用户名: 密码: 验证码:
浸出—萃取法综合回收磷尾矿中磷、镁的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于世界磷矿资源的逐渐枯竭,品位趋于贫化,而为了满足湿法磷酸对原料矿石的质量要求,通过各种选矿技术的运用,每年都产生大量的磷尾矿。如果能对磷尾矿进行综合利用,不仅可以减少资源浪费,还能避免尾矿堆积占用土地及对环境的污染。通过对此浮选获得的尾矿进行物相及化学分析后发现该尾矿的主要物相为Ca(CO_3)_2、Mg(CO_3)_2及Ca_5F(PO_4)_3,其中P_2O_5含量7~9%,MgO含量高达16~18%,属高镁磷尾矿。本文初步探索了用盐酸和硫酸混合酸酸浸的方法来分解磷尾矿的工艺,新工艺主要研究了磷矿的酸解工艺条件、浸出液的综合净化,并对萃取分离MgCl_2和H_3PO_4进行了实验研究。
     在酸解工艺条件优化研究中,通过单因素及正交试验获得实验室条件下的最佳工艺条件:反应时间60min、温度80℃、液固比为5:1、酸的过量系数则取1.05。在此工艺条件下P_2O_5和MgO都有较高的浸出率,分别为97.2%、98.5%,且各因素对P_2O_5和MgO的浸出率影响趋势相似。其中反应时间和液固比对二者浸出率的影响最为显著,酸的过量系数对它们浸出率的影响很小,主要是由误差所引起的。在综合净化过程中采用同步脱氟、脱硫、脱重金属,效果理想,达到净化要求。
     通过萃取实验研究,首先确定了选择正丁醇作为萃取剂,然后在进一步的试验研究中确定了最佳萃取工艺条件和反萃工艺条件,最佳萃取工艺条件:在H_3PO_4浓度为60%,萃取剂采用正丁醇,萃取相比为1:1,温度为常温,萃取时间为5分钟,在均衡搅拌速度下,P_2O_5萃取效果最佳,可达68%以上。最佳反萃工艺条件:反萃剂采用水,加入量为反萃前有机相体积的30%,反萃时间为3分钟,常温下进行反萃时,反萃率可达90%。
     本试验工艺条件易于控制,操作简单,对设备要求低,基本上可以实现循环生产,仅有少量对环境无污染的废渣。上述研究成果对瓮福磷矿浮选尾矿的开发利用具有一定的参考价值。
For the gradual depletion of the phosphate resources and the tending depleted grade of them,in order to satisfy the wet-process phosphoric acid production(WPA) ore quality requirements of raw materials,it will be a large amount of phosphorus tailings per year through the use of various mineral processing technology.If we can take comprehensive utilization of the phosphorus tailings,that not only can reduce the waste of resources,but also prevent occupied land and environmental pollution which the tailings piled up.Through the chemical analysis of phase from this flotation tailings,we found that the main phases in the tailings are Ca(CO_3)_2、Mg(CO_3)_2 and Ca_5F(PO_4)_3,with the content of P_2O_5 from 7%to 9%,the content of MgO is as high as 16 to 18 per cent,which attach a high magnesium phosphate tailings.This article initially explored the new process which using hydrochloric acid and sulfuric acid leaching mixed to decompose phosphate tailings,this new technology research acid solution process conditions of phosphate,and study MgCl_2 and H_3PO_4 extraction.
     In the process optimization studies of acid conditions,I got optimum conditions in laboratory conditions through the single-factor orthogonal test.The optimum conditions are 60 min's reaction time,80℃'s temperature,the 5:1 ratio of liquid to solid,the 1.05 excessive coefficient of acid.In this condition,the extraction rate of P_2O_5 and MgO are higher,respectively attain 97.2%and 98.5%.And the influence of factors to leaching rate of the P_2O_5 and the MgO are similar.The two most notable factors are the reaction time and the ratio of liquid and solid leaching rate,the least notable factors is coefficient of excessive acid,which mainly caused by the error.
     Through the extraction experimental study,I determine the choice of n-butanol as the extraction solvent,and then identified the best extraction conditions and the anti-extraction process in the further pilot study.In the best extraction conditions, the P_2O_5 extraction is best and attains more than 68%.The best extraction conditions:H_3PO_4 concentration of 60%,n-butyl alcohol for extraction,extraction compared to 1:1,the room temperature,the extraction time for 5 minutes,churn up with balanced speed..The best anti-extraction process conditions:used water for anti-extraction,the amount is about the volume of 30%of organic phase before anti-extraction anti-extraction time for 3 minutes.At room temperature for anti-extraction, the stripping rate attain 90%.
     The technological conditions of the test are easy controlled with simple operation and low facility request.It could produce circularly,and only a small quantity of waste slag that is pollution-free to our environment was produced.The research in this paper can provide some valuable reference for exploitation and utilization of Wengfu phosphate floatation tailings.
引文
[1]尹卫强.炼镁用晶体六水氯化镁制备[J].海湖盐与化工,1997,26(3):13.
    [2]王江平.对贵州优势产业磷及磷化工的思考[J].化工管理,2004(12):38-39.
    [3]王军民.湿法磷酸的净化脱氟新工艺研究[J].无机盐工业,2001,1(1):6-8.
    [4]化学工业部从事司.结晶[M].北京,化学工业出版社,1997.
    [5]王涌清,刘秀奇.化肥应用手册[M].北京,中国农业出版社,1993.67-68.
    [6]田升平.中国磷矿基本特征及分布规律.化工矿产地质,2000,22(1):11-16
    [7]乐志强.无机精细化学品手册[M].北京,化学工业出版社,2001.
    [8]江善襄,方天翰,戴元法,林乐.磷酸、磷肥和复混肥料[M].北京:化学工业出版社,1999.898-901.
    [9]刘代俊,钟本和,张允湘,蒋炜.磷酸中铁铝镁杂质对开阳磷矿分解速率的影响[J].四川大学学报.2001,33(3):41-45.
    [10]刘代俊,蒋绍志,罗洪波,张允湘.我国磷矿资源分化趋势与对策探讨[J].磷肥与复肥.2005,20(1):6-9.
    [11]伍沅,黄玉琼,贺小平.镁对磷矿化学加工的影响和对策[J].武汉化工学院学报.1991(4):35-40.
    [12]刘建雄.贵州磷矿资源开发利用的现状及对策[N].贵州日报.2005.8.30.
    [13]张卫峰,马文奇,张福锁,马骥.中国、美国、摩洛哥磷矿资源优势及开发战略比较分析.自然资源学报,2005(3):378-386.
    [14]吴初国.我国磷矿资源形势与可持续供应的对策建议[J].化肥工业.2004(4):3-5
    [15]张杰,张罩,陈代良.贵州织金新华含稀土磷矿订稀土元素地球化学及生物成矿基本特征[J].矿物岩石.2003,23(3):35.
    [16]杨胜举.瓮安磷矿的可持续发展战略[J].采矿技术.2006,9(3):90-92.
    [17]吴祥和.贵州磷块岩[M].北京,地质出版社,1999.
    [18]国土资源部矿产资源储量司.2003年中国矿产资源年报[M].北京.地质出版社,2004.223-239.
    [19]张志业,陈欣.磷矿中镁对湿法磷酸的影响及其综合利用分析[J].2005年中 国化工学会无机盐学术年会.332-334.
    [20]林治华,杜力.湿法磷酸中杂质对二水硫酸钙结晶影响的研究[J].渝州大学学报(自然科学版).1995,12(2):64-68.
    [21]罗惠华.抑制剂W-98在瓮福磷矿反浮选中的选矿研究[J].武汉化工学院学报.2002,24(4):49-52.
    [22]骆广生,刘舜华,孙永,黄华榧,戴猷元.磷酸的溶剂萃取法净化[J].过程工程学报.2001.2(1):211-213.
    [23]柳正.我国磷矿资源的开发利用现状及发展战略[J].中国非金属矿工业导刊.2006(1):21-23.
    [24]钟本和,陈亮,李军,龚海燕.溶液萃取法净化湿法磷酸的新进展[J].化工进展.2005,24(6):596-602.
    [25]胡庆福.镁化合物生产与应用[M].北京.化学工业出版社.2004.
    [26]黄大雨.选矿手册第8卷第五分册[M].北京.冶金工业出版社.1984.14.
    [27]黄伟九,张俊.湿法磷酸的脱硫(SO_4~(2-))净化研究[J].昆明理工大学学报,1997,8(4):112-115
    [28]黄西平,张琦,郭淑元,王功伟.我国镁资源利用现状及开发前景[J].海湖盐与化工.2004,33(6):1-6.
    [29]黄丽华.高镁磷尾矿制备磷镁二元复合肥料的初步研究[J],化工技术与开发,2007,36(8):47-48.
    [30]梁英教,车荫昌.无机物热力学数据手册[M].沈阳:东北大学出版社,1993:39-441.
    [31]黄金赛,于世杰.食品级磷酸的试制,福建化工,1989(3)
    [32]谭志斗.硫酸连续分解高镁磷尾矿的实验研究[J].化工矿物与加工.2006(2):7-9
    [33]潘至中,潘恒.瓮福磷肥厂回收碘的探讨[J].贵州化工.2003,28(6):4-6
    [34]A.J Fu]it.Geochemistry of REE elements on water and sediments[J].Rare earth elements geochemistry.1984,343-369
    [35]Alfred W.Petersen.Process for treating phosphate ore[P].US:3,717,702(1971)
    [36]Hitachi Shipbuilding and Engineering CO. ltd. Wet-process phosphoric acid production[P]:57. 166. 302(1988).
    [37]Ishaque Muhammad、 Ahmed Nasir. Removal of Magnesium by leaching from Lagarban Phosphate Rock for Phosphoric Acid Manufacture[J]. Fertilizer News. 1982. 27(6) :53—58.
    [38]J. W. Mullin. Crystallization[M], third edition .World Books Publish Inc.1997:202-260.
    [39]Kim Y. K. Walters H. K. Conditions affecting the purification of simulated wet-process phosphoric acids by solvent extraction [J]. J. Agric. Food. Chem. 1974.22(6) : 1099—1106.
    [40]Lucien Person, Levallois perret. process for extraction of Iodine[P]. US438823K1983).
    [41]Paul A. Smith, phosphate rock grade and quality[J]. Phosphorus & potassium. 1992(3) :28—36.
    [42]Potencsik Istvan. Maurer Alexander. Wet-process Technique for Refining Phosphoric Acid[P]. US:6251351. 2001. 6. 26.
    
    [43]Science Ventures inc. New phosphate purification[J]. phosphorus& potassium. 1993. 198(1) :39—40.
    [44]U.S. Geological Survey. Mineral Commodity Summaries[R], 2008(1) : 124—125.
    [45]Wolstein. F. Method for the Conversion of Phosphate Rock Containing Magnesium into Phosphoric Acid and a Mixture of Magnesium and Calcium Carbonates[P]. US:4. 152. 379. 1978.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700