].北京:冶金工业出版社. 2002. p284-299
    [63]刘竹林.炼铁理论与工艺[M]. .北京:化学工业出版社. 2009. p52-62
    [64]周渝生,钱晖,张友平等.现有主要炼铁工艺的优缺点和研发方向[J].钢铁.Vol44: (2). 1-10
    [65]郁青春,杨斌,马文会等.氧化镁真空碳热还原行为研究[J].真空科学与技术学报. 2009(5). p68-71
    [66]袁润章,胶凝材料学(第2版) [M],武汉:武汉工业大学出版社1996. p165

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700