用户名: 密码: 验证码:
抗凝血纳米功能薄膜材料的研制及抗凝血机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文采用脉冲激光沉积技术和射频磁控溅射两种方法制备了具有不同结构(sp3/sp2)和性能的四面体非晶碳膜,以及稀土La不同掺杂量的非晶碳薄膜和稀土La不同掺杂量的TiO2薄膜;通过微观结构、表面形貌、光学性能、电学性能、表面润湿性和动物体外血液相容性实验,系统研究薄膜的抗凝血性能。研究了脉冲重复频率和单脉冲能量对薄膜微结构和表面性质的影响,实现了sp3C成分可调的非晶碳薄膜制备。提出了血液相容性材料的稀土元素掺杂方法,以改善其抗凝血性质,研制出抗凝血性能优异的稀土La掺杂的非晶碳膜,并通过改变稀土元素掺杂量和衬底沉积温度分别讨论了稀土元素及sp2C各自对非晶碳薄膜的表面特性及抗凝血性能的影响。研制出血容性能良好的稀土La掺杂的TiO2薄膜,研究了La掺杂对TiO2薄膜微结构、表面特性及抗凝血性能的影响。采用分子动力学方法模拟计算纤维蛋白原分子在薄膜表面的选择吸附、体系能量和结合能的计算,提出并验证了蛋白质选择性吸附模型,较好地解释了实验结果,并运用生物化学检测方法结合表面及界面分析手段进一步揭示生物材料的抗凝血机制。
     首先,采用脉冲激光沉积方法,通过改变单脉冲能量和脉冲重复频率制备出不同结构(sp3/sp2)及性能的四面体非晶碳膜,研究了工艺参数对其微结构、光学性能、表面形貌及润湿性的影响,考察了其表面能参数和血液相容性。研究发现与薄膜的表面特性相比,材料的电子结构对其血液相容性起到决定性的影响。
     其次,采用射频磁控溅射法制备了La2O3不同掺杂量的非晶碳薄膜,研究掺杂对非晶碳薄膜的微结构、光学性能、电学性能、表面形貌和润湿性及抗凝血性能的影响。研究发现:La2O3掺杂使膜中sp2键的含量增加,随La2O3掺杂量由2.52%增加到5.99%,薄膜的石墨化逐渐增强,导致薄膜的带隙由2.1eV下降到约1eV;室温电导激活能由0.55eV下降到0.128eV;La2O3对薄膜晶粒的生长有细化作用,随La2O3掺杂量的增加非晶碳膜表面的亲水性逐渐降低,样品表面能的变化主要受极性成分的影响,掺杂样品的表面对白蛋白分子具有更强的选择吸附性表现出良好的抗凝血性能。
     再次,固定La3+在薄膜的含量,通过改变沉积时衬底的温度来调节sp2?sp3的相对比率,进一步研究稀土掺杂非晶碳薄膜材料的抗凝血性能。实验结果发现:衬底温度增加,膜中sp2组分也相对增多;受sp2组分影响,薄膜表面的亲水性逐渐增强,表面能变化较小但界面自由能逐渐减小;薄膜对纤维蛋白原分子的选择性能力增强,抗凝血性能逐渐退化,说明稀土元素与sp2含量对薄膜的血浆蛋白分子的选择性吸附的影响是不同的。制备了La2O3掺杂的氧化钛薄膜,研究掺杂对氧化钛薄膜微结构及血液相容性的影响。实验发现:稀土离子La促使TiO2晶粒沿(110)晶面择优生长,能细化TiO2的晶粒;当La3+掺杂量从1.56%增加到3.64%时,TiO2薄膜的光学带隙也从2.85 eV增大到3.3eV;La2O3掺杂促使TiO2薄膜表面的亲水性逐渐增强。血小板粘附实验结果表明:La2O3掺杂的TiO2薄膜表面粘附的血小板的数量和被激活的程度均明显地低于未掺杂样品,具有明显优于未掺杂样品的抗凝血效果。实验还发现La2O3掺杂提高了TiO2薄膜表面与蛋白质界面张力的极性分量。具有对纤维蛋白原和白蛋白更好的选择性吸附能力的表面特性及适宜的电子结构,是La2O3掺杂的氧化钛薄膜表现出良好的血液相容性能的原因。
     最后,根据本论文的实验结果,运用分子模拟技术模拟计算纤维蛋白原分子在La2O3掺杂的氧化钛薄膜表面的选择吸附、体系能量和结合能,提出并验证了蛋白质选择性吸附模型,较好地解释了实验结果。利用Lifshitz-vander Waals/acid-base法(即酸碱对LW-AB法)进一步揭示生物材料的抗凝血机制,模拟和计算证明:具有Lewis碱性的薄膜表面能抑制纤维蛋白原的吸附并有利于其维持正常的分子构象,进而抑制材料表面血小板的粘附和激活,改善薄膜材料的抗凝血性能。
Amorphous carbon films with different microstructures, La2O3 doped Diamond-like carbon (DLC) films and TiO2 films with La doping different concentration were deposited by using pulse laser ablation and Radio-Frequency magnetron sputtering, respectively. The characters of films, such as microstructure, surface properties, optical & electronic properties and wettability, were investigated and the haemocompatibility of various films was evaluated by in-vitro tests. The influence of pulse repetition rate and pulse energy on the structure and the properties of the ta-C films are investigated and the control of sp3C content in the films is realized. Methods to adulterate biomaterials with rare earth are proposed. La2O3 doped DLC films with good blood compatibility were prepared and the effect of sp2 bonds and La2O3 on the haemocompatibility of DLC films were discussed. La2O3 doped TiO2 films with good blood compatibility were prepared and the effect of La2O3 on the microstructures and haemocompatibility were investigated. The thromboresistance mechanism of biomaterials was studied by means of molecular dynamics simulation methods. The systemic energy and interactive energy of fibrinogen with La2O3-doped TiO2 films were calculated and a selective adsorption model is introduced and applied to explain the result of experimentation. The interaction behavior at the interface between the biomaterial films and the plasma proteins was investigated using the biochemistry examinations.
     Firstly, the influence of pulse repetition rate and pulse energy in pulse laser ablation on the structures and the properties of the ta-C films have been studied. The wettability and blood-compatibility were investigated. Results show that the electronic structure of ta-C films plays a significant role in haemocompatibility compared with its property of surface.
     Secondly, La2O3 doped Diamond-like carbon (DLC) films with different concentrations were deposited by using Radio-Frequency magnetron sputtering. The effects of La2O3-dopant on the microstructure, surface properties, optical & electronic properties and wettability of DLC films were investigated. Results show the sp2-bonded C content increases and the band gaps of films decrease from 2.1eV to 1eV with increasing of La2O3 concentration doped. In the same temperature, the carrier concentration increases with increasing La2O3 addition. La2O3 addition has a suppressive effect on the crystal growth of DLC in process of deposition and the hydrophilicity of films decreases with the increase of content of La2O3-doped in the films. The polar component is critical to the change of the surface energy of doped films and the La2O3 doped DLC films have the good blood compatibility.
     Thirdly, keeping the contents of La3+ in the films and changing the temperature of substrate, the effects of temperature deposited on structure and haemocompatibility of La2O3 doped DLC films were investigated. Results show that the sp2-bonded C content increases with the increase of the temperature of substrate. The surface energy of films change slightly and the interfacial energy decreases with the temperature rising and the films are inclined to adsorb fibrinogen which shows the effect of sp2 bonds and La2O3 on the haemocompatibility of DLC films is different.
     Fourthly, La2O3 doped TiO2 films with different concentration were deposited by using Radio-Frequency magnetron sputtering. The effects of La2O3-dopant on the microstructure, surface properties, optical properties and wettability of TiO2 films were investigated. Results show La2O3 addition has a suppressive effect on the crystal growth of TiO2 in process of deposition. The band gaps of films increase from 2.85eV to 3.3eV with increasing of La2O3 concentration doped from 1.56% to 3.64% and the hydrophilicity of films increases with the increase of content of La2O3-doped in the films. Doped TiO2 films reveal unique haemocompatibility compared with un-doped films. The selective adsorption of La2O3-doped TiO2 films for the fibrinogen and serum albumin of the blood plasma and suitable electronic structure are believed to the main factor responsible for the good blood compatibility.
     Finally, according to the result of experimentation, the systemic energy and interactive energy of fibrinogen with La2O3-doped TiO2 films were calculated by means of molecular dynamics simulation methods and a selective adsorption model is introduced and applied to explain the result of experimentation. The thromboresistance mechanism of biomaterials was studied ulteriorly by Lewis acid-base theory about solid surface adsorption. Results also proved that films with the wide band gap structure or Lewis base (electron donor) surface may block the electron transfer through the interface from fibrinogen, retain the conformation of fibrinogen and inhibit the activation of the blood coagulation function.
引文
[1] D.F.Williams, Definitions in Biomaterials, Proceedings of a Consensus Conference of the European Society for Biomaterials, Chester, England, March 3-5 1986, vol.4, Elsevier, New York.
    [2]范德增,生物材料研究的今昔与前瞻,科技前沿,科学中国人,1999,pp37
    [3]顾汉卿(GU Han-qing),徐国风(XU Guo-feng).生物医学材料学(Biomedical Materials).天津翻译出版公司(Tianjing Translation Press).1993:69
    [4] A.M.Zamore, Process for producing an implantable apparatus comprising a biomedical device coated with crosslinked TPU, USA .6,558,732(2003)
    [5] J.E.Puskas, Y.Chen, Biomacromolecules 5(2004)1141
    [6] S.H.Ajili, N.G.Ebrahimi, M.T.Khorasani, J.Appl.Polym. Sci.89(2003)2496
    [7] M.I.Jones,I.R.McColl,D.M.Grant,K.G.Parker,T.L.Parker,J.Biomed.Mater.Res.52(2000)413
    [8] F.Z.Cui,D.J.Li,Surf.Coat. Technol.131(2000)481-487
    [9] H.S.Tran,M.M.Puc,C.W.Hewitt,D.B.Soll,S.W.Marra,V.A.Simonetti,et al.,J.Invest.Surg.12(3)(1999)133
    [10] L.J.Yu, X.Wang, X.H.Wang. X.H.Liu, Surf.Coat. Technol.128-129(1)(2000)577
    [11] D.J.Li, S.J.Zhang, L.F.Niu, Appl.Surf.Sci.180(2001)270
    [12] M.Allen, B.Myer, N.Rushton, J.Biomed. Mater.Res.58(2001)319
    [13] S.Linder, W.Pinkowski, M.Aepfelbacher, Biomaterials 23(2002)747
    [14] L.K.Krishnan, N.Varghese, C.V.Muraleedharan, G.S.Bhuvaneshwar, F.Derangere. Biomol.Eng.19(2-6)(2002)251
    [15] R.Hauert, Diam.Relat.Mater.12(3-7)(2003)583
    [16] M.I.Jones, I.R.McColl, D.M.Grant, K.G.Parker, T.L.Parker, J.Biomed.Mater.Res.52(2000)413.
    [17] F.Z.cui, D.J.Li, Surf. Coat. Technol. 131(2000)481-487.
    [18] L.J.yu, X.Wang, X.H.Wang, X.H.Liu, Surf. Coat. Technol. 128-129(1)(2000)484.
    [19] K.Gutensohn, C.Baeythein, J.Bau, T.Fenner, P.Grewe, R.Koester, et al., Thromb.Res. 99(6)(2000)577.
    [20] T.I.T.Okpalugo, A.A.Ogwu, P.D.Maguire, J.A.D.Melaughlin, D.G.Hirst. In-Vitro blood compatibility of a-C:H:Si and a-C:H thin films. Diamond Related Materials 13(2004)1088~1092.
    [21] P.Yang, S.C.H.Kwok, R.K.Y.Fu, Y.X.Leng, J.Wang, G.J.Wan, N.Huang, Y.Leng, P.K.Chu.Structure and properties of annealed amorphous hydrogenated carbon (a-C:H)films for biomedical applications. Surface and Coatings Technology 177-178(2004)747~751.
    [22] P.Yang, J.Y.Chen, Y.X.Leng, H.Sun, N.Huang, P.K.Chu. Effect of annealing on structure and biomedical properties of amorphous hydrogenated carbon films. Surfaces and Coatings Technology 186(2004)125~130.
    [23] P.Yang, N.Huang, Y.X.Leng, J.Y.Chen, R.K.Y.Fu, S.C.H.Kwok, Y.Leng, P.K.Chu. Activation of platelets adhered on amorphous hydrogenated carbon(a-C:H)films synthesized by plasma immersion ion implantation-deposition(PIII-D).Biomaterials 24(2003)2821~2829
    [24] GUO Yang-Ming, MO Dang, LI Zhe-Yi, LIU Yi, HE Zhen-Hui, CHEN Di-Hu. Dependence of Structure and Haemocompatibility of Amorphous Carbon Films on Substrate Bias Voltage. CHIN.PHYS.LETT. Vol.21.No.11(2004)2132.
    [25] Dihu Chen, Aixiang Wei, S.P. Wong, et al., Applied Physics A 70, 1999, 47-51
    [26] S.Anders, J.Diaz, J.W.Ager, R.Y.Lo, D.B.Bogy, Appl.Phys.Lett.71(1997)3367.
    [27] S.Anders, J.W.Ager, G.M.Pharr, T.Y.Tsui, I.G.Brown, Thin Solid Films 308(1997)186.
    [28] T.A.Friedmann, J.P.Sullivan, J.A.Knapp, et al., Appl.Phys.Lett.71(1997)3820.
    [29] V.M.Tiainen,R.Lappalainen,A.Anttila. Vacuum 2002;67:599~604
    [30] David A.LaVan, Robert F.Padera, Thomas A. Friedmann, John P.Sullivan, Robert Langer, Daniel S.Kohane. In vivo evaluation of tetrahedral amorphous carbon. Biomaterials (26)(2005)465~473.
    [31] H.H.Tong, O.R.Monteiro, R.A.MacGill, I.G.Brown, G.F.Yin, J.M.Luo. Fabrication and characteristics of ta-C biomaterial coatings on Ti-6Al-4V using metal plasma immersion ion implantation. Current Applied Physics 1(2001)197~201.
    [32] L.J.Yu, X.Wang, X.H.Wang, X.H.Liu, Surface and Coatings Technology 128-129(2000)484-488
    [33] Baurschm idt, M. Schaldach, Journal of Bioengineering 1, 1997, 261
    [34] A. Bolz, M. Schaldach, Artificial Organs 144(4), 1990, 260
    [35] J.Robertson, Diamond Relat. Mater. 5, 1996, 797-801
    [36] Jaan Hong, Andris Azens, Kristina Nilsson Ekdahl, Claes Goran Granqvist, Bo Nilsson. Material-specific thrombin generation following contact between metal surface and wholeblood.. Biomaterials 26(2005)1397—1403
    [37] J.Hong, J.Andersson, K.N.Ekdahl, G.Elgue, N.Axen, R.Larsson, B.Nilsson. Titanium is a highly thrombogenic biomaterial: possible implication for osteogenesis. Thromb Haemost 1999;82:58—64
    [38] P.Tengvall, I.Lundstrom. Physico-chemical consideration of titanium as biomaterial. Clin Mater 1992;9:115—134.
    [39] B.Walivaara, I.Lundstrom, P.Tengvall. An in-vitro study of H2O2-treated titanium surfaces in contact with blood plasma and a simulated body fluid. Clin Master.1993;12:141—148
    [40] Feng Zhang, Xianghuai Liu, Yingjun Mao, Nan Huang, Yu Chen, Zhihong Zheng, Zuyao Zhou, Anqing Chen, Zhenbin Jiang. Artificial heart valves: improved hemocompatibility by titanium oxide coatings prepared by ion beam assisted deposition. Surface and Coatings Technology 103~104(1998)146-150.
    [41] Xianghui Wang, Friedrich Prokert, Helfried Reuther, Manfred F.Maitz, Feng Zhang. Chemical composition and biocompatibility of Ti-Ag-O films prepared by ion beam assisted deposition. Surface and Coatings Technology 185(2004)12~17.
    [42] M.Bellantone, H.D.Williams, L.L.Hench, AnTiMicrob. Agents Chemother. 46(6)(2002)1940~1945.
    [43] F.Wen, N.Huang, H.Sun, G.J.Wan, P.K.Chu, Y.Leng. The study of compositon, structure, mechanical properties and platelet adhesion of Ti-O/TiN gradient films prepared by metal plasma immersion ion implantation and deposition. Nucl. Instr. And Meth. in Phys. Res. B 222(2004)81-90.
    [44] I.Tsyganov, M.F.Maitz, E.Wieser, E.Richter, H.Reuther. Correlation between blood compatibility and physical surface properties of titanium-based coatings. Surfaces and Coatings Technology 200(2005)1041~1044
    [45]刘毅,非晶碳薄膜的结构及其血液相容性的研究,中山大学博士学位论文,2007
    [46]张金超,杨梦苏,稀土配合物药物研究进展[J],稀有金属,2005,29;6
    [47]程上穆,邓胜昌,孟庆江,稀土在医学领域中应用研究现状[J].稀土,1999,20(5):59-61
    [48] H.Dyckerhoof, Biochem, 1936.Bol 288.5:271
    [49]李伟,梁建生,潘志明,李幼荣,邱关明.稀土元素对生物体CaM水平调节的剂量效应的研究.广西农业生物科学,2002.Vol 21,No.1
    [50] C.H.Evans, Biochemistry of the Lanthanides, Plenum Press, New York, 1990.
    [51] Z.H.Feng, X.Wang, S.X.Zhang, Chin.J.Nucl.Med. 21(2001)11
    [1]郑伟涛等,薄膜材料与薄膜技术,化学工业出版社,2004
    [2] M. Tabbal, P. Merel, M. Chaker, et al., Effect of laser intensity on the microstructural and mechanical properties of pulsed laser deposited diamond-like-carbon thin films. J. Appl. Phys., 1999, 85: 3860
    [3] P. M. Ossi, C. E. Bottani, A. Miotello, Pulsed-laser deposition of carbon: from DLC to cluster-assembled films. Thin Solid Films, 2005, 482: 2
    [4] F. Tuinstra , J. L. Koenig, J. Chem. Phys., 1970, 53: 1126
    [5] M. H. Grimsditch, A. K. Ramdas, Brillouin scattering in diamond. Phys. Rev. B, 1975, 11:3139
    [6] S.Gupta, B.R.Weiner, G. Morell, Electron field emission properties of microcrystalline and nanocrystalline carbon thin films deposited by S-assisted hot filament CVD. Diamond Relat. Mater., 2001, 11: 799
    [7] R.Nemanich, J.Glass, G. Lucovsky, and R. Shroder, J. Vac. Sci. Technol., 1988, A6: 1783
    [8] E.Liu, X.Shi, B.K.Tay, et al., Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions. J. Appl. Phys., 1999, 86: 6078
    [9] J. Wagner, M. Ramsteiner, C. Wild, et al., Resonant Raman scattering of amorphous carbon and polycrystalline diamond films. Phys. Rev. B, 1989, 40: 1817
    [10] M.Yoshikawa, N.Nagai, M.Matsuke, et al., Raman scattering from sp2 carbon clusters. Phys. Rev. B, 1992, 46: 7169
    [11] V. I. Merkulor, J. S. Lannin, C.H. Munro, et al., UV Studies of Tetrahedral Bonding in Diamondlike Amorphous Carbon. Phys. Rev. Lett., 1997, 78: 4869
    [12] Z.Y. Chen, J. P. Zhao, T. Yano, et al., Observation of sp3 bonding in tetrahedral amorphous carbon using visible Raman spectroscopy, J. Appl. Phys., 2000, 88(5): 2305
    [13] D.Beeman, J. Siverman, R. Lynds, M. R. Anderson, Modeling studies of amorphous carbon. Phys. Rev. B, 1984, 30: 870
    [14] V. Palshin, E. I. Meletis, S. Ves, S. Logothetidis, Characterization of ion-beam-deposited diamond-like carbon films. Thin Solid Films, 1995, 270: 165
    [15]郑欲芬,李仲荣主编,近代物理实验,中山大学出版社,82
    [16] E.Vigil, L.Saadoun, J.A .Ayllon, et al. Clemente R TiO2 thin film deposition from solution using microwave heating[J]. Thin Solid Films,2000,365:12~18
    [17]新型Ti-O人工心脏瓣膜材料,中国成都西南交通大学生物材料与表面工程研究所, 2003.
    [18]潘仕荣,黄宝鑫,贾磊,陶军,郑欢玲,易武,聚六亚甲基碳酸酯聚氨酯脲的抗凝血性,中山大学学报, 2005年1月,第1期26卷
    [1] M.I. Jones, I.R. McColl, D.M. Grant, et al.[J].Biomed.Mater. Res. 2000,52(2):413-421.
    [2]F.Z.Cui,D.J.Li,.[J].Surf.Coat.Technol.2000,131(1):481-487.
    [3] L.J.Yu, X.Wang, X.H.Wang, et al.[J].Surf. Coat.Technol.2000, 128:484-488.
    [4] P.K. Chu, J.Y. Chen, L.P. Wang, et al.[J].Mater. Sci.Eng. R Rep.2002, 36:143-147.
    [5] J.Karpman, M.Riabkina-Fishman, J.Zahavi, et al. Diamond and Related Materials. 1994,4:10
    [6] C.B.Collins, F.Davanloo, D.R.Jander, T.J.Lee, H.Park, J.H.You. J.Appl.Phys.1991,69(11):7862
    [7] D.L.Papps, K.L.Saenger, J.Bruley, W.Krakow, J.J.Cuomo. J.Appl.Phys.1992,71(11):567
    [8] S.Leppavuori, J.Levoska, J.Vaara, O.Kusmartseva. Mat.Res.Soc.Symp.Proc.1993,vol.285:557
    [9] M.C.Polo, J.Cifre, G.Sanchez, R.Aguiar,et al. Appl.Phys.Lett.1995,67(4):485
    [10] Fulin Xiong, Y.Y.Wang, R.P.H.Chang. Physical Review.1993,B48:8016
    [11] Tsuyoshi Yoshitake, Takashi Nishiyama, Kunihito Nagayama. Diamond and Related Materials.2000,9:689
    [12] Steffen Weissmantal, Gunter Reisse, Dirk Rost. Surface & Coating Technology 188-189(2004)268
    [13] David A. LaVan, Robert F. Padera, et al.[J].Biomaterials, 2005,26:465-470.
    [14] A.S.Loir, F.Garrelie, C.Donnet, et al.[J]. Applied Surface Science,2005, 247(1):225-231.
    [15] D.B.Siverman, R.Lynds and M.R.Anderson. Phys.Rev.1984,B30:870
    [16] V.Palshin, E.I.Meletis, S.Ves, S.Logothetidis, Thin Solid Films. 1995,270:165
    [17] D.B.Siverman, et al. Thin Solid Films. 1997, 292: 318.
    [18]陈光华,邓金祥等,新型电子薄膜材料,化学工业出版社,2002
    [19]彭鸿雁,赵立新,类金刚石膜的制备、性能与应用,科学出版社,2004
    [20]郑欲芬,李仲荣主编,近代物理实验,中山大学出版社,82
    [21]A.Asano,M.Stutzmann, J.Non-Cryst.Solids,137/138 (1991)623.
    [22]李运钧,张兵临,薛运才,毕兆琪,金刚石与磨料磨具工程,1996, 4 (94): 23
    [23] D. L. Papps, K. L. Saenger, J. Bruley, et al. J. Appl. Phys., 1992, 71(11): 567
    [24] C. B. Collins, F. Davanloo, D. R. Jander, J. Appl. Phys., 1991, 69(11): 7862
    [25] D. T. Peeler, P. T. Murray, Dynamics of amorphous carbon film growth by pulsed laser deposition: kinetic energy of the incident particles. Diamond Relat. Mater., 1994, 3: 1124
    [1] J.L.Brash. Role of plasma protein adsorption in the response of blood to foreign surfaces. In: Sharma CP, Szycher M,eds. Blood Compatible Materials and Devices. Lancaster, PA:Technomic,1991:3~24.
    [2]顾汉卿,徐国风。生物医学材料[M].天津科技翻译出版社,1993,8.
    [3]杨明京,周成飞,乐明伦。生物材料血液相容性的表面能量观[J].生物医学工程学杂志,1990,7(1):59.
    [4] E.Rrckenstein, SV.Gourisankar. A surface energetic criterion of blood compatibility of foreign surfaces[J]. J Colloid and Interface Sci,1984,10(2):436.
    [5] J.J.Cuomo, J.P.Doyle, J.Bruley, J.C,Liu, J.Vac.Sci.Technol.A 9(1991)2210.
    [6] C. G.卡罗,T. J.佩德利,R. C.施罗特,W. A.西特著[M].血液循环力学,科学出版社,1986, 172
    [7] L.J.Yu, X.Wang, X.H.Wang and X.H.Liu, Haemocompatibility of tetrahedral amorphous carbon films. Surf. Coat. Tech., 2000, 128-129: 484
    [8] M. I. Jones, I. R. McColl, D. M. Grant, K. G. Parker and T. L. Parker, Protein adsorption and platelet attachment and activation on TiN, TiC, and DLC coatings on titanium for cardiovascular applications, 2000, John Wiley & Sons, Inc.
    [9] T.I.T. Okpalugo, A.A. Ogwu, P.D.Maguire, et al., In-vitro blood compatibility of a-C:H:Si and a-C:H thin films, Diamond Relat. Mater., 2004, 13: 1088
    [10] D.C.Wilcox, B.S.Dove, D.W.MeDaid, D.B.Greer, www.ddsdx.uthscsa.edu.imagetool,1996website.
    [11] E.Ruekenstein, S.V.Gourisankar, J.Colloid Interface Sci, 1984,101:436~451.
    [12]李伯刚,博士学位论文,四川大学,2004.5
    [13] P.Baurschmidt, M.Schaldach, The electrochemical aspects of the thrombogenicity of a material, J.Biomeg.1997,1:261
    [14] P.Baurschmidt, M.Schaldach, Med.Biol.Eng.Comput. 18(1980)496.
    [1] J. Guttler, J. Reschke, Metal-carbon layers for industrial application in the automotive industry. Surf. Coat. Technol. 60 (1993) 531.
    [2] M. Murakawa, T. Komori, S. Taeuchi, K. Miyoshi, Surf. Coat. Technol.120–121 (1999) 646.
    [3] Z.Q. Ma, B.X. Liu, Boron-doped diamond-like amorphous carbon as photovoltaic films insolar cell. Sol. Energy Mater. Sol. Cell 69 (2001) 339.
    [4] Zhenyu Zhang, Xinchun Lu, Jianbin Luo, Yang Liu, Chenhui Zhang, Diamond Relat. Mater. 16 (2007) 1905.
    [5] B.K.Tay, X.Shi, H.S.Tan, D.H.C.Chua.Surface and Interface Analysis.1999,28 :231.
    [6] D.A.Pawlak, M.Ito, M.Oku, K.Shimamura, T.Fukuda, J.Phys.Chem., B 106(2)(2002)504.
    [7] J.Robertson, E.P.OReilly, Phys Rev B.35(1987)2946.
    [8] A.Walter. Yarbrough and Russeel Messier, Science 1990, 247:688.
    [9] A.M.Bonnot, Raman microspectroscopy of diamond crystals and thin films prepared by hot-filament-assisted chemical vapor deposition. Phys.Rev.B 1990, 41:6040.
    [10] R.O.Dillon, J.A.Woollam and V.Katkanant.Phys.Rev.1984,B29:3484
    [11] L .Valentini, J.M .Kenny, G.Marioto, P. Tosi, G.Carlotti, D.Fioretto, L.Lozzi, S.Santucci, Diamond Related Mater.10(2001)1088.
    [12] B.Lleisorge, S.E.Rodil, G.Adamopoulos ,et al , Diamond and Related Materials,2001(10)965.
    [13] F.L.Xiong, Y.Y.Wang, R.P.H Chang, Phys.Rev.B, 1993(48)8016.
    [14] Kleinsorge, A.Ilie, M.Chhowalla, W.Fukarek, W.I.Milne, J.Robertson. Electrical and optical properties of boronated tetrahedrally bonded amorphous carbon(ta-C:B), Diamond Related Materials.1998,7(2-5):472-476.
    [15] V.S.Veerasamy, J.Yuan, G.A.J.Amaratunga, W.I.Milne, K.W.R.Gilkes, M.Weiler, L.M.Brown. Phys.Rev.B.48(1993)17954.
    [16] V.S.Veerasamy, G.A.J.Amaratunga, C.A.Davis, A.E.Timbs, W.I.Miline, D.R.McKenzie, J.Phys:Condens.Matter, 5(1993)L169.
    [17] C.Ronning, U.Griesmeier, M.Gross, H.Hofsass, R.G..Downing, G.P.Lamaze, Diamond Relat. Mater, 4(1995)666.
    [18] H.Hofsass, C.Ronning, U.Griesmeier, M.Gross, A.Cedvall, E.Dreher, J.Biegel, Applications of Diamond Films and Related Materials. Third International Conference, 1995.P.775.
    [19]J.Robertson,E.P.O.Reilly,Electronic structure of amorphous carbonPhys.Rev.B.35(1987)2946.
    [20] J.Robertson, Amorphous-carbon .Adv.Phys. 35(1986)317.
    [21] T.Frauenheim, P.Blaudeck, U.Stephan, G.Jungnickel, Phys.Rev.B, 48(1993)4823.
    [22] C.Ronning, U.Griesmeier, M.Gross, H.C.Hofsass, R.G.Downing, G.P.Lamaze, Diamond Relat.Mater, 4(1995)666.
    [23] J.S.Chen, S.P.Lau, Z.Sun, G.Y.Chen, Y.J.Li, B.K.Tay, J.W.Chai. Metal-containing amorphous carbon films for hydrophobic application[J]. Thin Solid Films,2001,399:110-115
    [24] J.J.Cuomo, J.P.Doyle, J.Bruley, J.C,Liu, J.Vac.Sci.Technol.A 9(1991)2210.
    [25] Y.Taga, Surf.Coat.Technol. 112(1999)339.
    [26] J.S.Chen, S.P.Lau, Z.Sun, G.Y.Chen, Y.J.Li, B.K.Tay, J.W.Chai, Thin Solid Films,398-399(2001)110.
    [27]熊炳昆,稀土生物功能化合物的应用研究[J].中国稀土学报,1994,12:358-366
    [28] C.H.Evans, Biochemistry of the Lanthanides, Plenum Press, New York, 1990.
    [29] Z.H.Feng, X.Wang, S.X.Zhang, Chin.J.Nucl.Med. 21(2001) 111.
    [30] G.Kosztolanyi, K.Jobst, I.Kadas, Haematologia.11(1977)155.
    [31]R.D.Sauerheber, T.S.Zimmermann, J.A.Esgate, W.P.Vanderlaan, J.Membr.Biol. 52(1980)201.
    [32] D.H. Kaelble, J. Moacanin, A surface energy analysis of bioadhesion. Polymer 18 (1997) 475.
    [33] C.P. Sharma, J. LTI carbons: blood compatibilty.Colloid Interface Sci.97(2)(1984)585.
    [34] E.Ruckensten, S.V.Gourisankar, J.Colloid Interface Sci. 101(2)(1984)436.
    [1] L.Zhang, Min Chen, Zheyi Li, Dihu Chen, Shirong Pan, Effect of annealing on structure and haemocompatibility of tetrahedral amorphous hydrogenated carbon films, Materials Letters. 62(2008)1040.
    [2] F.Boccafoschi, J.Habermehl, S.Vesentini , D.Mantovani, Biological performances of collagen-based scaffolds for vascular tissue engineering, Biomaterials,2005,26:7410.
    [3] A.A.Ogwu, R.W.Lamberton, S.Morley, P.Maguire, J.Mclaughlin, Characterisation of thermally annealed diamond like carbon (DLC) and silicon modified DLC films by Raman spectroscopy .Physica.B +C 269(1999)335.
    [4] Sam Zhang, Hejun Du, Soon-Eng Ong, Kyaw-Naing Aung, Hui-Chin Too, Xigeng Miao, Bonding structure and haemocompatibility of silicon-incorporated amorphous carbon. Thin Solid Films 515(2006)66.
    [5] P.Baurschmidt, M.Schaldach, Med.Biol.Eng.Comput. 18(1980)496.
    [6] R. Nemanich, J. Glass, G. Lucovsky, and R. Shroder, J. Vac. Sci. Technol., 1988, A6: 1783
    [7]E. Liu, X. Shi, B. K. Tay, et al., Micro-Raman spectroscopic analysis of tetrahedral amorphous carbon films deposited under varying conditions. J. Appl. Phys., 1999, 86: 6078
    [8] J. Wagner, M. Ramsteiner, C. Wild, et al., Resonant Raman scattering of amorphous carbon and polycrystalline diamond films. Phys. Rev. B, 1989, 40: 1817
    [1] Jaan Hong, Andris Azens, Kristina Nilsson Ekdahl, Claes Goran Granqvist, Bo Nilsson. Material-specific thrombin generation following contact between metal surface and whole blood.. Biomaterials 26(2005)1397—1403
    [2] J.Hong, J.Andersson, K.N.Ekdahl, G.Elgue, N.Axen, R.Larsson, B.Nilsson. Titanium is a highly thrombogenic biomaterial: possible implication for osteogenesis. Thromb Haemost 1999;82:58—64
    [3] P.Tengvall, I.Lundstrom. physico-chemical consideration of titanium as biomaterial. ClinMater 1992;9:115—134
    [4] B.Walivaara, I.Lundstrom, P.Tengvall. An in-vitro study of H2O2-treated titanium surfaces in contact with blood plasma and a simulated body fluid. Clin Master.1993;12:141—148
    [5] Feng Zhang, Xianghuai Liu, Yingjun Mao, Nan Huang, Yu Chen, Zhihong Zheng, Zuyao Zhou, Anqing Chen, Zhenbin Jiang. Artificial heart valves: improved hemocompatibility by titanium oxide coatings prepared by ion beam assisted deposition. Surface and Coatings Technology 103~104(1998)146-150.
    [6] Xianghui Wang, Friedrich Prokert, Helfried Reuther, Manfred F.Maitz, Feng Zhang. Chemical composition and biocompatibility of Ti-Ag-O films prepared by ion beam assisted deposition. Surface and Coatings Technology 185(2004)12~17.
    [7] M.Bellantone, H.D.Williams, L.L.Hench, AnTiMicrob. Agents Chemother. 46(6)(2002)1940~1945.
    [8] F.Wen, N.Huang, H.Sun, G.J.Wan, P.K.Chu, Y.Leng. The study of compositon, structure, mechanical properties and platelet adhesion of Ti-O/TiN gradient films prepared by metal plasma immersion ion implantation and deposition. Nucl. Instr. And Meth. in Phys. Res. B 222(2004)81-90.
    [9] I.Tsyganov, M.F.Maitz, E.Wieser, E.Richter, H.Reuther. Correlation between blood compatibility and physical surface properties of titanium-based coatings. Surfaces and Coatings Technology 200(2005)1041~1044
    [10] Z.Q. Ma, B.X. Liu, Sol. Energy Mater. Sol. Cell 69 (2001) 339.
    [11]刘敬肖,杨大智.金属表面薄膜的溶胶-凝胶法制备及其血液相容性研究[J].中国生物医学工程学报,2002,21:5
    [12] H.Satoshi, T.Akihiro, A.Murata, T.Sakurada, Formulation for XPS spectral change of oxides by ion bombardment as a function of sputtering time, Surface Science,2004;556:22.
    [13]王金淑,周美玲,张久兴,聂祚人,左铁墉。碳化La2O3-Mo阴极材料的高温XPS研究。稀有金属材料与工程。2000,29(4);225.
    [14]王建琪,吴文辉,冯大明。电子能谱学(XPS/XAES/UPS)引论,北京:国防出版社,1992.
    [15] J.Robertson, E.P.OReilly, Phys Rev B.35(1987)2946.
    [16] A.Bruyant, G.Lerondel, P.J.Reece, M.Gal, All-silicon omnidirectional mirrors based on one-dimensional photonic crystals, Appl.Phys.Lett,2003,82:3227-3229.
    [17] E.Vigil, L.Saadoun, A.Ayllon J, et al. Clemente R TiO2 thin film deposition from solution using microwave heating[J]. Thin Solid Films,2000,365:12~18
    [18]顾汉卿,徐国风。生物医学材料[M].天津科技翻译出版社,1993,8.
    [19]杨明京,周成飞,乐明伦。生物材料血液相容性的表面能量观[J].生物医学工程学杂志,1990,7(1):59.
    [20] E.Rrckenstein, SV.Gourisankar. A surface energetic criterion of blood compatibility of foreign surfaces[J]. J Colloid and Interface Sci,1984,10(2):436.
    [21] D.H. Kaelble, J. Moacanin, A surface energy analysis of bioadhesion .Polymer 18 (1997) 475.
    [22] C.P. Sharma, J. Colloid Interface Sci.97(2)(1984)585.
    [23] C.P.Sharma. LTI carbons:Blood compatibility[J]. J Colloid and Interface Sci,1984,97(2):585
    [24] J. Y. Chen, Y. X. Leng, X. B. Tian, et al., Antithrombogenic investigation of surface energy and optical bandgap and hemocompatibility mechanism of Ti(Ta+5)O2 thin films, Biomaterials, 2002, 23: 2545
    [1] V.Hlady, J.Buijs. Protein on solid surfaces. Current Opinion in Biotechnology, 1996,7(1):72-77.
    [2] M.Morra. On the molecular basis of fouling resistance, Journal of Biomaterials Science Polymer Edition, 2000, 11(6):547-569.
    [3] J.J.Gray. The interaction of proteins with solid surfaces, Current Opinion in Structural Biology, 2004,14(1):110-115.
    [4] Li Yigui, Liu Jinchen. Molcular simulation in chemical engineering, Morden Chemical Industry,2001,21(7):10-15.
    [5] Liu Honglai, Hu Ying. Microphase separation and structure evolution of complex material. Jorunal of Chemical Industry and Engineering, 2003, 54(4):440 - 447.
    [6] Zhu Yu, Lu Xiaohua, Ding Hao, Wang Jun, Wang Yanru, Shi Jun. Molecular simulation inchemical engineering. Journal of Chemical Industry and Engineering,2004,55(8):1213– 1223.
    [7] Lampert H.Muench. Med. Wechschr[J],1930(77):12
    [8] M.P.Sawyer, et al, Tasaio[J],1964(10):316.
    [9] D.J.Lyman, et al. Surface energy and anticoagulant properties of plasma modified carbon fibers. Tasaio[J],1965(11):301.
    [10] J.D. Andrade, et al. Surface free energy and anticoagulant properties of organic compound Tasaio[J],1973(19):1.
    [11] S.D.Brunk. Polymer[J],1975(16):409.
    [12] E .Nyilas, et al. Tasasio[J],1975(21):55.
    [13] S.A .Barenberg, et al. Tasaio[J], 1979(25):159.
    [14] Y. Ikada. Blood-compatibility polymers.Adv. of Polymer Science[J], 1984(57):103.
    [15] E .Ruckentein. J.Colloid Interface Sci[J].1984(101):436.
    [16] S.C.Lin. Preprints of the Second International Kyoto Symposium of Biomedical Materials[M],1985,Kyoto, Japan,P9.
    [17] S.C.Lin. Preprints of the Eighth Conference of High Polymers[M], 1985,Osaka,Japan,p3.
    [18] N. Weber, H. P. Wendel, G. Ziemer, Hemocompatibility of heparin-coated surfaces and the role of selective plasma protein adsorption, Biomaterials, 2002, 23: 429
    [19] N. O. Sahin, D. J. Burgess, Competitive interfacial adsorption of blood proteins, Il Farmaco, 2003, 58: 1017
    [20] L.Lorand, Clot of fibrinogen, Annals of the New York academy of sciences, 1983,27,pp231.
    [21] G. A. Skarja, J. L. Brash, P. Bishop, et al.,Protein and platelet interactions with thermally denatured fibrinogen and cross-linked fibrin coated surfaces, Biomaterials, 1998, 19: 2129
    [22] M.Tanaka, A.Mochizuki, T.Shiroya, et al.,Study on kinetics of early stage protein adsorption on poly(2-methoxyethylacrylate) (PMEA) surface, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 203: 195
    [23] S. R.Euston, Computer simulation of protein: Adsorption, gelation and self-association[J]. Current Opinion in Colloid and Interface Science, 2004,9(5):321-327.
    [24]殷景华,博士后研究工作报告,哈尔滨理工大学,2006年9月
    [25]王镜岩,朱圣庚,徐长法,生物化学[M],高等教育出版社,2002年,187页
    [26] P.Baurshmidt, M.Schaldach, The electrochemical aspects of the thrombogenicity of a material, Journal of Bioengineering,1977,1:261
    [27]杨苹,博士学位论文,西南交通大学,2006.5,P127
    [28] P.K.Sharma, K.Hanumantha Rao, Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry, Advance in Colloid and Interface Science,2002,98:341-463.
    [29] Sam Zhang, Hejun Du, Soon-Eng Ong, Kyaw-Naing Aung, Hui-Chin Too, Xigeng Miao, Bonding structure and haemocompatibility of silicon-incorporated amorphous carbon. Thin Solid Films 515(2006)66.
    [30]表面化学-半导体与金属氧化膜的电化学,S.R.Molisen著,吴辉煌译,科学出版社,1988.8

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700