用户名: 密码: 验证码:
若干离子液体结构与催化机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
离子液体是一类完全由阴、阳离子组成的新型液态化合物。它们具有一些优良的物理化学性质,如低熔点、宽液程、高的热稳定性、良好的溶解性、不易燃、不易挥发、可循环使用等。其中,离子液体不易挥发、可循环使用的独特性能,符合绿色化学、绿色合成的理念,被认为是一类理想的环境友好介质和绿色功能材料,近二十年来一直受到国际学术界和工业领域的广泛关注。此外,离子液体还拥有“可设计”特征,可以通过改变阴、阳离子的种类和大小来调节其物理化学性质,使人们可以根据特定的用途和需要设计具有特殊功能的离子液体。到目前为止,离子液体的实验应用研究已经取得了很大进展,在化学合成与催化、萃取与分离、电化学、生物化学等领域被广泛用作溶剂、反应介质、催化剂和功能材料。
     与离子液体的实验研究相比,其理论研究发展明显滞后。纵观离子液体理论研究现状,众多研究工作主要致力于应用量子化学和分子动力学模拟方法研究咪唑类离子液体的微观结构,以及构-效关系,而对其他类型离子液体(如吡啶类离子液体,季铵盐类离子液体等)结构及性质的理论研究则相对较少。这一研究现状既不利于人们全面了解离子液体的微观结构,又不利于离子液体构-效关系的建立,也影响了新型功能化离子液体的开发和应用。另外,人们对离子液体催化反应机理的认识仍不清晰,由此在一定程度上限制了新型高效离子液体催化剂的发展和应用。开展相关的理论研究是当今理论化学工作者面临的一项重要任务。
     本论文围绕几种性能优良的离子液体开展了一系列研究工作。一方面借助了量子化学和分子动力学模拟方法分别研究了典型二价离子液体和吡啶类离子液体的微观结构,探讨了结构对其本身物理化学性质的影响,为离子液体构-效关系的建立提供了有价值的信息。另一方面应用密度泛函方法研究了咪唑类离子液体和手性离子液体催化的几类重要有机合成反应,揭示其微观反应机制,弄清了离子液体催化行为和催化活性的本质,掌握了控制反应的关键因素,为定向设计、合成具有独特性能的功能化离子液体催化剂提供了一定的理论指导。本论文主要创新成果如下:
     1.研究了毗啶类离子液体[BPy]+[BF4]-和新型二价离子液体[(MIm)C3(MIm)](2+)[Br]-的离子对结构,给出了其稳定的几何结构和电子性质,探讨了阴阳离子间相互作用的本质,分析了离子液体结构与性质之间的内在联系,丰富了人们对离子液体微观结构的认知。
     用密度泛函方法详细地研究了典型吡啶类离子液体[BPy]+[BF4]-的几何构型,讨论了离子对各种可能构型间的相对稳定性,获得了阴离子在阳离子周围的优势取向,同时还对阴阳离子间的氢键相互作用进行了探讨,给出了氢键的分布及强度信息。研究发现[BPy]+[BF4]-离子液体离子对结构的相对稳定性由阴阳离子间的静电相互作用和氢键相互作用共同决定。
     对二价离子液体[(MIm)C3(MIm)]2+[Br]2-阳离子和离子对的几何和电子结构进行了详细地密度泛函理论研究。分析了阳离子及离子对的各种可能构型,发现在最稳定离子对结构中两个咪唑环之间存在π…π兀相互作用,这是影响[(MIm)C3(MIm)]2+[Br]-2离子对结构稳定性的重要因素。此外,本文还采用自然键轨道分析方法深入研究了阳离子及离子对结构中的电子离域情况,给出了咪唑环上氢原子酸性的相对强弱。同时应用前线分子轨道分析探讨了阴阳离子间的电子转移和相互作用的本质。结果表明:阴阳离子间相互作用表现为二价阳离子的69C-H和π‘轨道与Br-离子的pAO轨道间的相互作用,阴阳离子间的电荷转移主要借助二价阳离子的σ*C-H轨道与Br-离子的一个pAO轨道间的v相互作用。阴阳离子间较大的电子转移和较高的离子对稳定化能为二价离子液体的高熔点和高热稳定性提供了合理的解释。
     有关结果发表在J. Phys. Chem. A (2010,114,3990-3996)和J. Mol. Struct. (THEOCHEM) (2009,900,37-43)杂志上。
     2.采用分子动力学模拟方法深入分析[BPy]+[BF4]-离子液体的微观结构,以及H20对[BPy]+[BF4]-离子液体微观结构和动力学性质的影响,加深了人们对吡啶类离子液体微观结构的认识,探讨了H20与吡啶类离子液体二元混合物的构-效关系。
     在量子化学计算的基础上,选择了适合的力场与计算模型,对[BPy]+[BF4]-离子液体进行了分子动力学模拟。通过径向分布函数和空间分布函数分析发现,[BPy]+[BF4]-离子液体呈阴阳离子交替排列的长程有序结构,阴离子主要位于阳离子周围的第一配位层,其在阳离子周围的空间分布情况与量子化学计算所得结论一致,而阳离子主要位于给定阳离子周围第二配位层中阴离子在第一配位层中没有占据的区域。两吡啶阳离子间的排布方式以T型排列为主。阴阳离子间的氢键分布及强度信息通过分析[BPy]+阳离子上的H原子与[BF4]-阴离子中的F原子间的位-位径向分布函数获得。所得氢键强度趋势与密度泛函理论计算所得结论一致,但分子动力学模拟所得氢键强度均弱于密度泛函理论计算所得结果。
     [BPy]+[BF4]--H20混合体系的分子动力学模拟考察了不同含量的H20对[BPy]+[BF4]-离子液体微观结构及动力学性质的影响。由径向分布函数和空间分布函数分析可知,H2O的存在并没有改变[BPy]+[BF4]-离子液体的基本结构特征,以及阴阳离子间的氢键强度趋势。体积较小的H20分子位于给定阳离子周围的第一配位层,其在阳离子周围的分布区域与上述阴离子的分布区域基本一致,然而不如阴离子的分布区域广。阴离子占据阳离子周围的第二配位层。H20分子与离子液体中的阴离子距离更近,相互作用更强。随着H20含量的增加,阴、阳离子周围的H20分子数目增多,而阳离子或阴离子数目减少,阴阳离子间相互作用减弱,由此阳离子的旋转速度和阴阳离子的扩散程度也都随之增加,表明H20的存在能有效降低[BPy]+[BF4]-离子液体的粘度。
     有关结果发表在J.Phys.Chem.A(2010,114,3990-3996)杂志上。
     3.研究了咪唑类离子液体催化的Deils-Alder (D-A)反应、Markovnikov加成反应和CO2与环氧丙烷的环加成反应,揭示了其微观反应机制,弄清了离子液体中阴、阳离子催化行为和催化活性的本质,掌握了控制反应的关键因素。
     (1)系统地研究了[EEIm]+催化的环戊二烯与异丁烯醛的D-A反应,探索了催化剂缺乏和存在时D-A反应的四条可能路径,揭示了非催化反应与催化反应的机理细节,获得了有关反应的势能面轮廓。对比非催化与催化反应过程发现,[EEIm]+的存在不仅降低了反应的能垒,而且增加反应的异步性,但没有改变反应的势能面轮廓,非催化与催化反应都以协同机理进行,并且exo-cis为能量最低路径。结果表明,[EEIm]+在反应中作为弱Lewis酸来催化反应。
     有关结果发表在Inter. J. Quant. Chem.(2007,107(9),1875-1885)杂志上。
     (2)详细地研究了[BMIm]+[OH]-催化的咪唑与乙烯乙酸酯的Markovnikov加成反应,探讨了其反应机理,获得了势能面上各驻点的能量信息。结果表明:由于反应物乙烯乙酸酯构型的不同,反应可分别以分步和协同机理进行;这两个过程均系高放热反应;[BMIm]+[OH]-中的阴、阳离子在Markovnikov加成反应中都扮演了重要角色,其中[BMIm]+稳定了反应过程中生成的C负离子,而OH-夺取了咪唑上的N1-H氢原子,增强了咪唑的亲核能力。
     有关结果发表在J. Phys. Chem. A(2007,111,4535-4541)杂志上
     (3)以CO2和环氧丙烷为例,研究了在[R1MIm]+[C1]-(R1=Ethyl,Butyl,和Hexyl)存在下CO2与环氧化合物的环加成反应,探索了在离子液体缺乏和存在时环加成反应的可能路径,并获得了相应势能面轮廓,得出了一些有意义的结论。结果出示:在离子液体缺乏时,环加成反应可经由两条反应通道,均以协同机理进行,但其反应能垒高达59.71和55.10 kcal mol-1:而在离子液体存在时,环加成反应是一个多通道反应,可以通过至少五条反应路径进行,每一条路径包含两到三个基元步,并且决速步(均包含环氧丙烷的开环过程)的能垒比非催化反应的能垒降低了20-30 kcal mol-1。[EMIm]+[Cl]-的催化活性来源于阴、阳离子的协同作用,其中阳离子利用氢键稳定了中间体和过渡态,而阴离子亲核进攻环氧丙烷,使其开环过程更容易发生。
     有关结果发表在J. Phys. Chem. A(2007,111,8036-8043)杂志上。
     4.通过密度泛函理论计算,详细地研究了吡咯咪唑溴催化的环已酮和硝基苯乙烯间的Michael加成反应,揭示了其详细的微观反应机理,分析了酸性加成物对Michael加成反应活性的影响,明确了吡咯型手性离子液体在反应过程中所扮演的角色,并探讨了不对称Michael加成产物高立体选择性的原因。
     结果表明:此反应分两阶段进行,即烯胺形成阶段和Michael加成阶段;酸性加成物的存在改变了烯胺形成机理,降低了反应势垒,并使烯胺形成过程高度放热;吡咯型手性离子液体中的阴、阳离子联合推动反应的进行,其中Br-负离子作为质子接受体协助亚胺-烯胺互变过程中的质子转移,而阳离子通过静电和氢键相互作用稳定了C-C键形成过程中C原子上增长的负电荷;咪唑阳离子与硝基苯乙烯间氢键的形成,以及咪唑阳离子在烯胺Si-面的空间位阻导致了Michael加成产物高的立体选择性。
     有关结果发表在Chirality (Early View)杂志上。
In the past two decade, Ionic liquids (ILs), a new class of liquids that are entirely composed of ions, have been one of the most heated research topics in the academic and industrial fields. This is mainly attributed to their fascinating "green" characteristic, such as high thermal and chemical stability, nonflammability, nonvolatility and good reusability, which make ILs be widely recognized as environmentally friendly medium. Moreover, the designable characteristic is another important factor that is responsible for the unprecedented prosperity of ILs. Cations and anions constituting ILs can be optionally varied so that ILs can be designed technically to possess unique properties for special applications. So far, the applications of ILs have traversed many fields, including organic synthesis and catalysis, chemical separation, electrochemistry, and biochemistry, where they were widely used as solvents, reaction mediums, catalysts, and functional materials.
     Compared with the experimental researches on ILs, their theoretical studies are relatively laggard. Researchers paid much attention to investigating the structures, properties and structure-property relationships of ILs through the quantum chemistry calculations and molecular dynamics (MD) simulations. However, most of the theoretical studies in this area focused on imidazolium-based ILs, and the corresponding concern for other type of ILs, such as pyridinium- and aminophenol-based ILs, is relatively less. This situation is unfavorable to thoroughly knowing the microstructures of ILs, building up the perfect structure-property relationships of ILs, and developing new kind of task-specific ILs. Furthermore, theoretical studies of how ILs control desired reactions are very limited in contrast with their increasing applications as catalysts. This lack will prevent the understanding for the catalytic mechanism of ILs and the wide use of new IL catalysts with high performance. These indicate uniformly the further need for the theoretical researches on ILs.
     In this dissertation, a series of theoretical studies have been carried out for several kinds of ILs with excellent performance. On the one hand, by performing density functional theory (DFT) calculations and MD simulations, we have shown the microstructure details of typical pyridinium-based ILs and new dicationic ILs, and investigated the corresponding structure-property relationships. On the other hand, Our specific attention is focused on addressing the microscopic details on how ILs influence chemical reactivity and selectivity based on DFT calculations. The important and valuable results in this dissertation can be summarized as follows:
     1. DFT calculations have been carried out to investigate the ion pair structures of ILs [BPy]+[BF4]- and [(MIm)C3(MIm)]2+[Br]-2, the representatives of pyridinium-based ILs and geminal dicationic ILs. The stable geometries and electronic properties for the ion pairs are shown, and the intrinsic interactions between cations and anions are discussed. The present results may establish a basis for understanding the structures and properties of the two kinds of ILs.
     We studied the geometries of [BPy]+[BF4]- ion pair by mean of DFT method. The calculations show the relative stabilities between the different geometries of the isolated ion pair, from which the preferential localizations of [BF4]- anion around [BPy]+ cation are obtained. Moreover, the H-bond interactions between cation and anion are investigated, and the distribution and strength of H-bonds are shown. It is found that the relative stability for ion pair configurations is synergically determined by the electrostatic attractions and the H-bond interactions between the ions of opposite charge.
     Subsequently, DFT calculations were performed to investigate the geometrical and electronic structures of the dication and the ion pair in IL [(MIm)C3(MIm)]2+[Br]-2. The geometrical structures and relative stabilities for the dication and the ion pair are shown. It is found that there exist theπ…πstacking effect between two imidazole rings in the most stable ion pair structure, which play an important role for stabilizing the ion pair. Moreover, based on the natural bond orbital (NBO) analyses, the electronic delocalization in the dication and ion pair is discussed in detail, and the relative acidity of the H atoms on the imidazole ring is measured. The intrinsic interaction between the dication and Br- anions in the most stable conformer was studied by using frontier molecular orbital (FMO) analyses. The calculations show the interactions between the dication and Br- anions mainly occur between theσ* C-H andπ* orbitals of the dication moiety and one pAO of Br-anions, and the excessive electrons on Br- anions are transferred to the dication moiety mainly through the a-type interactions between one of the Br- pAOs and theσ* C-H orbitals. The great charge transfer and interaction energy between Br- anions and the dications offer support for the higher melting point and thermal stability of the dicationic ILs.
     The corresponding results have been published in J. Phys. Chem. A (2010,114, 3990-3996) and J. Mol. Struct. (THEOCHEM) (2009,900,37-43).
     2. MD simulations have been performed to deeply study the microstructure of IL [BPy]+[BF4]- and the influence of H2O on the microstructure and dynamic properties of IL [BPy]+[BF4]-. The calculated results bring about a better understanding of the microstructure of pyridinium-based ILs, and reveal the structure-property relationship for the binary system of pyridinium-based ILs with H2O to some extent.
     Based on the above DFT calculations, we choose reliable force field and computational modes to investigate the microstructure details of [BPy]+[BF4]- IL by performing MD simulation. The results show that [BPy]+[BF4]- IL represents strong long-range ordered structure with cations and anions alternately arranging. In the first coordination shell surrounding the cation, the favorable sites occupied by the anions from MD simulations are in good agreement with the findings from the DFT calculations. While the cations mainly lie in the next space that does not be occupied by anions in the first coordinate shell. Unlike the imidazolium-based ILs, T-shaped orientation plays a key role for the interaction between two pyridine rings. The H-bond details between the cations and anions is further shown by analyzing the site-site radial distribution functions (RDF) between the H atoms of [BPy]- cations and the negatively charged F atoms of [BF4]- anions. It is found that the H-bonds between the F atoms and the H atoms on the pyridine rings are stronger than those between the F atoms and the butyl chain H atoms, which is consistent to those observed in the DFT calculations. However, the strengths of the C-H…F H-bonds obtained from MD simulations are weaker than those found from the DFT calculations.
     MD simulation on the mixtures of [BPy]+[BF4]- IL with H2O was also performed to investigate how H2O influences the microstructure and dynamics properties of [BPy]+ [BF4]- IL. RDFs and spatial distribution functions analyses show that the presence of H2O does not change the basic structural characteristics of [BPy]+[BF4]-IL, as well as the trend of the H-bond strength between cations and anions. H2O molecules with small size are mainly located in the first coordination shell around the given cation, and their distribution areas surrounding the cation are similar to, but not as wide as, these high probability areas of anions around cations obtained above. Anions are distributed in the second coordination shell around the given cation. The interactions of H2O molecules with the anions are much stronger. With increasing the H2O content, the number of H2O molecules around the cations and anions increases, and the number for the ions of opposite charge decreases, which results in the reduction of the interaction between cations and anions. Moreover, the rotation of the cation and the diffusive motion of cations and anions accelerate with the increase of the H2O content, indicating the presence of H2O can efficiently reduce the viscosity of [BPy]+[BF4]-IL.
     The corresponding results have been published in J. Phys. Chem. A (2010,114, 3990-3996).
     3. We have launched a theoretical project of primary researches on the important organic synthesis reactions catalyzed by imidazolium-based ILs, such as Diels-Alder (D-A) reaction, Markovnikov addition and the cycloaddtion of CO2 with propylene oxide, by performing DFT calculations. These theoretical researches revealed the catalytic mechanism of imidazolium-based ILs, make clear the roles of cations and anions in imidazolium-based ILs played in the reactions, and mastered the key factor controlling the reactions.
     (1) We consider the D-A reaction of cyclopentadiene with methacrolein in the presence of diethylimidazolium salts as the first prototype of our systemic studies about important organic synthesis reactions catalyzed by imidazolium-based ILs. The calculations show the mechanism details of the D-A reaction with and without the dialkylimidazolium cation and the corresponding potential energy surface (PES) profiles. It was found that the diethylimidazolium cation acts as a Lewis acid centre to catalyze the D-A reaction, which decreases the barrier and increases the asynchronicity of the D-A reaction, but does not change the PES profile of the reaction compared to the non catalyzed processes. The effect of diethylimidazolium cation on the D-A reaction has been rationalized via performing the FMO analysis and NBO analysis.
     The corresponding results have been published in Inter. J. Quant. Chem. (2007, 107(9),1875-1885).
     (2) The Markovnikov addition of imidazole to vinyl acetate in the presence of the basic ionic liquid [BMIm]+[OH]-has been chosen as the second prototype of our systemic studies. Our DFT calculations have showed clearly the catalytic mechanism details of [BMIm]+[OH]-controlling the Markovnikov addition as a catalyst. It is found that the different vinyl acetate conformations result in two different reaction pathways (stepwise and concerted). The Markovnikov addition in the presence of [BMIm]+[OH]-is highly exothermic and exergonic. Both the cation and anion of [BMIm]+[OH]-play important roles in the Markovnikov addition, which decrease the barrier and increase the selectivity of Markovnikov addition. [BMIm]+stabilizes transition state via its coulombic attraction to C7 atom, while OH- deprives N1-proton of imidazole to strengthen its nucleophilic ability.
     The corresponding results have been published in J. Phys. Chem. A (2007,111, 4535-4541).
     (3) We studied the cycloaddition of CO2 with propylene oxide to synthesize five-membered cyclic carbonates in the absence and presence of [R1MIm]+[Cl]-(Ri=Ethyl, Butyl, and Hexyl) by performing DFT calculations. In the absence of [RiMIm]+[Cl]- the reaction proceeds via two possible channels (each of them involves one elementary step) and the corresponding barriers are found to be as high as 59.71 and 55.10 kcal mol-1. In the presence of [R1MIm]+[Cl]-there exist five possible reaction channels (each of them involves two or three elementary steps) and the barriers of the rate-determining steps are reduced to 27.93-38.05 kcal mol-1, clearly indicating that [R1MIm]+[Cl]- promotes the reaction via modifying the reaction mechanism and thereby remarkably decreases the barrier. The notable catalytic activity of [RiMIm]+[Cl]- may originate from the cooperative actions of the cation and anion, which stabilize the intermediates and transition states through the H-bond interaction and make the ring opening easier via the nucleophilic attack to propylene oxide, respectively.
     The corresponding results have been published in J. Phys. Chem. A (2007,111, 8036-8043).
     4. The Michael addition of cyclohexanone with trans-β-nitrostyrene catalyzed by pyrrolidine-imidazolium bromide, which represents a prototype of Chiral IL-promoted asymmetric syntheses, has been investigated by performing DFT calculations. We show the details of the mechanism and energetics, the influence of the acid additive on the reactivity, the functional role of the Chiral IL in the asymmetric addition, and the origin of good diastereoselectivity and high enantioselectivity of the Michael adduct. From the theoretical results, we provide a reasonable explanation for the experimental observations and reveal a valuable clue for the further Chiral IL design with high catalytic efficiency.
     It is found that the reaction proceeds via two stages, i.e. the initial enamine formation and the subsequent Michael addition. The calculations show that the presence of the acid additive changes the imine formation mechanism and lowers the reaction barrier, as well as, more importantly, makes the reaction become highly thermodynamically favored. It is also suggested that both the anion and cation of the Chiral IL synergically facilitate the reaction, which act as the proton acceptor in the imine-enamine tautomerism and the stabilizer of the negative charge in the C-C bond formation process, respectively. By comparison of the C-C bond forming processes in the absence and presence of Br- anion, we found that the intermolecular H-bonds between the imidazolium cation and the nitro group of trans-β-nitrostyrene and the steric hindrance of the imidazolium cation moiety on the Si-face of enamine dominate the stereoselectivity of the Michael addition. The corresponding results have been published in Chirality (Early View).
引文
[1]Seddon, K. R. Ionic Liquids for Clean Technology. J. Chem. Tech. Biotechnol. 1997,68,351-356.
    [2]Earle, M. J.; Seddon, K. R. Ionic Liquids. Green Solvents for the Future. Pure Appl. Chem.2000,72,1391-1398.
    [3]Walden, P. Molecular Weights and Electrical Conductivity of Several Fused Salts. Bull. Acad. Imper. Sci. (St. Petersburg) 1914,8,405-422.
    [4]Hurley, F. H.; Wier, T. P. Jr. Electrodeposition of Metals from Fused Quaternary Ammonium Salts. J. Electrochem. Soc.1951,98,203-206.
    [5]Hurley, F. H.; Wier, T. P. Jr. The Electrodeposition of Aluminum from Nonaqueous Solutions at Room Temperature. J. Electrochem. Soc.1951,98,207-212.
    [6]King, L. A.; Brown, A. D.; Frayer, F. H. Proceedings OAR Research Applications Conference, March 1968, J-1-J-16.
    [7]Wilkes, J. S.; Levisky, L. A.; Wilson, R. A. Dialkylimidazolium Chloroaluminate Melts:A New Class of Room-temperature Ionic Liquids for Electrochemistry, Spectroscopy and Synthesis. Inorg. Chem.1982,21,1263-1264.
    [8]Fannin, Jr., A. A.; Floreani, D. A.; King, L. A.; Landers, J. S.; Piersma, B. J.; Stech, D. J.; Vaughn, R. L.; Wilkes, J. S.; Williams, J. L. Properties of 1,3-Dialkylimidazolium Chloride-Aluminum Chloride Ionic Liquids.2. Phase Transitions, Densities, Electrical Conductivities, and Viscosities. J. Phys. Chem.1984, 88,2614-2621.
    [9]Boon, J. A.; Levisky, J. A.; Pflug, J. L.; Wilkes, J. S. Friedel-Crafts Reactions in Ambient-temperature Molten Salts. J. Org. Chem.1986,51,480-483.
    [10]Wilkes, J. S.; Zaworotko, M. J. Air and Water Stable 1-ethyl-3-methyl-imidazolium Based Ionic Liquids. J. Chem. Soc., Chem. Commun.1992,965-967.
    [11]Fei, Z.; Geldbach, T. J.; Zhao, D.; Dyson, P. J. From Dysfunction to Bis-function: On the Design and Applications of Functionalised Ionic Liquids. Chem. Eur. J.2006, 12,2122-2130.
    [12]Visser, A. E.;Swatloski, R. P.; Reichert, W. M.; Davis, Jr., J. H.; Rogers, R. D.; Mayton, R.; Sheff, S.; Wierzbicki, A. Task-specific Ionic Liquids for the Extraction of Metal Ions from Aqueous Solutions. Chem. Commun.2001,135-136.
    [13]Fukumoto, K.; Yoshizawa, M.; Ohno, H. Room Temperature Ionic Liquids from 20 Natural Amino Acids. J. Am. Chem. Soc.2005,127,2398-2399.
    [14]Luo, S. Z.; Mi, X. L.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J. P. Functionalized Chiral Ionic Liquids as Highly Efficient Asymmetric Organocatalysts for Michael Addition to Nitroolefins. Angew. Chem. Int. Ed. 2006,45,3093-3097.
    [15]Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev.1999,99,2071-2083.
    [16]Endres, F.; Abedin, S. Z. E. Air and Water Stable Ionic Liquids in Physical Chemistry. Phys. Chem. Chem. Phys.2006,8,2101-2116.
    [17]Ruther, T.; Huynh, T. D.; Huang, J.; Hollenkamp, A. F.; Salter, E. A.; Wierzbicki, A.; Mattson, K.; Lewis, A.; Davis Jr., J. H. Stable Cycling of Lithium Batteries Using Novel Boronium-Cation-Based Ionic Liquid Electrolytes. Chem. Mater.2010,22, 1038-1045.
    [18]Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Use of Task-Specific Ionic Liquid for Selective Electrocatalytic Fluorination. Org. Lett.2010,12,644-646.
    [19]Ohno, H. Electrochemical Aspects of Ionic Liquids. Hoboken, HJ:John Wiley & Sons, Inc.; 2005.
    [20]Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Ionic-liquid materials for the electrochemical challenges of the future. Nat. Mater.2009,8, 621-629.
    [21]Sheldon, R. Catalytic Reactions in Ionic Liquids. Chem. Commun.2001, 2399-2407.
    [22]Zhao, D.; Wu, M.; Kou, Y.; Min, E. Ionic Liquids:Applications in Catalysis. Catal. Today,2002,74,157-189.
    [23]Olivier-Bourbigou, H.; Magna, L. Ionic Liquids:Perspectives for Organic and Catalytic Reactions.J. Mol. Catal. A:Chem.2002,182-183,419-437.
    [24]Wasserscheid, P., Welton, T., Eds. Ionic Liquids in Synthesis. Wiley-VCH: Weinheim, Germany,2003.
    [25]Parvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev.2007,107, 2615-2665.
    [26]Rogers, R. D.; Seddon, K. R. Ionic Liquids-Solvents of the Future? Science, 2003,302,792-793.
    [27]Park, D. W.; Mun, N. Y.; Kim, K. H.; Kim, I.; Park, S. W. Addition of Carbon Dioxide to Allyl Glycidyl Ether Using Ionic Liquids Catalysts. Catal. Today,2006, 115,130-133.
    [28]Dupont, J.; Fonseca, G. S.; Umpierre, A. P.; Fichtner, P. F. P.; Teixeira, S. R. Transition-Metal Nanoparticles in Imidazolium Ionic Liquids:Recycable Catalysts for Biphasic Hydrogenation Reactions. J. Am. Chem. Soc.2002,124,4228-4229.
    [29]Ott, L. S.; Finke, R. G. Transition-metal Nanocluster Stabilization for Catalysis: A Critical Review of Ranking Methods and Putative stabilizers. Coordination Chem. Rev.2007,251,1075-1100.
    [30]Xu, Y. P.; Tian, Z. J.; Wang, S. J. Microwave-enhanced Ionothermal Synthesis of Aluminophosphates Molecular Sieves. Angew. Chem. Int. Ed.2006,45,3965-3970.
    [31]Kramer, J.; Redel, E.; Thomann, R.; Janiak, C. Use of Ionic Liquids for the Synthesis of Iron, Ruthenium, and Osmium Nanoparticles from Their Metal Carbonyl Precursors. Organometallics,2008,27,1976-1978.
    [32]Kim, K. S.; Demberelnyamba, D.; Lee, H. Size-selective Synthesis of Gold and Platinum Nanoparticles Using Novel Thiol-functionalized Ionic Liquids. Langmuir, 2004,20,556-560.
    [33]Fukushima, T.; Kosaka, A.; Ishimura, Y; Yamamoto, T.; Takigawa, T; Ishii, N.; Aida, T. Molecular ordering of organic molten salts triggered by single-walled carbon nanotubes. Science,2003,300(5628),2072-2074.
    [34]Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Room Temperature Ionic Liquids as Novel Media for'Clean'Liquid-liquid Extraction. Chem. Commun.1998,1765-1766.
    [35]Han, X. X.; Armstrong, D. W. Ionic Liquids in Separations. Acc. Chem. Res. 2007,40,1079-1086.
    [36]Shamsi, S. A.; Danielson, N. D. Utility of Ionic Liquids in Analytical Separations. J. Sep. Sci.2007,30,1729-1750.
    [37]Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Dissolution of Cellulose with Ionic Liquids. J. Am. Chem. Soc.2002,124,4974-4975.
    [38]Murugesan, S.; Linhardt, R. J. Ionic Liquids in Carbohydrate Chemistry Current Trends and Future Directions. Curr. Org. Syn.2005,2,437-451.
    [39]Zhu, S.; Wu, Y.; Chen, Q.; Yu, Z.; Wang, C. W.; Jin, S.; Ding, Y.; Wu, G. Dissolution of Cellulose with Ionic Liquids and Its Application:A Mini-review. Green Chem.2006,8,325-327.
    [40]Seoud, O. A. E.; Koschella, A.; Fidale, L. C.; Dorn, S.; Heinze, T. Applications of Ionic Liquids in Carbohydrate Chemistry:A Window of Opportunities. Biomacromolecules,2007,8,2629-2646.
    [41]Feng, L.; Chen, Z. Research Progress on Dissolution and Functional Modification of Cellulose in Ionic Liquids. J. Mol. Liq.2008,142,1-5.
    [42]Pinkert, A.; Marsh, K. N.; Pang, S.; Staiger, M. P. Ionic Liquids and Their Interaction with Cellulose. Chem. Rev.2009,109,6712-6728.
    [43]Kragl, U.; Eckstein, M.; Kaftzik, N. Enzyme Catalysis in Ionic Liquids. Curr. Opin. Biotechnol.2002,13,565-571.
    [44]Zhao, H. Effect of Ions and Other Compatible Solutes on Enzyme Activity, and Its Implication for Biocatalysis Using Ionic Liquids. J. Mol. Catal. B:Enzym.2005, 37,16-25.
    [45]Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Chemical and Biochemical Transformations in Ionic Liquids. Tetrahedron,2005,61,1015-1060.
    [46]Fujita, K.; MacFarlane, D. R.; Forsyth, M. Protein Solubilising and Stabilising Ionic Liquids. Chem. Commun.2005,4804-4806.
    [47]Feher, E.; Major, B.; Belafi-Bako, K.; Gubicza, L. On the Background of Enhanced Stability and Reusability of Enzymes in Ionic Liquids. Bio. Soc. Trans. 2007,35,1624-1627.
    [48]Rantwijk, F. V.; Sheldon, R. A. Biocatalysis in Ionic Liquids. Chem. Rev.2007, 107,2757-2785.
    [49]Kaar, J. L.; Jesionowski, A. M.; Berberich, J. A.; Moulton, R.; Russell, A. J. Impact of Ionic Liquid Physical Properties on Lipase Activity and Stability. J. Am. Chem. Soc.2003,125,4125-4131.
    [50]Shan, H.; Li, Z.; Li, M; Ren, G.; Fang, Y. Improved Activity and Stability of Pseudomonas Capaci Lipase in a Novel Biocompatible Ionic Liquid, 1-isobutyl-3-methylimidazolium hexafluorophosphate. J. Chem. Technol. Biotechnol. 2008,83,886-891.
    [51]Turner, E. A.; Pye, C. C.; Singer, R. D. Use of ab Initio Calculations toward the Rational Design of Room Temperature Ionic Liquid. J. Phys. Chem. A 2003,107, 2277-2288.
    [52]Tsuzuki, S.; Tokuda, H.; Hayamizu, K.; Watanabe, M. Magnitude and Directionality of Interaction in Ion Pairs of Ionic Liquids:Relationship with Ionic Conductivity. J. Phys. Chem. B 2005,109,16474-16481.
    [53]Hunt, P. A.; Gould, I. R. Structural Characterization of the 1-Butyl-3-methylimidazolium Chloride Ion Pair Using ab Initio Methods. J. Phys. Chem. A 2006,110,2269-2282.
    [54]Hunt, P. A.; Kirchner, B.; Welton, T. Characterising the Electronic Structure of Ionic Liquids:An Examination of the 1-Butyl-3-Methylimidazolium Chloride Ion Pair. Chem. Eur. J.2006,12,6762-6775.
    [55]Wang, Y.; Li, H.; Han, S. A Theoretical Investigation of the Interaction between Water Molecules and Ionic Liquids. J. Phys. Chem. B 2006,110,24646-24651.
    [56]Prasad, B. R.; Senapati, S. Explaining the Differential Solubility of Flue Gas Components in Ionic Liquids from First-Principle Calculations. J. Phys. Chem. B 2009,113,4739-4743.
    [57]Lopes, J. N. C; Deschamaps, J.; Padua, A. A. H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field. J. Phys. Chem. B 2004,108,2038-2047.
    [58]Lopes, J. N. C.; Deschamaps, J.; Padua, A. A. H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field (Additions and Corrections). J. Phys. Chem. B 2004, 108,11250.
    [59]Lopes, J. N. C.; Padua, A. A. H. Molecular Force Field for Ionic Liquids Composed of Triflate of Bistriflylimide Anions. J. Phys. Chem. B 2004,108, 16893-16898.
    [60]Lopes, J. N. C.; Padua, A. A. H. Using Spectroscopic Data on Imidazolium Cation Conformations to Test a Molecular Force Field for Ionic Liquids. J. Phys. Chem.B 2006,110,7485-7489.
    [61]Lopes, J. N. C.; Padua, A. A. H. Molecular Force Field for Ionic Liquids III: Imidazolium, Pyridinium, and Phosphonium Cations; Chloride, Bromide, and Dicyanamide Anions. J. Phys. Chem. B 2006,110,19586-19592.
    [62]Liu, Z.; Huang, S.; Wang, W. A Refined Force Field for Molecular Simulation of Imidazolium-Based Ionic Liquids. J. Phys. Chem. B 2004,108,12978-12989.
    [63]Liu, X.; Zhang, S.; Zhou, G.; Wu, G.; Yuan, X.; Yao, X. New Force Field for Molecular Simulation of Guanidinium-Based Ionic Liquids. J. Phys. Chem. B 2006, 110,12062-12071.
    [64]Liu, X.; Zhou, G.; Zhang, S.; Wu, G.; Yu, G. Molecular Simulation of Guanidinium-Based Ionic Liquids. J. Phys. Chem. B 2007,111,5658-5668.
    [65]Zhou, G.; Liu, X.; Zhang, S.; Wu, G.; Yu, G.; He, H. A Force Field for Molecular Simulation of Tetrabutylphosphonium Amino Acid Ionic Liquids. J. Phys. Chem. B 2007,111,7078-7084.
    [66]Yan, T.; Burnham, C. J.; Popolo, M. G. D.; Voth, G. A. Molecular Dynamics Simulation of Ionic Liquids:The Effect of Electronic Polarizability. J. Phys. Chem. B, 2004,108,11877-11881.
    [67]Youngs, T. G. A.; Popolo, M. G. D.; Kohanoff, J. Development of Complex Classical Force Fields through Force Matching to ab Initio Data:Application to a Room-Temperature Ionic Liquid. J. Phys. Chem.B 2006,110,5697-5707.
    [68]Qiao, B. F.; Krekeler, C.; Berger, R.; Site, L. D.; Holm, C. Effect of Anions on Static Orientational Correlations, Hydrogen Bonds, and Dynamics in Ionic Liquids:A Simulational Study. J. Phys. Chem. B 2008,112,1743-1751.
    [69]Dong, K.; Zhou, G. H.; Liu, X. M.; Yao, X.; Zhang, S. Structural Evidence for the Ordered Crystallites of Ionic Liquid in Confined Carbon Nanotubes. J. Phys. Chem. C 2009,113,10013-10020.
    [70]蒲敏,刘坤辉,李会英,陈标华,DFT法研究离子液中EMIM+催化丁烯双键异构反应机理,物理化学学报,2004,20,826-830.
    [71]蒲敏,陈标华,李会英,刘坤辉,DFT法研究离子液中EMIM+催化丁烯双键异构反应机理(Ⅱ),物理化学学报,2005,21,383-387.
    [72]Acevedo, O.; Jorgensen, W. L.; Evanseck, J. D. Elucidation of Rate Variations for a Diels-Alder Reaction in Ionic Liquids from QM/MM Simulation. J. Chem. Theory Comput.2007,3,132-138.
    [73]Chiappe, C.; Malvaldi, M.; Pomelli, C. S. Ab Initio Study of the Diels-Alder Reaction of Cyclopentadiene with Acrolein in a Ionic Liquid by KS-DFT/3D-RISM-KH Theory. J. Chem. Theory Comput.2010,6,179-183.
    [74]Bessac, F.; Maseras, F. DFT Modeling of Reactivity in an Ionic Liquid:How Many Ion Pairs? J. Comput. Chem.2007,29,892-899.
    [75]Wei, X.; Zhang, D.; Zhang, C.; Liu, C. Theoretical Study of the Michael Addition of Acetylacetone to Methyl Vinyl Ketone Catalyzed by the Ionic Liquid 1-Butyl-3Methylimidazolium Hydroxide. Inter. J. Quant. Chem.2009,110, 1056-1062.
    [1]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法.北京:科学出版社,1985.
    [2]Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev.1964,136, B864-B871.
    [3]Kohn, W.; Sham, L. J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev.1965,140, A1133-A1138.
    [4]Becke, A. D. Density-functional Exchange-energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A 1988,38,3098-3100.
    [5]Perdew, J. P.; Chevary, J. A.; Vosko, S. H.; Jackson, K. A.; Pederson, M. R.; Singh, D. J.; Fiolhais, C. Atoms, Molecules, Solids, and Surfaces:Applications of the Generalized Gradient Approximation for Exchange and Correlation. Phys. Rev. B 1992,46,6671-6687.
    [6]Perdew, J. P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-Correlation Hole of a Many-Electron System. Phys. Rev. B 1993,48, 16533-16539.
    [7]Lee, C.; Yang, W.; Parr, R. G. Development of the Colle-Salvetti Correlation-Energy Formula into A Functional of the Electron Density. Phys. Rev. B 1988,37,785-789.
    [8]Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Results Obtained with the Correlation Energy Densiy Functionals of Becke and Lee, Yang and Parr. Chem. Phys. Lett.1989, 157,200-206.
    [9]Becke, A. D. Density Functional Thermochemistry. Ⅲ. The Role of Exact Exchange. J. Chem. Phys.1993,98,5648-5652.
    [10]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.:Wallingford CT,2004.
    [11]Schlegel, H. B. Optimization of Equilibrium Geometries and Transition Structures. J. Comp. Chem.1982,3,214-218.
    [12]Peng, C.; Ayala, P. Y.; Schlegel, H. B.; Frisch, M. J. Using Redundant Internal Coordinates to Optimize Equilibrium Geometries and Transition States. J. Comp. Chem.1996,17,49-56.
    [13]Reed, A.E.; Curtiss, L.A.; Weinhold, F. Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem. Rev.1988,88,899-926.
    [14]Jensen, F. Introduction to Computational Chemistry. JOHNWILEY & SONS, 1999.
    [15]Reed, A.E.; Weinhold, F. Natural Bond Orbital Analysis of near-Hartree-Fock Water Dimmer. J. Chem. Phys.1983,78,4066-4073.
    [16]Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys.1985,83,735-746.
    [17]Carpenter, J. E.; Weinhold, F. Analysis of the Geometry of the Hydroxymethyl Radical by the "Different Hybrids for Different Spins" Natural Bond Orbital Procedure. J. Mol. Struct. (Theochem) 1988,169,41-62.
    [18]Lopes, J. N. C.; Deschamaps, J.; Padua, A. A. H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field. J. Phys. Chem. B 2004,108,2038-2047.
    [19]Lopes, J. N. C.; Deschamaps, J.; Padua, A. A. H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field (Additions and Corrections). J. Phys. Chem. B 2004, 108,11250.
    [20]Lopes, J. N. C.; Padua, A. A. H. Molecular Force Field for Ionic Liquids Composed of Triflate of Bistriflylimide Anions. J. Phys. Chem. B 2004,108, 16893-16898.
    [21]Lopes, J. N. C.; Padua, A. A. H. Using Spectroscopic Data on Imidazolium Cation Conformations to Test a Molecular Force Field for Ionic Liquids. J. Phys. Chem. B 2006,110,7485-7489.
    [22]Lopes, J. N. C.; Padua, A. A. H. Molecular Force Field for Ionic Liquids III: Imidazolium, Pyridinium, and Phosphonium Cations; Chloride, Bromide, and Dicyanamide Anions. J. Phys. Chem. B 2006,110,19586-19592.
    [23]Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids.J.Am. Chem. Soc.1996,118,11225-11236.
    [24]Rizzo, R. C.; Jorgensen, W. L. OPLS All-Atom Model for Amines:Resolution of the Amine Hydration Problem. J. Am. Chem. Soc.1999,121,4827-4836.
    [25]Kaminski, G. A.; Friesner, R. A.; Tirado-Rives, J.; Jorgensen, W. L. Evaluation and Reparametrization of the OPLS-AA Force Field for Proteins via Comparison with Accurate Quantum Chemical Calculations on Peptides. J. Phys. Chem. B 2001,105, 6474-6487.
    [26]van Gunsteren, W. F.; Berendsen, H. J. C. A Leap-frog Algorithm for Stochastic Dynamics. Mol. Sim.1988,1,173-185.
    [27]Del Popolo, M. G.; Voth, G. A. On the Structure and Dynamics of Ionic Liquids. J. Phys. Chem. B 2004,108,1744-1752.
    [28]Qiao, B.; Krekeler, C.; Berger, R.; Site, L. D.; Holm, C. Effect of Anions on Static Orientational Correlations, Hydrogen Bonds, and Dynamics in Ionic Liquids:A Simulational Study.J. Phys. Chem. B 2008,112,1743-1751.
    [1]Turner, E. A.; Pye, C. C.; Singer, R. D. Use of ab Initio Calculations toward the Rational Design of Room Temperature Ionic Liquid. J. Phys. Chem. A 2003,107, 2277-2288.
    [2]Wang, Y.; Li, H. R.; Han, S. J. Structure and Conformation Properties of 1-alkyl-3-methylimidazolium Halide Ionic Liquids:A Density-Functional Theory Study. J Chem. Phys.2005,123,174501-174511.
    [3]Hunt, P. A.; Kirchner, B.; Welton, T. Characterising the Electronic Structure of Ionic Liquids:An Examination of the 1-Butyl-3-Methylimidazolium Chloride Ion Pair. Chem. Eur. J.2006,12,6762-6775.
    [4]Hunt, P. A.; Gould, I. R. Structural Characterization of the 1-Butyl-3-methylimidazolium Chloride Ion Pair Using ab Initio Methods. J. Phys. Chem. A 2006,110,2269-2282.
    [5]Zhang, L.; Li, H. R.; Wang, Y.; Hu, X. B. Characterizing the Structural Properties of N,N-Dimethulformamide-Based Ionic Liquid:Density-Functional Study. J. Phys. Chem. B 2007,111,11016-11020.
    [6]Xiao, Y.; Malhotra, S. V. Diels-Alder Reactions in Pyridinium Based Ionic Liquids. Tetrahedron Lett.2004,45,8339-8342.
    [7]Xiao, Y.; Malhotra, S. V. Friedel-Crafts Alkylation Reactions in Pyridinium-Based Ionic Liquids. J. Mol. Cata. A:Chem.2005,230,129-133.
    [8]Gao, H. S.; Luo, M. F.; Xing, J. M.; Wu, Y.; Li, Y G.; Li, W. L.; Liu, Q. F.; Liu, H. Z.Desulfurization of Fuel by Extraction with Pyridinium-Based Ionic Liquids. Ind. Eng. Chem. Res.2008,47,8384-8388.
    [9]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin. A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.:Wallingford CT,2004.
    [10]Resende Prado, C. E.; Del Popolo, M. G.; Youngs, T. G. A.; Kohanoff, J.; Lynden-Bell, R. M. Molecular Electrostatic Properties of Ions in an Ionic Liquid. Mol. Phys.2006,104,2477-2483.
    [11]Bagno, A.; D'Amico, F.; Saielli, G. Computing the NMR Spectrum of a Bulk Ionic Liquid Phase by QM/MM Methods. J. Phys. Chem. B 2006,110,23004-23006.
    [12]Malvaldi, M.; Bruzzone, S.; Chiappe, C.; Gusarov, S.; Kovalenkov, A. Ab Initio Study of Ionic Liquids by KS-DFT/3D-RISM-KH Theory. J. Phys. Chem. B 2009, 113,3536-3542.
    [13]朱学英,张冬菊,刘成卜,N-烷基吡啶阳离子及其与若干阴离子形成的离子对结构的理论研究.化学学报,2007,23,2701-2706.
    [14]Tsuzuki, S.; Tokuda, H.; Hayamizu, K.; Watanabe, M. Magnitude and Directionality of Interaction in Ion Pairs of Ionic Liquids:Relationship with Ionic Conductivity. J. Phys. Chem.B 2005,109,16474-16481.
    [15]Dong, K.; Zhang, S. J.; Wang, D. X.; Yao, X. Q. Hydrogen Bonds in Imidazolium Ionic Liquids. J. Phys. Chem. A 2006,110,9775-9782.
    [16]Bondi, A. van der Waals Volumes and Radii. J. Phys. Chem.1964,68,441-451.
    [17]Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed.2002, 41,48-76.
    [18]Wasserscheid, P.; Welton, T. (eds.) Ionic Liquids in Synthesis. Wiley-VCH: Weinheim,2003.
    [19]Welton, T. Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis. Chem. Rev.1999,99,2071-2083.
    [20]Wasserscheid, P.; Wilhelm, K. Ionic Liquids-New "Solutions" for Transition Metal Catalysis. Angew. Chem. Int. Ed.2000,39,3772-3789.
    [21]Sheldon, R. Catalytic Reactions in Ionic Liquids. Chem. Commun.2001, 2399-2407.
    [22]Zhao, D. B.; Wu, M.; Kou, Y.; Min, E. Z. Ionic Liquids:Applications in Catalysis. Catal. Today 2002,74,157-189.
    [23]Parvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev.2007,107, 2615-2665.
    [24]Huddleston, J. G.; Willauer, H. D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Room Temperature Ionic Liquids as Novel Media for'Clean'Liquid-liquid Extraction. Chem. Commun.1998,1765-1766.
    [25]Han, X. X.; Armstrong, D. W. Ionic Liquids in Separations. Acc. Chem. Res. 2007,40,1079-1086.
    [26]Ohno, H. (eds.) Electrochemical Aspects of Ionic Liquids. John Wiley & Sons, Inc.:Hoboken,NJ,2005.
    [27]De Souza, R. F.; Padilha, J. C.; Goncalves, R. S.; Dupont, J. Room Temperature Dialylimidazolium Ionic Liquid-Based Fuel Cells. Electrochem. Commun.2003,5, 728-731.
    [28]Wang, P.; Zakeeruddin, S. M.; Comte, P.; Exnar, I.; Gratzel, M. Gelation of Ionic Liquid-Based Electrolytes with Silica Nanoparticles for Quasi-Solid-State Dye-Sensitized Solar Cells. J. Am. Chem. Soc.2003,125,1166-1167.
    [29]Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Chemical and Biochemical Transformations in Ionic Liquids. Tetrahedron 2005,61,1015-1060.
    [30]Rantwijk, F. V.; Sheldon, R. A. Biocatalysis in Ionic Liquids. Chem. Rev.2007, 107,2757-2785.
    [31]Anderson, J. L.; Ding, R. F.; Ellern, A.; Armstrong, D. W. Structure and Properties of High Stability Geminal Dicationic Ionic Liquids. J. Am. Chem. Soc. 2005,127,593-604.
    [32]Jin, C. M.; Ye, C. F.; Phillips, B. S.; Zabinski, J. S.; Liu, X. Q.; Liu, W. M.; Shreeve, J. M. Polyethylene Glycol Functionalized Dicationic Ionic Liquids with Alkyl or Polyfluoroalkyl Substituents as High Temperature Lubricants. J. Mater. Chem.2006,16,1529-1535.
    [33]Han, X. X.; Armstrong, D. W. Using Geminal Dicationic Ionic Liquids as Solvents for High-Temperature Organic Reactions. Org. Lett.2005,7,4205-4208.
    [34]Xiao, J. C.; Shreeve, J. M. Synthesis of 2,2'-Biimidazolium-Based Ionic Liquids: Use as a New Reaction Medium and Ligand for Palladium-Catalyzed Suzuki Cross-Coupling Reactions. J. Org. Chem.2005,70,3072-3078.
    [35]Wang, R. H.; Jin, C. M.; Twamley, B.; Shreeve, J. M. Syntheses and Characterization of Unsymmetric Dicationic Salts Incorporating Imidazolium and Triazolium Functionalities. Inorg. Chem.2006,45,6396-6403.
    [36]Liu, Q. B.; Rantwijk, F. v. R.; Sheldon, R. A. Synthesis and Application of Dicationic Ionic Liquids. J. Chem. Technol. Biotechnol.2006,81,401-405.
    [37]Ding, Y. S.; Zha, M.; Zhang, J.; Wang, S. S. Synthesis, Characterization and Properties of Geminal Imidazolium Ionic Liquids. Colloids and Surfaces A: Physicochem. Eng. Aspects 2007,298,201-205.
    [38]Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys.1985,83,735-746.
    [39]Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev.1988,88,899-926.
    [40]London, F. J. Phys. Radium 1937,8,3974-3976.
    [41]Ditchfield, R. Self-Consistent Perturbation Theory of Diamagnetism. Mol. Phys. 1974,27,789-807.
    [42]Wolinski, K.; Himton, J. F.; Pulay, P. Efficient Implementation of the Gauge-Independent Atomic Orbital Method for NMR Chemical Shift Calculations. J. Am. Chem. Soc.1990,112,8251-8260.
    [43]Crowhurst, L.; Mawdsley, P. R.; Perez-Arlandis, J. M.; Slater,, P. A.; Welton, T. Solvent-Solute Interactions in Ionic Liquids. Phys. Chem. Chem. Phys.2003,5, 2790-2794.
    [44]Avent, A. G.; Chaloner, P. A.; Day, M. P.; Seddon, K. R.; Welton, T. Evidence for Hydrogen Bonding in Solutions of 1-ethyl-3-methylimidazolium Halides, and its Implications for Room-Temperature Halogenoaluminate (Ⅲ) Ionic Liquids. J. Chem. Soc. Dalton Trans.1994,3405-3413.
    [45]Huang, J. F.; Chen, P. Y.; Sun, I. W.; Wang, S. P. NMR Evidence of Hydrogen Bonding in 1-ethyl-3-methylimidazolium-Tetrafluoroborate Room Temperature Ionic Liquid. Inorganica Chimica Acta,2001,320,7-11.
    [46]Wang, Y.; Li, H. R.; Han, S. J. Structure and Conformation Properties of 1-alkyl-3-methylimidazolium Halide Ionic Liquids:A Density-Functional Theory Study. J. Chem. Phys.2005,123,174501-174511.
    [47]Hunt, P. A.; Gould, I. R. Structural Characterization of the 1-Butyl-3-methylimidazolium Chloride Ion Pair Using ab Initio Methods. J. Phys. Chem. A 2006,110,2269-2282.
    [48]Holbrey, J. D.; Reichert, W. M.; Nieuwenhuyzen, M.; Johnston, S.; Seddon, K. R.; Rogers, R. D. Crystal Polymorphism in 1-butyl-3-methylimidazolium Halides: Supporting Ionic Liquid Formation by Inhibition of Crystalization. Chem. Commun. 2003,1636-1637.
    [49]Saha, S.; Hayashi, S.; Kobayashi, A.; Hamaguchi, H. Crystal Structure of 1-butyl-3-methylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure. Chem. Lett.2003,32,740-741.
    [50]Steiner, T. The Hydrogen Bond in the Solid State. Angew. Chem. Int. Ed.2002, 41,48-76.
    [1]Berendsen, H. J. C.; van der Spoel, D.; van Drunen, R. Gromacs:A Message-Passing Parallel Molecular Dynamics Implementation. Comput. Phys. Commun.1995,91,43-56.
    [2]Lindahl, E.; Hess, B.; van der Spoel, D. Gromacs 3.0:A Package for Molecular Simulation and Trajectory Analysis. J. Mol. Mod.2001,7,306-317.
    [3]Lopes, J. N. C.; Deschamaps, J.; Padua, A. A. H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field. J. Phys. Chem. B 2004,108,2038-2047.
    [4]Lopes, J. N. C.; Deschamaps, J.; Padua, A. A. H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field (Additions and Corrections). J. Phys. Chem. B 2004, 108,11250.
    [5]Lopes, J. N. C.; Padua, A. A. H. Molecular Force Field for Ionic Liquids Composed of Triflate of Bistriflylimide Anions. J. Phys. Chem. B 2004,108, 16893-16898.
    [6]Lopes, J. N. C.; Padua, A. A. H. Using Spectroscopic Data on Imidazolium Cation Conformations to Test a Molecular Force Field for Ionic Liquids. J. Phys. Chem. B 2006,110,7485-7489.
    [7]Lopes, J. N. C.; Padua, A. A. H. Molecular Force Field for Ionic Liquids III: Imidazolium, Pyridinium, and Phosphonium Cations; Chloride, Bromide, and Dicyanamide Anions. J. Phys. Chem.B 2006,110,19586-19592.
    [8]Zhang, S. J.; Sun, N.; He, X. Z.; Lu, X. M.; Zhang, X. P. Physical Properties of Ionic Liquids:Database and Evaluation. J. Phys. Chem. Ref. Data 2006,35, 1475-1517.
    [9]Darden, T.; York, D.; Pedersen, L. Particle Mesh Ewald:an N-log(N) Method for Ewald Sums in Large Systems. J. Chem. Phys.1993,98,10089-10092.
    [10]Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. A Smooth Particle Mesh Ewald Method. J. Chem. Phys.1995,103,8577-8593.
    [11]Levitt, M.; Hirshberg, M.; Sharon, R.; Daggett, V.Potential Energy Function and Parameters for Simulations of the Molecular Dynamics of Proteins and Nucleic Acids in Solution. Comput. Phys. Commun.1995,91,215-231.
    [12]Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. LINCS:A Linear Constraint Solver for Molecular Simulations. J. Comput. Chem.1997,18,1463-1472.
    [13]Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. R.; DiNola, A.; Haak, J. R. Molecular Dynamics with Coupling to an External Bath. J. Chem. Phys.1984,81, 3684-3690.
    [14]Del Popolo, M. G.; Voth, G. A. On the Structure and Dynamics of Ionic Liquids. J. Phys. Chem. B 2004,108,1744-1752.
    [15]Qiao, B. F.; Krekeler, C.; Berger, R.; Site, L. D.; Holm, C. Effect of Anions on Static Orientational Correlations, Hydrogen Bonds, and Dynamics in Ionic Liquids:A Simulational Study. J. Phys. Chem. B 2008,112,1743-1751.
    [16]Hoover, W. G. Canonical Dynamics:Equilibrium Phase-Space Distributions. Phys. Rev. A 1985,31,1695-1697.
    [17]Parrinello, M.; Rahman, A. Polymorphic Transitions in Single Crystals:a New Molecular Dynamics Method. J. Appl. Phys.1981,52,7182-7190.
    [18]Keblinski, P.; Eggebrecht, J.; Wolf, D.; Phillpot, S. R. Molecular Dynamics Study of Screening in Ionic Fluids. J. Chem. Phys.2000,113,282-291.
    [19]Waters, M. L. Aromatic Interactions in Model Systems. Curr. Opin. Chem. Biol. 2002,6,736-741.
    [20]Sony, S. M. M.; Ponnuswamy, M. N. Nature of π-Interactions in Nitrogen-Containing Heterocyclic Systems:a Structural Database Analysis. Cryst. Growth Des.2006,6,736-742.
    [21]Micaelo, N. M.; Baptista, A. M.; Soares, C. M. Parametrizaiton of 1-Butyl-3-methylimidazolium Hexafluorophosphate/Nitrate Ionic Liquid for the GROMOS Force Field. J. Phys. Chem. B 2006,110,14444-14451.
    [22]Mohanty, S.; Banerjee, T.; Mohanty, K. Quantum Chemical Based Screening of Ionic Liquids for the Extraction of Phenol from Aqueous Solution. Ind. Eng. Chem. Res.
    [23]Harada, M.; Kawasaki, C.; Saijo, K.; Demizu, M.; Kimura, Y. Potochemical Synthesis of Silver Particles using Water-in-ionic Liquid Microemulsions in High-pressure CO2. J. Colloid Interface Sci.2010,343,537-545.
    [24]Mikoshiba, S.; Murai, S.; Sumino, H.; Kado, T.; Kosugi, D.; Hayase, S. Ionic Liquid Type Dye-sensitized Solar Cells:Increases in Photovoltaic Performances by Adding a Small Amount of Water. Curr. Appl. Phys.2005,5,152-158.
    [25]Danten, Y.; Cabaco, M. I.; Besnard, M. Interaction of Water Diluted in 1-butyl-3-methyl Imdazolium Ionic Liquids by Vibrational Spectroscopy Modeling. J. Mol. Liq.
    [26]Freire, M. G.; Santos, L. M. N. B. F.; Fernandes, A. M.; Coutinho, J. A. P.; Marrucho, I. M. An Overview of the Mutual Solubilities of Water-Imidazolium Based Ionic Liquids Systems. Fluid Phase Equil.2007,261,449-454.
    [27]Garcia-Miaja, G.; Troncoso, J.; Romani, L. Excess Enthalpy, Density, and Heat Capacity for Binary Systems of Alkylimidazolium-based Ionic Liquids+Water. J. Chem. Thermodynamics.2009,41,161-166.
    [28]Wang, J. F.; Li, C. X.; Wang, Z. H.; Li, Z. J.; Jiang, Y. B. Vapor Pressure Measurement for Water, Methanol, Ethanol, and Their Binary Mixtures in the Presence of an Ionic Liquid 1-ethyl-3-methylimidazolium Dimethylphosphate. Fluid Phase Equil.2007,255,186-192.
    [29]Wong, D. S. H.; Chen, J. P.; Chang. J. M.; Chou, C. H. Phase Equilibria of Water and Ionic Liquids [emim][PF6] and [bmim][PF6]. Fluid Phase Equil.2002,194-197, 1089-1095.
    [30]Mokhtarani, B.; Sharifi, A.; Mortaheb, H. R.; Mirzaei, M.; Mafi, M.; Fatemeh, Sadeghian, F. Density and Viscosity of Pyridinium-based Ionic Liquids and Their Binary Mixtures with Water at Several Temperatures. J. Chem. Thermodynamics. 2009,41,323-329.
    [31]Noda, A.; Hayamizu, K.; Watanabe, M. Pulsed-Gradient Spin-Echo 1H and 19F NMR Ionic Diffusion Coeffecient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids. J. Phys. Chem. B 2001,105, 4603-4610.
    [1]Chiappe, C.; Pieraccini, D. Ionic Liquids:Solvent Properties and Organic Reactivity. J. Phys. Org. Chem.2005,18,275-297.
    [2]Seddon, K. R. Ionic Liquids for Clean Technology. J. Chem. Tech. Biotechnol. 1997,65,351-356.
    [3]Welton, T. Solvents for Synthesis and Catalysis. Chem. Rev.1999,99,2071-2083.
    [4]Boon, J. A.; Levisky, J. A.; Pflug, J. L.; Wilkes, J. S. Friedel-Crafts Reactions in Ambient-temperature Molten Salts. J. Org. Chem.1986,51,480-483.
    [5]彭家建,邓友全,离子液体体系中催化环已酮肟重排制已内酰胺。石油化工2001,30,91-92.
    [6]Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; De Souza, R. F.; Dupont, J. The Use of New Ionic Liquids in Two-Phase Catalytic Hydrogenation Reaction by Rhodium Complexes. Polyhedron,1996,15,1217-1219.
    [7]Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A.V. Aza-Michael Reactions in Ionic Liquids. A Facile Synthesis of β-Amino Compounds. Chem. Lett.2003,32, 988-989.
    [8]Wasserscheid, P.; Welton, T. (eds.) Ionic Liquids in Synthesis; Wiley-VCH: Weinheim,2003.
    [9]Howarth. J.; Hanlon, K.; Fayne, D.; McCormac, P. Moisture Stable Dialkylimidazolium Salts as Heterogeneous and Homogeneous Lewis Acid in the Diels-Alder Reaction. Tetrahedron Lett.1997,38,3097-3100.
    [10]Shen, H. Y.; Judeh, Z. M. A.; Ching, C. B. Selective Alkylation of Phenol with tert-butyl Alcohol Catalyzed by [bmim]PF6. Tetrahedron Lett.2003,44,981-983.
    [11]Jorapur, Y. R.; Lee, C. H.; Chi, D. Y. Mono-and Dialkylations of Pyrrole at C2 and C5 Positions by Nucleophilic Substitution Reaction in Ionic Liquids. Org. Lett. 2005,7,1231-1234.
    [12]Ranu. B. C.; Banerjee, S. Ionic Liquid as Reagent. A Green Procedure for the Regioselective Conversion of Epoxides to Vicinal-Halohydrins Using [AcMIm]X under Catalyst- and Solvent-Free Conditions. J. Org. Chem.2005,70,4517-4519.
    [13]Xu, J. M.; Liu, B. K.; Wu, W. B.; Qian, C.; Wu, Q.; Lin, X. F. Basic Ionic Liquid as Catalysis and Reaction Medium:A Novel and Green Protocol for the Markovnikov Addition of N-Heterocycles to Vinyl Esters, Using a Task-Specific Ionic Liquid, [bmIm]OH. J. Org. Chem.2006,71,3991-3993.
    [14]Park, D. W.; Mun, N. Y.; Kim, K. H.; Kim, I.; Park, S. W. Addition of Carbon Dioxide to Allyl Glycidyl Ether Using Ionic Liquids Catalysts. Catal. Today 2006, 115,130-133.
    [15]Kagan, H. B.; Riant, O. Catalytic Asymmetric Diels-Alder Reactions. Chem. Rev. 1992,92,1007-1019.
    [16]Kumar, A. Salt Effects on Diels-Alder Reaction Kinetics. Chem. Rev.2001,101, 1-19.
    [17]Kumar, A.; Pawar, S. S. AlCl3-catalysed Dimerization of 1,3-cyclopentadiene in the Chloroaluminate Room Temperature Ionic Liquid. J. Mol. Catal. A:Chem.,2004, 208,33-37.
    [18]Aversa, M. C.; Barattucci, A.; Bonaccorsi, P.; Giannetto, P.; Panzalorto, M.; Rizzo, S. Diels-Alder Reactions of (Rs)-3-[(1S)-isoborneol-10-sulfinyl]-1-methoxy-buta-1,3-dienes with Electron-deficient Carbodienophiles. The Effects of Lewis Acid Catalysis. Tetrahedron:Asymmetry,1998,9,1577-1587.
    [19]Otto, S.; Bertoncin, F.; Engberts, J. B. F. N. Lewis Acid Catalysis of a Diels-Alder Reaction in Water. J. Am. Chem. Soc.1996,118,7702-7707.
    [20]Kiesman, W. F.; Petter, R. C. Lewis-acid Catalysis of the Asymmetric Diels-Alder Reaction of Dimenthyl Fumarate and Cyclopentadiene. Tetrahedron: Asymmetry,2002,13,957-960.
    [21]Birney, D. M.; Houk, K. N. Transition Structures of the Lewis Acid Catalyzed Diels-Alder Reaction of Butadiene with Acrolein. The Origins of Selectivity. J. Am. Chem. Soc.1990,112,4127-4133.
    [22]Yamabe, S.; Dai, T.; Minato, T. Fine Tuning [4+2] and [2+4] Diels-Alder Reactions Catalyzed by Lewis Acids. J. Am. Chem. Soc.1995,117,10994-10997.
    [23]Garcia, J. I.; Martinez-Merino, V.; Mayoral, J. A.; Salvatella, L. Density Functional Theory Study of a Lewis Acid Catalyzed Diels-Alder Reaction. The Butadiene+Acrolein Paradigm. J. Am. Chem. Soc.1998,120,2415-2420.
    [24]Alves, C. N.; Camilo, F. F.; Gruber, J.; da Silva, A. B. F. A Study on the Effect of Lewis Acid Catalysis on the Molecular Mechanism of the Cycloaddition between (E)-methyl Cinnamate and Cyclopentadiene. Tetrahedron,2001,57,6877-6883.
    [25]Alves, C. N.; Camilo, F. F.; Gruber, J.; da Silva, A. B. F.A Density Functional Theory Study on the Molecular Mechanism of the Cycloaddition between (E)-methyl Cinnamate and Cyclopentadiene. Chem. Phys.2004,306,35-41.
    [26]Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys.1985,83,735-746.
    [27]Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev.1988,88,899-926.
    [28]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.:Wallingford CT,2004.
    [29]Becke, A. D. Density-functional Thermochemistry. Ⅲ. The Role of Exact Exchange. J. Chem. Phys.1993,98,5648-5652.
    [30]Perdew, J. P.; Burke, K.; Wang, Y. Generalized Gradient Approximation for the Exchange-correlation Hole of a Many-electron System. Phys. Rev. B.1996,54, 16533-16539.
    [31]Hehre, W. J.; Radom, L.; Schleyer, P. v. R.; Pople, J. A. Ab initio Molecular Orbital Theory; Wiley:New York,1986.
    [32]Becke, A. D. Density-functonal Exchange-energy Approximation with Correct Asymptotic Behavior. Phys. Rev. A,1988,38,3098-3100.
    [33]Lee, C.; Yang, W. T.; Parr, R. G.Develop of the Colle-Salvetti Correlation-energy Formula into a Functional of the Electron Density. Phys. Rev. B,1988,37,785-789.
    [34]Perdew, J. P.; Wang, Y. Accurate and Simple Analytic Representation of the Electron-gas Correlation Energy. Phys. Rev. B,1992,45,13244-13249.
    [35]Tsuzuki, S.; Liithi, H. P. Interaction Energies of van der Waals and Hydrogen Bonded Systems Calculated Using Density Functional Theory:Assessing the PW91 Model. J. Chem. Phys.2001,114,3949-3957.
    [36]Aggarwal, A.; Lancaster, N. L.; Sethi, A. R.; Welton, T. The Role of Hydrogen Bonding in Controlling the Selectivity of Diels-Alder Reactions in Room-temperature Ionic Liquids. Green Chem.,2002,4,517-520.
    [37]Huang, J. F.; Chen, P. Y.; Sun, I. W.; Wang, S. P. NMR Evidence of Hydrogen Bonding in 1-ethyl-3-methylimidazolium-tetrafluoroborate Room Temperature Ionic Liquid. Inorg. Chim. Acta,2001,320,7-11.
    [38]Ross, J.; Xiao, J. L. The Effect of Hydrogen Bonding on Allylic Alkylation and Isomerization Reactions in Ionic Liquid. Chem. Eur. J.2003,9,4900-4906.
    [39]孙学文,赵锁奇,王仁安,[bmim]C1/FeC13离子液体催化苯与乙烯烷基化的反应机理。催化学报,2004,3,247-251.
    [40]Blake, J. F.; Jorgensen, W. L. Solvent Effects on a Diels-Alder Reaction from Computer Simulations. J. Am. Chem. Soc.1991,113,7430-7432.
    [41]Blake, J. F.; Lim, D.; Jorgensen, W. L. Enhanced Hydrogen Bonding of Water to Diels-Alder Transition States. Ab Initio Evidence. J. Org. Chem.1994,59,803-805.
    [42]Chandrasekhar, J.; Shariffskul, S.; Jorgensen, W. L. QM/MM Simulations for Diels-Alder Reactions in Water:Contribution of Enhanced Hydrogen Bonding at the Transition State to the Solvent Effect. J. Phys. Chem. B.2002,106,8078-8085.
    [43]Domingo, L. R.; Andres, J. Enhancing Reactivity of Carbonyl Compounds via Hydrogen-Bond Formation. A DFT Study of the Hetero-Diels-Alder Reaction between Butadiene Derivative and Acetone in Chloroform. J. Org. Chem.2003,68, 8662-8668.
    [44]Fu, A. P.; Thiel, W. Density Functional Study of Noncovalent Catalysis of the Diels-Alder Reaction by the Neutral Hydrogen Bond Donors Thiourea and Urea. J. Mol. Struct.:THEOCHEM 2006,765,45-52.
    [45]Fukui, K.; Fujimoto, H. Frontier Orbitals and Reaction Path:Selected Papers of Kenichi Fukui; World Scientific:Singapore,1997.
    [46]Hoffmann, R. A Chemical and Theoretical Way to Look at Bonding on Surfaces. Rev. Mod. Phys.1988,60,601.
    [47]Wiberg, K. B. Application of the Pople-santry-segal CNDO method to the Cyclopropylcarbinyl and Cyclobutyl Cation and to Bicyclobutane. Tetrahedron 1968, 24,1083-1096.
    [48]Wiley, R. H.; Smith, N. R.; Johnson, D. M.; Moffatt, J. Conjugate Addition Reactions of Azoles.Ⅱ.1,2,4-Triazole, Tetrazole, Nitropyrazoles and Benzotriazole. J. Am. Chem. Soc.1955,77,2572-2573.
    [49]Wiley, R. H.; Smith, N. R.; Johnson, D. M.; Moffatt, J. Conjugate Addition Reactions of Azoles:1,2,3-Triazole and Benzotriazole. J. Am. Chem. Soc.1954,76, 4933-4935.
    [50]Belousov, A. M.; Gareev, G.A.; Kirillova, L. P.; Vereshchagin, L. I. Zh. Org. Khim.1980,16,2622-2623.
    [51]Timokhin, B. V.; Golubin, A. I.; Vysotskaya, O. V.; Kron, V. A.; Oparina, L. A.; Gusarova, N. K.; Trofimov, B. A. Non-Catalytic Addition of 1,2,4-Triazole to Nucleophilic and Electrophilic Alkenes. Chem. Heterocycl. Compd.2002,38, 981-985.
    [52]Wu, W. B.; Wang, N.; Xu, J. M.; Wu, Q.; Lin, X. F. Penicillin G Acylase Catalyzed Markovnikov Addition of Allopurinol to Vinyl Ester. Chem. Commun.2005, 2348-2350.
    [53]Wu, W. B.; Xu, J. M.; Wu, Q.; Lv, D. S.; Lin, X. F. Promiscuous Acylases-Catalyzed Markovnikov Addition of N-Heterocycles to Vinyl Esters in Organic Media. Adv. Synth. Catal.2006,348,487-492.
    [54]Xu, J. M.; Wu, W. B.; Qian, C.; Liu, B. Wu, W. B.; K.; Lin, X. F. A Novel and Highly Efficient Protocol for Markovnikov's Addition Using Ionic Liquids as Catalytic Green Solvent. Tetrahedron Lett.2006,47,1555-1558.
    [55]Milet, A.; Korona, T.; Moszynski, R.; Kochanski, E. Anisotropic Intermolecular Interactions in van der Waals and Hydrogen-bonded Complexes:What can We Get from Density Functional Calculations?J. Chem. Phys.1999,111,7727-7735.
    [56]Hunt, P. A.; Gould, I. R. Structural Characterization of the 1-Butyl-3-methylimidazolium Chloride Ion Pair Using ab Initio Methods. J. Phys. Chem. A 2006,110,2269-2282.
    [57]Chang, H. C.; Jiang, J. C.; Tsai, W. C.; Chen, G C.; Lin, S. H. Hydrogen Bond Stabilization in 1,3-Dimethylimidazolium Methyl Sulfate and 1-Butyl-3-Methylimidazolium Hexafluorophosphate Probed by High Pressure:The Role of Charge-Enhanced C-H…O Interactions in the Room-Temperature Ionic Liquid. J. Phys. Chem. B 2006,110,3302-3307.
    [58]Fukui, K. A Formulation of the Reaction Coordinate. J. Phys. Chem.1970,74, 4161-4163.
    [59]Aroney, M. J.; Bruce, E. A. W.; John, I. G.; Radom, L.; Ritchie, G. L. D. Conformations of Vinyl Formate and Vinyl Acetate. Aust. J. Chem.1976,29, 581-587.
    [60]Mora, M. A.; Rubio, M.; Salcedo, R. PCILO and AMI Calculations of Vinyl-substituted Compounds. Polymer,1993,34,5143-5148.
    [61]Boys, S. F.; Bernardi, F. The Calculation of Small Molecular Interactions by the Differences of Separate Total Energies. Some Procedures with Reduced Errors. Mol. Phys.1970,19,553-566.
    [62]Peng, J. J.; Deng, Y. Q. Cycloaddition of Carbon Dioxide to Propylene Oxide Catalyzed by Ionic Liquids. New. J. Chem.2001,25,639-641.
    [63]Kawanami, H.; Sasaki, A.; Matsui, K.; Ikushima, Y. A Rapid and Effective Synthesis of Propylene Carbonate using a Supercritical CO2-Ionic Liquid System. Chem. Commun.2003,896-897.
    [64]Shaikh, A. A. G.;Sivaram, S. Organic Carbonates. Chem. Rev.,1996,96, 951-976.
    [65]Parrish, J. P.; Salvatore, R. N.; Jung, K. W. Perspectives on Alkyl Carbonates in Organic Synthesis. Tetrahedron 2000,56,8207-8237.
    [66]Kihara, N.; Hara, N.; Endo, T. Catalytic Activity of Various Salts in the Reaction of 2,3-Epoxypropyl Phenyl Ether and Carbon Dioxide under Atmospheric Pressure. J. Org. Chem.1993,58,6198-6202.
    [67]Iwasaki, T.; Kihara, N.; Endo, T. Reaction of Various Oxiranes and Carbon Dioxide. Synthesis and Aminolysis of Five-Membered Cyclic Carbonates. Bull. Chem. Soc. Jpn.2000,73,713-719.
    [68]Yano, T.; Matsui, H.; Koike, T.; Ishiguro, H.; Fujihara, H.; Yoshihara, M; Maeshima, T. Magnesium Oxide-catalysed Reaction of Carbon Dioxide with an Epoxide with Retention of Stereochemistry. Chem. Commun.,1997,1129-1130.
    [69]Yamaguchi, K.; Ebitani, K.; Yoshida, T.; Yoshida, H.; Kaneda, K. Mg-Al Mixed Oxides as Highly Active Acid-Base Catalysts for Cycloaddition of Carbon Dioxide to Epoxides. J. Am. Chem. Soc.1999,121,4526-4527.
    [70]Nomura, R.; Ninagawa, A.; Matsuda, H. Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides in the Presence of Organoantimony Compounds as Novel Catalysts. J. Org. Chem.1980,45,3735-3738.
    [71]Kim, H. S.; Kim, J. J.; Lee, B. G.; Jung, O. S.; Jang, H. G.; Kang, S. O. Isolation of a Pyridinium Alkoxy Ion Bridged Dimeric Zinc Complex for the Coupling Reactions of CO2 and Epoxides. Angew. Chem. Int. Ed.2000,39,4096-4098.
    [72]Paddock, R. L.; Nguyen, S. T. Chemical CO2 Fixation:Cr(Ⅲ) Salen Complexes as Highly Efficient Catalysts for the Coupling of CO2 and Epoxides. J. Am. Chem. Soc.2001,123,11498-11499.
    [73]Sun, J.; Wang, L.; Zhang, S. J.; Li, Z. X.; Zhang, X. P.; Dai, W. B.; Mori, R. ZnCl2phosphonium halide:An Efficient Lewis Acid/base Catalyst for the Synthesis of Cyclic Carbonate. J. Mol. Catal. A:Chem.2006,256,295-300.
    [74]Doskocil, E. J.; Bordawekar, S. V.; Kaye, B. G.; Davis, R. J. UV-Vis Spectroscopy of Iodine Adsorbed on Alkali-Metal-Modified Zeolite Catalysts for Addition of Carbon Dioxide to Ethylene Oxide. J. Phys. Chem. B 1999,103, 6277-6282.
    [75]Lide, D. R., Ed. Handbook of Chemistry and Physics. CRC Press:Boca Raton, FL,1995.
    [76]Swalen, J. D.; Herschbach, D. R. Internal Barrier of Propylene Oxide from the Microwave Spectrum. I. J. Chem. Phys.1957,27,100-108.
    [77]Holbrey, J. D.; Reichert, W. M.; Nieuwenhuyzen, M.; Johnston, S.; Seddon, K. R.; Rogers, R. D. Crystal Polymorphism in 1-butyl-3-methylimidazolium Halides: Supporting Ionic Liquid Formation by Inhibition of Crystallization. Chem. Commun. 2003,1636-1637.
    [78]Magill, A. M.; Yates, B. F. An Assessment of Theoretical Protocols for Calculation of the pKa Values of the Prototype Imidazolium Cation. Aust. J. Chem. 2004,57,1205-1210.
    [79]Saha, S.; Hayashi, S.; Kobayashi, A.; Hamaguchi, H. Crystal Structure of 1-Butyl-3-metylimidazolium Chloride. A Clue to the Elucidation of the Ionic Liquid Structure. Chem. Lett.2003,32,740-741.
    [1]Wasserscheid, P.; Welton, T. Ionic Liquids in Synthesis. Weinheim, Germany: Wiley-VCH; 2003.
    [2]Welton, T. Room-temperature ionic liquids. Solvents for synthesis and Catalysis. Chem. Rev.1999,99,2071-2083.
    [3]Wasserscheid, P.; Keim, W. Ionic liquids-New "solutions" for transition metal catalysis. Angew. Chem. Int. Ed.2000,39,3772-3789.
    [4]Sheldon, R. Catalytic reactions in ionic liquids. Chem. Comm.2001,2399-2407.
    [5]Parvulescu, V. I.; Hardacre, C. Catalysis in Ionic Liquids. Chem. Rev.2007,107, 2615-2665.
    [6]Jain, N.; Kumar, A.; Chauhan, S.; Chauhan, S. M. S. Chemical and biochemical transformations in ionic liquids. Tetrahedon.2005,61,1015-1060.
    [7]Rantwijk, F. V.; Sheldon, R. A. Biocatalysis in ionic liquids. Chem. Rev.2007,107, 2757-2785.
    [8]Dominguez de Maria, P. "Nonsolvent" Applications of Ionic Liquids in Biotransformations and Organocatalysis. Angew. Chem. Int. Ed.2008,47,6960-6968.
    [9]彭家建,邓友全,离子液体体系中催化环已酮肟重排制已内酰胺。石油化工2001,30,91-92.
    [10]Suarez, P. A. Z.; Dullius, J. E. L.; Einloft, S.; De Souza, R. F.; Dupont, J. The Use of New Ionic Liquids in Two-Phase Catalytic Hydrogenation Reaction by Rhodium Complexes. Polyhedron,1996,15,1217-1219.
    [11]Yadav, J. S.; Reddy, B. V. S.; Basak, A. K.; Narsaiah, A.V. Aza-Michael Reactions in Ionic Liquids. A Facile Synthesis of β-Amino Compounds. Chem. Lett.2003,32, 988-989.
    [12]Howarth. J.; Hanlon, K.; Fayne, D.; McCormac, P. Moisture Stable Dialkylimidazolium Salts as Heterogeneous and Homogeneous Lewis Acid in the Diels-Alder Reaction. Tetrahedron Lett.1997,38,3097-3100.
    [13]Shen, H. Y.; Judeh, Z. M. A.; Ching, C. B. Selective Alkylation of Phenol with tert-butyl Alcohol Catalyzed by [bmim]PF6. Tetrahedron Lett.2003,44,981-983.
    [14]Jorapur, Y. R.; Lee, C. H.; Chi, D. Y. Mono-and Dialkylations of Pyrrole at C2 and C5 Positions by Nucleophilic Substitution Reaction in Ionic Liquids. Org. Lett. 2005,7,1231-1234.
    [15]Ranu. B. C.; Banerjee, S. Ionic Liquid as Reagent. A Green Procedure for the Regioselective Conversion of Epoxides to Vicinal-Halohydrins Using [AcMIm]X under Catalyst- and Solvent-Free Conditions.J. Org. Chem.2005,70,4517-4519.
    [16]Xu, J. M.; Liu, B. K.; Wu, W. B.; Qian, C.; Wu, Q.; Lin, X. F. Basic Ionic Liquid as Catalysis and Reaction Medium:A Novel and Green Protocol for the Markovnikov Addition of N-Heterocycles to Vinyl Esters, Using a Task-Specific Ionic Liquid, [bmIm]OH.J. Org. Chem.2006,71,3991-3993.
    [17]Park, D. W.; Mun, N. Y.; Kim, K. H.; Kim, I.; Park, S. W. Addition of Carbon Dioxide to Allyl Glycidyl Ether Using Ionic Liquids Catalysts. Catal. Today 2006,115, 130-133.
    [18]Baudequin, C.; Baudoux, J.; Levillain, J.; Cahard, D.; Gaumont, A. C.; Plaquevent, J. C. Ionic liquids and chirality:opportunities and challenges. Tetrahedron:Asymmetry 2003,14,3081-3093.
    [19]Baudequin, C.; Bregeon, D.; Levillain, J.; Guillen, F.; Plaquevent, J. C.; Gaumont, A. C. Chiral ionic liquids, a renewal for the chemistry of chiral solvents? Design, synthesis and applications for chiral recognition and asymmetric synthesis. Tetrahedron:Asymmetry 2005,16,3921-3945.
    [20]Bica, K.; Gaertner, P. Applications of chiral ionic liquids. Eur. J. Org. Chem.2008, 19,3235-3250.
    [21]Howarth, J.; Hanlon, K.; Fayne, D.; McCormac, P. Moisture stable dialkylimidazolium salts as heterogeneous and homogeneous lewis acids in the Diels-Alder reaction. Tetrahedron Lett.1997,38,3097-3100.
    [22]Tao, G.; He, L.; Liu, W.; Xu, L.; Xiong, W.; Wang, T.; Kou, Y. Preparation, characterization and application of amino acid-based green ionic liquids. Green Chem. 2006,8,639-646.
    [23]Jurcik, V.; Wilhelm, R. The preparation of new enantiopure imidazolinium salts and their evaluation as catalysts and shift reagents. Tetrahedron:Asymmetry 2006,17, 801-810.
    [24]Yadav, L. D. S.; Rai, A.; Rai, V. K.; Awasthi, C. Chiral ionic liquid-catalyzed Biginelli reaction:stereoselective synthesis of polyfunctionalized perhydropyrimidines. Tetrahedron 2008,64,1420-1429.
    [25]Luo, S. Z.; Mi, X. L.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J. P. Functionalized chiral ionic liquids as highly efficient asymmetric organocatalysts for Michael addition to nitroolefins. Angew. Chem. Int. Ed.2006,45,3093-3097.
    [26]Luo, S. Z.; Mi, X. L.; Zhang, L.; Liu, S.; Xu, H.; Cheng, J. P. Functionalized ionic liquids catalyzed direct aldol reactions. Tetrahedron 2007,63,1923-1930.
    [27]Luo, S. Z.; Zhang, L.; Mi, X. L.; Qiao, Y, P.; Cheng, J. P. Functionalized chiral ionic liquid catalyzed enantioselective desymmetrizations of prochiral ketones via asymmetric Michael addition reaction. J. Org. Chem.2007,72,9350-9352.
    [28]Li, P. H.; Wang, L.; Wang, M.; Zhang, Y. C. Polymer-immobilized pyrrolidine-based chiral ionic liquids as recyclable organocatalysts for assymmetric Michael additions to nitrostyrenes under solvent-free reaction conditions. Eur. J. Org. Chem.2008,7,1157-1160.
    [29]Zhou, L.; Wang, L. Chiral ionic liquid containing L-proline unit as a highly efficient and recyclable asymmetric organocatalyst for Aldol reaction. Chem. Lett. 2007,36,628-629.
    [30]Ni, B. K.; Zhang, Q. Y.; Dhungana, K.; Headley, A. D. Ionic liquid-supported (ILS) (S)-pyrrolidine sulfonamide, a recyclable organocatalyst for the highly enantioselective Michael addition to nitroolefins. Org. Lett.2009,11,1037-1040.
    [31]Miao, W. S.; Chan, T. H. Ionic-liquid-supported organocatalyst:efficient and recyclable ionic-liquid-anchored proline for asymmetric aldol reaction. Adv. Synth. Catal.2006,348,1711-1718.
    [32]Bahmanyar, S.; Houk, K. N. Transition states of amine-catalyzed aldol reactions involving enamine intermediates:Theoretical studies of mechanism, reactivity, and stereoselecitvity. J. Am. Chem. Soc.2001,123,11273-11283.
    [33]Bahmanyar, S.; Houk K. N. The origin of stereoselectivity in proline-catalyzed intramolecular aldol reactions. J. Am. Chem. Soc.2001,123,12911-12912.
    [34]Bahmanyar, S.; Houk, K. N.; Martin, H. J.; List, B. Quantum mechanical predictions of the stereoselectivities of proline-catalyzed asymmetric intermolecular aldol reactions. J. Am. Chem. Soc.2003,125,2475-2479.
    [35]Bahmanyar, S.; Houk, K. N. Origins of opposite absolute stereoselectivities in proline-catalyzed direct Mannich and Aldol reactions. Org. Lett.2003,5,1249-1251.
    [36]Allemann, C.; Gordillo, R.; Clemente, F. R.; Cheong, P. H.; Houk, K. N. Theory of asymmetric organocatalysis of aldol and related reactions:rationalizations and predictions. Acc. Chem. Res.2004,37,558-569.
    [37]Clemente, F. R.; Houk, K. N. Computational evidence for the enamine mechanism of intramolecular aldol reactions catalyzed by proline. Angew. Chem. Int. Ed.2004.43, 5765-5768.
    [38]Cheong, P. H.; Houk, K. N. Origins of selectivities in proline-catalyzed a-Aminoxylations. J. Am. Chem. Soc.2004,126,13912-13913.
    [39]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, Revision D.01; Gaussian, Inc.:Wallingford CT,2004.
    [40]Dalko, P. I.; Moisan, L. In the Golden Age of Organocatalysis. Angew. Chem. Int. Ed.2004,43,5138-5175.
    [41]Saito, S.; Yamamoto, H. Design of acid-based catalysis for the asymmetric direct aldol reaction. Acc. Chem. Res.2004,37,570-579.
    [42]Reed, A. E.; Weinstock, R. B.; Weinhold, F. Natural Population Analysis. J. Chem. Phys.1985,83,735-746.
    [43]Reed, A. E.; Curtiss, L. A.; Weinhold, F. Intermolecular Interactions from a Natural Bond Orbital, Donor-Acceptor Viewpoint. Chem. Rev.1988,88,899-926.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700