用户名: 密码: 验证码:
田间棉铃虫对Bt棉花的耐性演化分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
Bt-Cry1Ac转基因棉花于1997年在我国商业化种植以来,有效控制了棉铃虫Helicoverpa armigera的发生和为害,但人类对大规模种植Bt棉所带来的长期生态风险问题尚缺乏足够的认识。本文采用诊断剂量与DNA分子检测相结合的方法,于2006~2008年对位于我国黄河流域棉区的山东省夏津县和河北省安次县的棉铃虫种群对Bt棉耐性演化规律进行了系统监测,并根据我国不同Bt棉种植强度模式下种群发生动态,建立了种群动态模型,评价了Bt棉在不同种植模式下如何调控棉铃虫田间种群演化动态,并就目前田间棉铃虫种群对Cry1Ac和Cry2Ab两种蛋白耐性遗传相关性进行了研究。主要研究结果如下:
     1在2006~2008年期间,在山东夏津和河北安次棉区分别共测定了2306和1270对单雌家系,保守的估计了夏津棉铃虫种群对Cry1Ac的抗性基因频率在2006年、2007年和2008年分别为0, 0.00022,0.00033;在安次县,三年期间均未检测到抗性家系,因此,在安次地区估计的抗性基因频率为0。该研究结果表明田间棉铃虫种群对Cry1Ac抗性基因频率在夏津和安次地区均处于很低水平(<0.0001)。在2006~2008年期间,夏津和安次县棉铃虫种群F1代幼虫在Cry1Ac饲料上的相对平均发育级别均值并没有显著性的提高,说明田间棉铃虫种群对Bt-Cry1Ac耐性这几年并没有发生明显的变化。
     2根据室内已报道的与棉铃虫产生抗性相关的钙粘蛋白与APN突变位点,设计特异引物,开展田间棉铃虫抗性基因频率DNA分子检测。2006~2008年期间,我们共检测了2570头蛾子DNA,没有发现相关的突变基因在田间存在。
     3两种Bt棉不同筛选强度模式下,田间棉铃虫种群动态模拟模型结果表明:棉铃虫种群数量与Bt棉在我国华北棉区种植年份呈显著的负相关,这种负相关性说明Bt棉的种植显著抑制了田间棉铃虫的种群数量。一般来说,在田间每年的6月~10月份,棉铃虫发生三代高峰期,但有趣的是,在Bt棉高密度种植区(夏津和临清棉区),田间棉铃虫种群发生代别数由抗虫棉种植前的三代演变为两代,第二代棉铃虫种群基本削弱,但这种趋势在Bt棉低密度种植区没有,且证明该代别演化趋势与Bt棉种植密度有显著的相关性。
     4在2008年,夏津县和安次县分别共有572个家系和124个家系同时进行了Cry1Ac和Cry2Ab测定,测定结果表明:夏津和安次两地区棉铃虫家系的F1代对Cry1Ac相对平均发育级别与对Cry2Ab相对平均发育级别呈明显的正相关,且该相关性在F2代也存在,说明目前田间棉铃虫种群对Cry1Ac和Cry2Ab两种蛋白的耐性呈显著遗传相关性。
     本研究采用诊断剂量生测与DNA分子检测技术开展抗性基因频率监测,研究结果均表明,目前田间棉铃虫种群对Bt-Cry1Ac棉的抗性基因频率还处于较低水平,不同棉区棉铃虫基因交流、Bt棉高强度种植区第二代棉铃虫种群削弱,进而阻断抗性基因的累积在延缓棉铃虫耐性发展方面发挥了积极的作用。同时,开展田间棉铃虫种群对Cry2Ab蛋白耐性反应、建立Cry2Ab敏感基线,在评价第二代Bt抗虫棉(Cry1Ac/Cry2Ab)策略来延缓棉铃虫抗性进化提供科学依据。
Genetically modified cotton expressing the Cry1Ac toxin has been commercially cultivated in China since 1997. Bt cotton provides an efficient tool for controlling cotton bollworm (CBW) Helicoverpa armigera (Hübner) in many areas of China, but little is know about their long-term ecological consequences. During 2006-2008, the sensitivities of isofemale lines of H. armigera collected from Xiajin County, Shandong Province and Anci County, Hebei Province in northern China to Cry1Ac toxin protein were monitored systematically by using both diagnostic concentration and DNA screen methods, and population dynamic models were established under different planting system in northern China. In addition, interactions between Cry1Ac and Cry2Ab in the field H. armigera populations were investigated. The main results were summarized as follows.
     1. During 2006~2008, a total of 2306 isofemale lines from the Xiajin population and a total of 1270 isofemale lines from the Anci population were successfully screened on Cry1Ac diets. For each year, it was estimated that the major resistance gene frequency in Xiajin population in 2006, 2007, and 2008 was 0, 0.00022, and 0.00033, respectively. No major alleles conferring resistance to Cry1Ac were found in Anci population, the frequency of resistance alleles for Cry1Ac was 0. Based on the relative average development rates (RADR) of the H. armigera larvae in F1 tests, no substantial increase in Cry1Ac tolerance was found in either location over the 3-yr period. There were also significantly positive correlations between RADR of the lines in F1 generation and the RADR of their F2 offspring, indicating that the tolerance was genetically based.
     2. We used polymerase chain reaction (RCR) primers that specifically amplify one mutant allele of a cadherin and one mutant allele of a APN gene linked with resistance to Cry1Ac in H. armigera, a major pest. We screened DNA of 2,570 insects derived from Cry1Ac cotton fields in Xiajin and Anci during 2006~2008. No resistance alleles were detected despite a decade of exposure to Bt cotton.
     3. There was a negative correlation between moth densities of H. armigera and planting years of Bt cotton for the Bt cotton planting regions, which indicated that population density of H. armigera were reduced with the introduction of Bt cotton in northern China. There are three generations of moth occurred between early June and late September in the Bt cotton planting regions. Interestingly, the 2nd generation moths decreased and seemed to vanish in recent years in two intensive Bt cotton planting regions (Xiajin County and Linqing County of Shandong Province), but this tendency was not found in other two less intensive Bt cotton planting regions (Anci County of Hebei Province and Fengqiu County of Henan Province). This indicated that deployment of Bt cotton, especially in the intensive Bt cotton planting areas, have deeply suppressed the 2nd generation significantly.
     4. A total of 572 isofemale families of H. armigera from Xiajin county of Shandong Province and 124 families from Anci county of Hebei Province were screened with both Cry1Ac- and Cry2Ab-containing diets in 2008. The bioassays results indicated that RADR of F1 full-sib families from field collected female moths on Cry1Ac and Cry2Ab containing diet were positively correlated. The same correlation was found in the F2 generation, indicating cross-tolerance between Cry1Ac and Cry2Ab in field populations of H. armigera in Yellow River cotton-farming region of China.
     In conjunction with data from bioassays and DNA based-screen, the present results reported here indicated that the frequency for Bt resistance allele are still rare in the current field population of H. armigera. The complete control of second generation moths minimizes the impact of minor resistance genes and would be important factors contributing to the continued susceptibility to Cry1Ac in field population of H. armigera in Yellow River cotton farming region of China. Furthermore, the cross-tolerance must be considered in evaluating the utility of pyramiding Bt genes (Cry1Ac/Cry2Ab) in cotton for delaying evolution of resistance.
引文
1.陈海燕,杨亦桦,武淑文,杨亚军,吴益东.棉铃虫田间种群Bt毒素Cry1Ac抗性基因频率的估算.昆虫学报,2007,50(1):25~30.
    2.封红强.华北地区昆虫群落及昆虫季节性迁移的雷达观测. [博士学位论文],2003,北京.中国农业科学院.
    3.郭予元主编.棉铃虫的研究.中国农业出版社,1998.
    4.高玉林,傅强,王峰,赖凤香,罗举,彭于发,张志涛.转cry1Ac和CpTI双基因抗虫水稻对二化螟和大螟的致死效应及田间螟虫结构的影响.中国水稻科学,2006,20:543~548.
    5.何丹军,沈晋良,周威君,高聪芬.应用单雌系F2代法检测棉铃虫对转Bt基因棉抗性等位基因的频率.棉花学报,2001,13(2):105~108.
    6.李号宾,吴孔明,杨秀荣,徐遥,姚举,汪飞,马祁.新疆南部棉区棉铃虫发生趋势及Bt棉花的控制效率.中国农业科学,2006,39(1): 199~205.
    7.李国平.不同种植模式下棉铃虫对转基因棉花的抗性演化分析. [博士学位论文],2006,北京.中国农业科学院.
    8.梁革梅,谭维嘉,郭予元.棉铃虫对转Bt基因棉的抗性筛选及遗传方式的研究.昆虫学报,2000, 43(增): 57~62.
    9.梁革梅.棉铃虫Bt毒素受体蛋白生化特性、基因克隆及其与抗性的关系. [博士学位论文],2002,北京.中国农业科学院.
    10.刘凤沂,朱玉成,沈晋良. F1代发监测田间棉铃虫对转Bt基因棉的抗性.昆虫学报,2008,51(9):938~945
    11.刘晨曦.棉铃虫Bt受体钙粘蛋白的免疫组织化学及Cry1Ab毒素在APN上的结合区定位. [博士学位论文],2007,北京.中国农业大学.
    12.王桂荣,吴孔明,梁革梅,郭予元.棉铃虫中肠氨基氨肽酶N基因的克隆及序列分析.中国农业科学,2003,
    36(11):1293~1300.
    13.王桂荣,吴孔明,梁革梅,郭予元.棉铃虫中肠钙粘蛋白基因的克隆、表达及Cry1Ac结合区定位.中国科学C辑生命科学,2004,34(6):537~546.
    14.吴孔明.我国Bt棉花商业化的环境影响与风险管理策略.农业生物技术学报,2007,15(1):1~4.
    15.徐新军.棉铃虫对Bt-Cry1Ac抗性的生化与分子机理研究. [博士学位论文],2005,南京农业大学.
    16.徐艳聆,王振营,何康来,白树雄.昆虫对Bt杀虫蛋白的抗性机制及治理策略.植物保护学报,2006,33(4): 437~444.
    17.赵建周.棉铃虫对转Bt基因棉的抗性问题与对策.农业生物技术通讯,1998,2:1~2.
    18. Akhurst, R.J., W. James, L. J. Bird, C. Beard. Resistance to the Cry1Ac delta-endotoxin of Bacillus thuringiensis in the cotton bollworm, Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol, 2003, 96(4):1290~1299.
    19. Alstad, D. N, D. A. Andow. Managing the evolution of resistance to transgenic plants. Science, 1995, 268:1894~1896
    20. Alyokhin, A. V., D. N. Ferro. Relative fitness of Colorado potato beetle (Coleoptera: Chrysomelidae) resistant and susceptible to the Bacillus thuringiensis Cry3A toxin. J. Econ. Entomol, 1999, 92: 510~515.
    21. Andow, D. A., D. N. Alstad. F2 screen for rare resistance alleles. J. Econ. Entomol, 1998, 91: 572~578.
    22. Andow, D. A., D. M. Olson, R. L. Hellmich, D. N. Alstad, W. D. Hutchison. Frequency of resistance to Bacillus thuringiensis toxin Cry1Ab in an Iowa populatin of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol, 2000, 93: 26~30.
    23. Andow, D. A., D. N. Alstad, D. N. Alstad, Y-H. Pang, P. C. Bolin, W. D. Hutchison. Using an F2 screen to seach forresistance alleles to Bacillus thuringiensis toxin in European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol, 1998, 91: 572~578.
    24. Andow. The risk of resistance evolution in insects to transgenic insecticidal crops. Collection of biosafety reviews, 2008, 4: 142-199.
    25. Andreadis., S. S, A. F. Alvarez, T. J. Stodola, D. A. Andow, P. G. Molonas, S. M. Savopoulou, P. Castanera. Frequency of resistance to Bacillus thuringiensis toxin in Greek and Spanish population of Sesamia nonagrioides (Lepidoptera: Noctuidae). J. Econ. Entomol, 2007, 100: 195~201.
    26. Anilkumar, K. J., A. R. Simon, J. Ferre, M. P. Carey, S. Sivasupramaniam, W. J. Moar. Production and Characterization of Bacillus thuringiensis Cry1Ac-resistance cotton bollworm Helicoverpa zea (Boddie). Appl. Env. Microbiol, 2008, 74: 462~469.
    27. Bates, S., J. Z. Zhao, R. T. Roush, A. M. Shelton. Insect resistance management in GM crops: past, present and future. Nat. Biotech, 2005, 23: 57~61.
    28. Baxter, S. W., J. Z. Zhao, L. J. Gahan, A. M. Shelton, B. E. Tabashnik, D. G. Heckel. Novel genetic basis of field-evolved resistance to Bt toxins in Plutella xylostella. Insect. Mol. Biol, 2005, 14: 327~334.
    29. Bauer, L.S. Resistance: A threat to the insecticidal crystal proteins of Bacillus thuringiensis. Florida Entomology, 1995, 78: 414~443.
    30. Benedict, J. H., E. S., Sachs, D. W. Altman, D. R. Ring, T. B. Stone., S. R. Sims. Impact ofδ-endotoxin producing cotton on insect-plant interactions with Heliothis virescens and Helicoverpa zea (Lepidoptera: Noctuidae). Environ. Entomol, 1993, 22: 1~9.
    31. Bird, L., R. J. Akhurst. Relative fitness of Cry1A-Resistant and–Susceptible Helicoverpa armigera (Lepidoptera: Noctuidae) on Conventional and Transgenic cotton. J. Econ. Entomol, 2004, 97: 1699~1709.
    32. Bourguet, D., J. Chaufaux, M. Séquin, C. Buisson, J. L. Hinton, T. J. Stodola, P. Porter, G. Gronholm, L. L. Buschman, D. A. Andow. Frequency of alleles conferring resistance to Bt maize in French and US corn belt populations of the European corn borer, Ostrinia nubilalis. Theor. Appl. Genet, 2003, 106: 1225~1233.
    33. Bolin P.C., W. D. Hutchison, D. A. Andow. Long-term selection for resistance to Bacillus thuringiensis Cry1Ac endotoxin in a Minnesota population of European corn borer (Lepidoptera: Crambidae). J. Econ. Entomol, 1999, 92: 1021~1030.
    34. Brewer, G.J. Resistance to Bacillus thuringiensis sub sp. Kurstaki in the sunflower moth (Lepidoptera: Pyralidae). Environ Entomol, 1991, 20: 316~322.
    35. Burd, A. D., F. Gould, J. R. Bradley, J. W. Van Duyn, W. J. Moar. Estimated frequency of nonressive Bt resistance genes in bollworm, Helicoverpa zea (Boddie). (Lepidoptera: Noctuidae) in eastern North Carolina. J. Econ. Entomol, 2003, 96: 137~142.
    36. Caprio, M. A. Bacillus thuringiensis gene deployment and resistance management in single- and multi-tactic environments. Biocontrol Sci. Technol, 1994, 4: 487~497.
    37. Caprio, M. A. Source-sink dynamics between transgenic and non-transgenic habitats and their role in the evolution of resistance. J. Econ. Entomol, 2001, 94: 698~705.
    38. Caprio, M. A., B. E. Tabashnik. Gene flow accelerates local adaptation among finite populations: simulating theevolution of insecticide resistance. J. Econ. Entomol, 2002, 85: 611~620.
    39. Carrière, Y., C. Ellers-Kirk, Y.-B. Liu, M. A. Sims, A. L. Patin, T. J. Dennehy, B. E. Tabashnik. Fitness costs and maternal effects associated with resistance to transgenic cotton in the pink bollworm. J. Econ. Entomol, 2001, 94: 1571~1576.
    40. Carriere, Y., C.Ellers-Kirk, R. Biggs, B. Degain, D. Holley, C. Yafuso, P. Evans, T. J. Dennehy, B. E., Tabashnik. Effects of cotton cultivar on fitness costs associated with resistance of pink bollworm (Lepidoptera: Gelechiidae) to Bt cotton. J. Econ. Entomol, 2005, 98: 947~954.
    41. Carrière, Y., S. M. Sisterson, B. E.Tabashink. Resistance management for sustainable use of Bacillus thuringiensis crops in integrated pest management. Insect pest management: field and protected crops/A.Rami. Horowitz, 2004, Isaac. Ishaaya (Eds.): 65~95.
    42. Chaufaux, J., J. Müller-cohn, C. Buisson, V. Sanchis, D. Lereclus, and N. Pasteur. Inheritance of resistance to the Bacillus thuringiensis Cry1C toxin in Spodoptera littoralis (Lepidoptera: Noctuidae), J. Econ. Entomol, 1997, 90: 873~878.
    43. Chilcutt, C. E., B. E. Tabashnik. Simulation of integration of Bacillus thuringiensis and the parasitoid Cotesia plutellae (Hymenoptera: Braconidae) for control of susceptible and resistant diamondback moth (Lepidoptera: Plutelliade). Environ. Entomol, 1999, 28: 505~512.
    44. Coates, B. S. D. V. Sumerford, R. L. Hellmich, L. C. Lewis. Sequence variation in the cadherin gene of Ostrinia nubilalis: a tool for field monitoring. Insect. Biochem. Mol. Biol, 2005, 35: 129~139.
    45. Davis, P. M., D. W. Onstad. Seed mixtures as a resistance management strategy for O. nubilalis (Lepidoptera: Crambidae) infesting transgenic corn expressing Cry1Ab protein. J. Econ. Entomol, 2000, 93: 937~948.
    46. Downes, S., R. Mahon, K. Olsen. Monitoring and adaptive resistance management in Australia for Bt-cotton: Current status and future challenges. J. Invertebr. Pathol, 2007, 95: 208~213.
    47. Escriche, B., B. E. Tabashnik, N. Finson, J. Ferré. Immunohistochemical detection of binding of Cry1Ac crytal proteins of Bacillus thuringiensis in highly resistant strains of Plutella xylostella from Hawaii. Biochem. Biophys. Res.Commun, 1995, 212: 388~395.
    48. Fan, X., J. Z. Zhao, Y. Fan, X. Shi. Inhibition of transgenic Bt plants to the growth of cotton bollworm. Plant Protection, 2000, 26: 3~5.
    49. Fang, J., X. L. Xu, P. Wang, J. Z. Zhao, A. M. Shelton, J. A. Cheng, M. G. Feng, Z. C. Shen. Characretization of Chimeric Bacillus thuringiensis VIP3 toxins. Appl. Env. Microbiol, 2007, 73 (3): 956~961.
    50. Falconer, D.S., T. F. C.Mackay. Introduction to quantitative, 1996, 4th ed. Longman, Essex, UK.
    51. Ferré, J., J.Van Rie. Biochemistry and genetics of insect resistance to Bacillus thuringiensis. Anuu. Rev. Entomol, 2002, 47: 501~33.
    52. Ferré, J., M. D. Real. R. J. Van, S. Jansens, M. Peferoen. Resistance to the Bacillus thuringiensis bioinsecticide in a field population of Plutella xylostella is due to a change in a midgut membrane receptor. Proc. Natl. Acad. Sci. USA, 1991, 88: 5119~5123.
    53. Gahan, L. J., F. Gould, D. G. Heckel. Identification of a gene associated with Bt resistance in Heliothis virescens. Science, 2001, 393: 857~860.
    54. Gahan, L., J. Y. T. Ma, M. L. Coble, F. Gould, W. J. Moar, D. G. Heckel. Genetic basis of resistance to Cry1Ac and Cry2Aa in Heliothis virescens (Lepidoptera: Noctuidae). J. Econ. Entomol, 2005, 98: 1357~1368
    55. Genissel, A., S. Augustin, C. Courtin, G. Pilate, P. Lorme, D. Bourguet. Initial frequency of alleles conferring resistance to Bt poplar in a field population of Chrysomela tremulae. Proc. R. Soc. Lond. B, 2003, 270: 791~797.
    56. Georghiou, G. P., C. E. Taylor. Genetic and biological influence in the evolution of insecticide resistance. J. Econ. Entomol, 1977, 70: 319~323.
    57. Goldman, I.F., Arnold, J. Carlton, B.C. Selection for resistance to Bacillus thuringiensis subsp. israelensis in field and laboratory populations of the mosquito Aedes aegypti. J. Invertebr. Pathol, 1986, 47: 317~324.
    58. Gould, F. Sustainability of transgenic insecticidal cultivars: integrating pest genetics and ecology. Annu. Rev. Entomol, 1998, 43: 701~726.
    59. Gould, F. G. G. Kennedy, M. T. Johnson. Effects of natural enemies on the rate of herbivore adaptation to resistance host plants. Entomol. Exp. Appl, 1991, 58: 1~14.
    60. Gould, F., A. Anderson, A. Jones, D. Sumerford, D. G. Heckel, J. Lopez, C. Micinski, R. Leonard, M. Laster. Initial frequency of alleles for resistance to Bacillus thuringiensis toxin in field populations of Heliothis virescens. Proc. Natl. Acad. Sci. U.S.A, 1997, 94: 3519~3523.
    61. Gould, F., A. Anderson, A. Reynolds, L. Bumgarner, W. Moar. Selection and genetic analysis of a Heliothis virescens (Lepidoptera: Noctuidae) strain with high levels of resistance to Bacillus thuringiensis toxins. J. Econ. Entomol, 1995, 88: 1545~1559.
    62. Gould, F., A. Martinez-Ramirez, A. Anderson, J. Ferré, F. J. Silva, W. J. Moar. Broad-spectrum resistance to Bacillus thuringiensis toxin in Heliothis virescens. Proc. Natl. Acad. Sci. USA, 1992, 89: 7986~7990.
    63. Groeters, R. T., B. E. Tabashnik, N. Finson, M. W. Johnson. Fitness costs of resistance to Bacillus thuringiensis in the diamondback moth (Plutella xylostella). Evolution, 1993, 48: 197~201.
    64. Guse, C. A., D. W. Onstad, L. L. Buschman, P. Porter, R. A. Higgins, P. E. Sloderbeck, G. B. Cronholm, F. B. Peairs. Modeling the development of resistance by stalk-boring Lepidoptera (Crambidae) in areas with irrigated transgenic corn. Environ. Entomol, 2002, 31: 676~685.
    65. Hama, H., K. Suzuki, H. Tanaka. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae). Appl. Entomol. Zool, 1992, 27: 355~362.
    66. Heckel, D. G. The complex genetic basis of resistance to Bacillus thuringiensis toxin in insects. Biocontrol Science and Technology, 1994, 4: 405~417.
    67. Heckel, D. G., L. J. Gahan, F. Gould, J. C. Daly, S. Trowell. Genetics of Heliothis and Helicoverpa resistance to chemical insecticides and to Bacillus thuringiensis. Pestic. Sci, 1997, 51: 251~258.
    68. Higginson, D. M. S. Morin, M. E. Nyboer, R. W. Biggs, B. E. Tabashnik. Evolutionary trade-offs of insect resistance to Bacillus thuringiensis crops: Fitness cost affecting paternity. Evolution, 2005, 59: 915~920.
    69. Huang, F., R. A. Higgins, L. L. Buschman. Heritability and stability of resistance to Bacillus thuringiensis in Ostrinia nubilalis (Lepidoptera: Crambidae). Bull. Entomol. Res, 1999, 89: 449~454.
    70. Huang, F., B. R. Leonard, D. A. Andow. F2 screen for resistance to Bacillus thuringiensis-maize hybrid in thesugarcane borer (Lepidoptera: Crambidae). Bull. Entomol. Res, 2007, 97: 437~444.
    71. Huang, F. Detection and monitoring of insect resistance to transgenic Bt crops. Insect science, 2006, 13: 3~12.
    72. Ives, A. R., D. A. Andow. Evolution of resistance to Bt crops: directional selection in structured environments. Ecol. Lett, 2002, 5: 792~801.
    73. Jackson,R. E., J. R. Bradley, Jr., F. Gould, J. W. Van Duyn. Genetic variation for resistance to Cry1Ac and Cry2Ab in bollworm, Helicoverpa zea, in North Carolina., 2002, Beltwide cotton conference.
    74. Jackson, R. E., F. Gould, L. Bradley, J.Van Duyn. Genetic variation for resistance to Bacillus thuringiensis toxins in Helicoverpa zea (Lepidoptera: Noctuidae) in Eastern North Carolona. J. Econ. Entomol, 2006, 99: 1790~1797.
    75. James, C. Golbal status of commercialized transgenic crops: 2002. ISAAA Briefs No. 31: Preview. Ithaca, NY, International Service for the Acquisition of Agri-biotech Applications.
    76. James, C. Golbal status of commercialized transgenic crops: 2005. ISAAA Briefs No. 34: Preview. Ithaca, NY, International Service for the Acquisition of Agri-biotech Applications.
    77. James, C. Golbal status of commercialized transgenic crops: 2007. ISAAA Briefs No. 36: Preview. Ithaca, NY, International Service for the Acquisition of Agri-biotech Applications.
    78. James, C. Golbal status of commercialized transgenic crops: 2008. ISAAA Briefs No. 37: Preview. Ithaca, NY, International Service for the Acquisition of Agri-biotech Applications.
    79. Janmaat, A. F., J. H Myers. Rapid evolution and the cost of resistance to Bacillus thuringiensis in greenhouse populations of cabbage loopers, Trichoplusia ni. Proc. R. Soc. Lond. B, 2003, 270: 2263~2270.
    80. Jurat-Fuentes, J.L., F.L. Gould., M.J. Adang. Dual resistance to Bacillus thuringiensis Cry1Ac and Cry2Aa toxins in Heliothis virescens suggests multiple mechanisms of resistance. Appl. Environ. Microbiol, 2003, 69: 5898~5906.
    81. Knight, P. J. K., B. H. Knowles, D. J. Ellar. Molecular cloning of an insect aminopepetidase N that server as a receptor for Bacillus thuringiensis Cry1Ac toxin. J. Biol. Chem, 1995, 270: 17765~17770.
    82. Kranthi. K. R., N. R. Kranthi. Modelling adaptability of cotton bollworm, Helicoverpa armigera (Hübner) to Bt- cotton in India. Curr. Sci, 2004, 87:1096~1107.
    83. Kranthi, K. R., S. Kranthi, S. Ali, S. K. Banerjee. Resistance to Cry1Acδ-endotoxin of Bacillus thuringiensis in a laboratory selected strain of Helicoverpa armigera (Hubner). Curr. Sci, 2000, 78: 1001~1004.
    84. Lee, M. K., F. Rajamohan, F. Gould, D. H. Dean. Resistance to Bacillus thuringiensis Cry1A delta-endotoxins in a laboratory-selected Heliothis virescens strain is related to receptor alteration. Appl. Environ. Microbiol, 1995, 61: 3836~3842.
    85. Li, H., B. Oppert, R. A. Higgins, F. Huang, K. Y. Zhu, L. L. Buschman. Comparative analysis of proteinase activities of Bacillus thuringiensis-resistant and -susceptible Ostrinia nubilalis (Lepidoptera: Crambidae). Insect Biochem. Mol. Biol, 2004, 34: 753~762.
    86. Liu, Y.B., B. E. Tabashnik, T. J. Dennehy, A. L. Patin, A. C. Barlett. Development time and resistance to Bt crops. Nature, 1999, 400: 519.
    87. Luo, S., K. M. Wu, Y. Tan, G. Liang, X. Feng, J.Zhang, Y. Guo. Cross-resistance studies of Cry1Ac-resistance strains of Helicoverpa armigera (Lepidoptera: Noctuidae) to Cry2Ab. J. Econ. Entomol, 2007, 100: 909~915.
    88. Lefko, S.A. Characterizing laboratory colonies of western corn rootworm (Coleoptera: Chrysomelidae) selected forsurvival on maize containing event DAS-59122–7. J Appl Entomol, 2008, 132:189~204.
    89. Li, G., K. Wu, F. Gould, H. Feng, Y. He, Y. Guo. Bt toxin resistance gene frequencies in Helicoverpa armigera populations from the Yellow River cotton farming region of China. Entomol. Exp. Appl, 2004, 112: 135~143.
    90. Li, G., K. Wu, F. Gould, J. Wang, J. Mao, X. Gao, Y. Guo. Increasing tolerance to Cry1Ac cotton from cotton bollworm was confirmed in Bt cotton farming area of China. Ecol Entomol, 2007, 32: 366~375.
    91. Liang G., K. Wu, Y. Guo. Diapause cold hardiness and flight ability of Cry1Ac-resistant and -susceptible strains of Helicoverpa armigera (Lepidoptera: Noctuidae). Eur. J. Entomol, 2007, 104: 699~704.
    92. Liang, G. M., Wu. K. M, Yu. H. K, Li. K. K, Feng. X, Guo. Y. Y. Changes of inheritance mode and fitness in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae) along with its resistance evolution to Cry1Ac toxin. J. Invertebr. Pathol, 2008, 97(2): 142~149.
    93. Liu, Y-B., B. E. Tabashink. Inheritance of resistance to the Bacillus thuringiensis toxin Cry1C in the Diamondback moth. Appl. Environ. Microbiol, 1997, 63 (6): 2218~2223.
    94. Liu, Y-B., B. E. Tabashink, S. K. Meyer, Y Carrière, A. C. Bartlett. Genetics of pink bollworm resistance to Bacillus thuringiensis toxin Cry1Ac. J. Econ. Entomol, 2001, 94(1): 248~252.
    95. Liu, F. X., Z. P. Xu, J. H. Chang, J. Meng, F. X. Zhu, Y. C. Shen, J. L. Shen. Resistance allele frequency to Bt cotton in field populations of Helicoverpa armigera (Lepidoptera: Noctuidae) in China. J. Econ. Entomol, 2008, 101: 933~943.
    96. Lorence, A., A. Darszon, A. Bravo. Aminopeptidase dependent pore formation of Bacillus thuringiensis Cry1Ac toxin on Trichoplusia ni membranes. FEBS. Lett, 1997, 414: 303~307.
    97. Luo,K., B. E. Tabashnik, M. J. Adang. Binding of Bacillus thuringiensis Cry1Ac toxin to aminopeptidase in susceptible and resistance diamondback moths (Plutella xylostella). Appl. Environ. Microbiol, 1977, 63: 1024~1027.
    98. Mahon, R.J., K. M. Olsen, S. Downes, S. Addison. Frequency of alleles conferring resistance to the Bt toxins Cry1Ac and Cry2Ab in Australian population of Helicoverpa armigera (Lepidoptera: Noctuidae). J. Econ. Entomol, 2007, 100: 1844-1853.
    99. Mallet,J., P. Porter. Preventing insect adaptation to insect-resistant crops: are seed mixtures or refugia the best strategy? Proc. R. Soc. Lond. B, 1992, 250: 165~169.
    100. Mark, S. S., L. Antilla, Y. Carrière, C. Ellers-Kirk, B. E. Tabashnik. Effects of insect population size on evolution of resistance to transgenic crops. J. Econ. Entomol, 2004, 97: 1413~1424.
    101. Martínez-Ramírez, A. C., B. Escriche, M. D. Real, F. J. Sliva, J. Ferré. Inheritance of resistance to a Bacillus thuringiensis toxin in a field population of Diamondback moth (Plutella xylostella). Pestic. Sci, 1995, 43: 115~120.
    102. Masson, L., A. Mazza, R. Bronsseau, B. Tabashnik. Kinetics of Bacillus thuringiensis toxin binding with brush border membrane vesicles from susceptible and resistance larvae of Plutella xylostella. J. Biol. Chem, 1995, 270: 11887~11896.
    103. Mascarenhas, R.N., D. J. Boethel, B. R. Leonard, M. L. Boyd, C. G. Clemens. Resistance monitoring to Bacillus thuringiensis insecticides for soybean loopers (Lepidoptera: Noctuidae) collected from soybean and transgenic Bt-cotton. J. Econ. Entomol, 1998, 91, 1044~1050.
    104. Matten, S. R., G. P. Head, H. D. Quemada. How governmental regulation can help or hinder the integration of Btcrops into IPM programs. Integration of Insect-Resistant Genetically Modified Crops within IPM Programs, eds Romeis J, Shelton AM, Kennedy GG (Springer, New York), 2008, 27~39.
    105. Meihls, L. N., M. L. Higdon, B. D. Siegfried, N.J. Miller, T. W. Sappington, M. R. Ellersieck, T. A. Spencer, B. E. Hibbard. Increased survival of western corn rootworm on transgenic corn within three generations of on-plant greenhouse selection. Proc Natl Acad Sci USA, 2008, 105:19177~19182.
    106. McGaughey, W. H. Insect resistance to the biological insecticide Bacillus thuringiensis. Science, 1985, 229: 193~195.
    107. McGaughey, W. H., M. E. Whalon. Managing insect resistance to Bacillus thuringiensis toxins. Science, 1992, 258: 1451~1455.
    108. McGaughey, W. H., R. W., Beeman. Resistance to the biological insecticide Bacillus thuringiensis in colonies of Indianmeal moth and almond moth (Lepidoptera: Pyralidae). J. Econ. Entomol, 1988, 81(1): 28~33.
    109. Meng F., J. Shen, W. Zhou, H. Cen. Long-term selection for resistance to transgenic cotton expressing Bacillus thuringiensis toxin in Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag. Sci, 2003, 60: 167~172.
    110. Moar, W. J., M. Pusztai-Carey, H. Van. Faassen, D. Bosch, R. Frutors, C. Rang, K. Luo, M. J. Adang. Development of Bacillus thuringiensis Cry1C resistance by Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae). Appl. Environ. Microbiol, 1995, 61: 2086~2092.
    111. Morin, S., R. W. Biggs, M. S. Sisterson, L. Shriver, C. Ellers-Kirk, D. Higginson, D. Holley, L. J. Gahan, D. G. Heckel, Y. Carrière, T. J. Dennehy, J. K. Brown, B. E. Tabshnik. Three cadherin alleles associated with resistance to Bacillus thuringiensis in pink bollworm. Proc. Natl. Acad. Sci. U.S.A, 2003, 100: 5004~5009.
    112. Morin, S., S. J. A. Henderson, Y. Fabrick, T. J. Dennehy, J. K. Brown, B. E. Tabashnik. DNA-based detection of Bt resistance alleles in pink bollworm. Insect Biochem. Mol. Biol, 2004, 34: 1225~1233.
    113. Muller-Cohn, J., J. Chaufaux, C. Buisson, N. Gilois, V. Sanchis, R. T. Staten. Dispersal of pink bollworm (Lepidoptera: Gelechiidae) male in transgenic cotton that produces a Bacillus thuringiensis toxin. J. Econ. Entomol, 1999, 92, 772~778.
    114. Neunzig, H. H. The biology of the tobacco budworm and the corn earworm in North Carolina with particular reference to tobacco as a host. North Carolina Agricultural Experiment Station.Technology Bulletin, 1969, 196: 63
    115. Ning, C. M., K. M. Wu, C. X. Liu, Y. L. Gao, X. W. Gao. Identification, Cloning, and Expression of a novel Cry1Ac toxin-binding protein in the midgut brush border membrane vesicles of H. armigera. Journal of Insect Physiology, 2009, Submitted.
    116. Olsen, K. M., J. C. Daly, E. J. Finnegan, R. J. Mahon. Changes in Cry1Ac Bt transgenic cotton in response to two environmental factors: temperature and insect damage. J. Econ. Entomol, 2005, 98: 1382~1390.
    117. Onstad, D. W., F. Gould. Modeling the dynamics of adaptation to transgenic maize by European corn borer (Lepidoptera: Pyralidae). J. Econ. Entomol, 1998, 91: 585~593.
    118. Onstad, D. W., C. A. Guse, J. L. Spencer, E. Levine, M. E. Gray. Modeling the dynamics of adaptation to transgenic corn by western corn rootworm (Coleoptera: Chrysomelidae). J. Econ. Entomol, 2001, 94: 529~540.
    119. Oppert, B., R. Hammel, J. E. Throne, K. J. Kramer. Fitness costs of resistance to Bacillus thuringiensis in theIndianmeal moth Poldia interpunctella. Entomol. Exp. Appl, 2000, 96: 281~287.
    120. Peck, S. L., F. Gould, S. P. Ellner. Spread of resistance in spatially extended regions of transgenic cotton: implications for management of Heliothis virescens. J. Econ. Entomol, 1999, 92: 1~16.
    121. Rahardja, U., M. E. Whalon. Inheritance of resistance to Bacillus thuringiensis insecticidal crystal protein: implications for pest resistance management strategies. Mol. Breed, 1995, 1:309~317.
    122. Ramachandran, S., G. D.Buntin, J. N.All, B. E.Tabashnik, P. L.Raymer, M. J. Adang, D. A. Pulliam, Jr. C. N. Stewart. Survival, development, and oviposition of resistanct diamondback (Lepidoptera: plutellidae) on transgenic canola producing a Bacillus thuringiensis toxin. J. Econ. Entomol, 1998, 91: 1239~1244.
    123. Riggin-Bucci, T. M., F. Gould. Impact of intraplot mixtures of toxin and non-toxin plants on populations dynamics of diamondback moth (Lepitoptera: Plutellidae) and its natural enemies. J. Econ. Entomol, 1997, 90: 241~251.
    124. Rosenheim, J. A., B. E. Tabashnik. Evolution of pesticide resistance: interactions between generation time and genetic, ecological, and operational factors. J. Econ. Entomol, 1990, 83: 1184~1193.
    125. Roush, R. Managing resistance to transgenic crops, pp.271-294. In N. Carozzi and M. Koziel [eds.], Advances in insect control: the role of transgenic plants, 1997, Taylor & Francis, London, United Kingdom.
    126. Roush, R. T. Two-toxin strategies for management of insecticidal transgenic crops: can pyramiding succeed where pesticide mixtures have not? Phil. Trans. R. Soc. Lond. B, 1998, 353: 1777~1786.
    127. SAS Institute. SAS/STAT user,s guide, release 6.03 Edition. SAS Institute, 1998, Cary, NC.
    128. Schuler, T. H., R. P. J. Potting, I. Denholm, G. M. Poppy. Parasitoid behavior and Bt plants. Nature, 1999, 400: 825~826.
    129. Shelton A.M., J. L. Roberson, J. D. Tang, C. Perez, S. D. Eigenbrode, H. K. Preisler, W. K. Wilsey, R. J. Cooley. Resistance of diamondback moth (Lepidoptera: Plutellidae) to Bacillus thuringiensis subspecies in the field. J. Econ. Entomol, 1993, 86: 697~705.
    130. Shelton, A. M., J. D. Tang, R. T., Roush. T. D. Metz, E. D. Earle. Field tests on managing resistance to Bt-engineered plants. Nat. Biotech, 2000, 18: 339~342.
    131. Shelton, A. M., J. Z. Zhao, R. T. Roush. Economic, ecological, food safety and social consequences of the deployment of Bt transgenic plants. Annu. Rev. Entomol, 2002, 47: 845~881.
    132. Stone, T. B., S. R. Sims, P. G. Marrone. Selection of tobacco budworm for resistance to a genetically genineered Pseudomonas fluorescens contaning theδ-endotoxin of Bacillus thuringiensis subsp.Kurstaki, J. Invertebr. Psthol, 1989, 53: 228~234.
    133. Storer, N. P. A spatially explicit model simulating western corn rootworm (Coleoptera: Chrysomelidae) adaptation to insect-resistant maize. J. Econ. Entomol, 2003, 96: 1530~1547.
    134. Storer, N. P., S. L. Peck, F. Gould, J. W. Van Duyn, G. G. Kennedy. Spatial processes in the evolution of resistance in Heliocoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton in a mixed agroecosystem: a biology-rich stochastic simulation model. J. Econ. Entomol, 2003a, 96: 156~172.
    135. Storer, N. P., S. L. Peck, F. Gould, J. W. Van Duyn, G. G. Kennedy. Sensitivity analysis of a spatially-explicit stochastic simulation model of the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. J. Econ. Entomol, 2003b, 96: 173~187.
    136. Storer, N. P., S. L. Peck, F. Gould, J. W. Van Duyn, G. G. Kennedy. Spatial processes in the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton in a mixed agroecosystem: a biology-rich stochastic simulation model. J. Econ. Entomol, 2003a, 96: 156~172.
    137. Storer, N. P., S. L. Peck, F. Gould, J. W. Van Duyn, G. G. Kennedy. Sensitivity analysis of a spacially-explicit stochastic simulation model of the evolution of resistance in Helicoverpa zea (Lepidoptera: Noctuidae) to Bt transgenic corn and cotton. J. Econ. Entomol, 2003b, 96: 173~187.
    138. Stodola, T.J., D. A. Andow, A. R. Hyden, J. L. Hinton, J. J. Roark, L. L. Buschman, P. Porer, G. B. Cronholm. Frequency of resistance to Bacilus thuringiensis toxin Cry1Ab in southern US Corn belt population of European corn borer (Lpidoptera: Crambidae). J. Econ. Entomol, 2006, 99: 502~507.
    139. Tabashinik, B. E., N. L. Cushing, N. Finson, and M. W. Johnson. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol, 1990, 83: 1671~1676.
    140. Tabashink, B. E. Y.-B. Liu, T. Malvar, D. G. Heckel, L. Masson, J. Ferré. Insec resistance to Bacillus thuringiensis: uniform or diverse? Philos Trans R Soc B, 1998, 353: 1751~1756.
    141. Tabashink, B. E., Y.Carrière, T. J. Dennehy, S. Morin, M. Sisterson, R. T. Roush, A. M. Shelton, J-Z Zhao. Insect resistance to transgenic Bt crops: lessons from the laboratory and field. J. Econ. Entomol, 2003, 96: 1031~1038.
    142. Tabashink, B. E., Y-B. Liu, T. J. Dennehy, M. A. Sims, M. S. Sisterson, R. W. Biggs, Y. Carrière. Inheritance of resistance to Bt toxin Cry1Ac in a field-Derived strain of pink bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol, 2002, 95(5): 1018~1026.
    143. Tabashnik, B. E. Evolution of resistance to Bacillus thuringiensis. Annu. Rev. Entomol, 1994, 39: 47~79.
    144. Tabashnik, B. E., A. L. Patin, T. J. Dennehy, Y.-B, Liu, Y. Carrière, L. Antilla. Tracking the frequency of resistance to Bacillus thuringiensis in field populations of pink bollworm. Proc. Natl. Acad. Sci. USA, 2000, 21: 12980~12984.
    145. Tabashnik, B. E., B. A. Croft. Managing pesticide resistance in crop-arthropod complex: Interactions between bilological and operational factors. Environ. Entomol, 1982, 11: 1137~1144.
    146. Tabashnik, B. E., J. M. Schwartz, N. Finson, M. W. Johnson.. Inheritance of resistance to Bacillus thuringiensis in Diamondback Moth (Lepidoptera: plutellidae). J. Econ. Entomol, 1992, 85(4): 1046~1055.
    147. Tabashnik, B. E., N. Finson, M. W. Johnson. Managing resistance to Bacillus thuringiensis: lessons from the diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol, 1991, 84: 49~55.
    148. Tabashnik, B. E., N. L. Cushing, N. Finson, M. W Johnson. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). J. Econ. Entomol, 1990, 83: 1671~1676.
    149. Tabashnik, B. E., Y. Carrière, T. J. Dennehy, M. A. Sims, M. Sisterson, R. T. Roush, A. M. Shelton, J.-Z., Zhao. Insect resistance to Bt crops: lessons from the laboratory and field. J. Econ. Entomol, 2003, 96: 1031~104438.
    150. Tabashnik, B. E., Y-B. Liu, T. J.Dennehy, M. A., Sims, M. S., Sisterson, R.W Biggs,Y. Carrière. Inheritance of resistance to Bt toxin Cry1Ac in a Field-derived strain of Pink bollworm (Lepidoptera: Gelechiidae). J. Econ. Entomol, 2002, 95: 1018~1026.
    151. Tabashnik, B.E., J.A. Fabrick, S. Henderson, R. W. Biggs, C. M. Yafuso, M. E. Nyboce, N. M. Manhardt, L .A. Coughlin, Y. Carriere, T. Dennehy, S. Morin. DNA-Screening reveals pink bollworm resistance to Bt cotton remains rare after a decade of exposure. J. Econ. Entomol, 2006, 99: 1525~1530.
    152. Tabashnik,B. E., D. J. Timothy, Y. Carrière. Delayed resistance to transgenic cotton in pink bollworm. Proc. Natl. Acad. Sci. USA, 2005, 43: 15389~15393.
    153. Tabashnik, B. E., A. J. Gassmann, D. W. Crowder, Y. Carriere. Insect resistance to Bt crops: evidence versus theory. Nat. Biotechnol, 2008, 21: 199~202.
    154. Tang, J. D., H. L. Collins, T. D. Metz, E. D. Earle. J. Z. Zhao, R. T. Roush, A. M. Shelton. Greenhouse tests on resistance management of Bt transgenic plants using refuge strategies. J. Econ. Entomol, 2001, 94: 240~247.
    155. Tang, J. D., S. Gilboa, R. T. Roush, A. M. Shelton. Inheritance, stability, and lack-of-fitness costs of field selection resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: plutellidae) from Florida. J. Econ. Entomol, 1997, 90: 732~741.
    156. Tang, J. D., H. L.Collins, R. T.Roush, T. D. Metz, E. D. Earle, A. M. Shelton. Survival, weight gain, and oviposition of resistant and susceptible Plutella xylostella (L.) on broccoli expressing Cry1Ac toxin of Bacillus thuringiensis. J. Econ. Entomol, 1999, 92: 47~55.
    157. Taylor, C. E., F. Quaglia, G. P. Georghiou. Evolution of resistance to insecticides: A cage study on the influence of migration and insecticide dacay rates. J. Econ. Entomol, 1983, 76: 704~707.
    158. Trisyono, A., M. E. Whalon. Fitness costs of resistance to Bacillus thuringiensis in Colorado potato beetle (Coleoptera: Chrysomelidae). J. Econ. Entomol, 1997, 90: 267~271.
    159. Vadlamudi, R. K., E. Weber, Ji. Inhae. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J. Biol. Chem, 1995, 270: 5490~5494.
    160. Vadlamudi, R. K., T. H. Ji, L. A. Bulla. A special binding protein from Manduca sexta for the insecticidal toxin of Bacillus thuringiensis subsp. Berliner. J. Biol. Chem, 1993, 268: 12334~12340.
    161. Van Rie, J., S. Jansens, H. H?fte, D. Degheele. H. V. Mellaert. Receptors on the brush border membrane of the insect midgut as determimants of the specility of Bacillus thuringiensis delta-endotoxin. Appl. Environ. Microbiol, 1990, 56: 1378~1385.
    162. Van, Frankenhuyzen. K., C. W. Nystom, B. E. Tabashnik. Variation in tolerance to Bacillus thuringiensis among and within populations of the Spruce budworm (Lepidoptera: Torticidae) in Ontarin. J. Econ. Entomol, 1995, 88: 97~105.
    163. Van Rensburg JBJ. First report of field resistance by stem borer, Busseola fusca (Fuller) to Bt-transgenic maize S African J Plant Soil, 2007, 24:147~151.
    164. Venette. R. C., W. D. Hutchison, D. A. Andow. An in-field screen for early detection and monitoring of insect resistance to Bacillus thuringiensis in transgenic crops. J. Econ. Entomol, 2000, 93: 1055~1064.
    165. Wan, P., K. Wu., M. Huang, J. Wu. Seasonal pattern of infestation by pink bollworm Pectinophora gossypiella (Saunders) in field plots of Bt transgenic cotton in the Yangtze River valley of China. 2004, 23: 463~47.
    166. Wang, J., M. van Ginkel, D.W. Podlich, G. Ye, R. Trethowan, W.Pfeiffer, I. H. DeLacy, M. Cooper, S. Rajaram. Comparison of Two Breeding Strategies by Computer Simulation. Crop Sci, 2003, 43:1764~17634.
    167. Whalon, M. E., D. L. Miller, R. M. Hollingworth, E, J. Grafius, J. R. Miller. Selection of a Colorado potato beetle (Coleoptera: Chrysomelidae) strain resistant to Bacillus thuringiensis. J. Econ. Entomol, 1993, 86: 226~233.
    168. Williamson, V. M. and H. K. Kaya. Sequence of a symbiont. Nat.Biotechnol, 2003, 21: 1294~1295
    169. Wu, K., Y. Guo. The influence of gene flow between geographical populations on the evolution of insecticide resistance in Helicoverpa armigera. Acta Entomol, 1997, Sin. 40 (Suppl.): 30~34.
    170. Wu, K., Y. Guo. Changes in susceptible to conventional insecticides of a Cry1Ac-selected population of Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae). Pest Manag Sci, 2004, 60: 680~684.
    171. Wu K., Y. Guo, N. Lv, J. T. Greenplate, R. Deaton. Efficacy of transgenic cotton containing a Cry1Ac gene from Bacillus thuringiensis against Helicoverpa armigera (Lepidoptera: Noctuidae) in northern China. J. Econ. Entomol, 2003, 96:1322~1328.
    172. Wu, K., Y. Guo. The evolution of cotton pest management practices in China. Annu. Rev. Entomol, 2005, 50: 31~52.
    173. Wu, K., D. Cheng, G. Xu, B. Zhai, Y. Guo. Radar observation of autumn migration of insects in Northern China. Acta Ecologica Sinica, 2001, 21(11): 1833~1838.
    174. Wu, K., W. Mu, G. Liang, Y. Guo. Regional reversion of insecticide resistance in Helicoverpa armigera (Lepidoptera: Noctuidae) is associated with the use of Bt cotton in northern China. Pest. Manag. Sci, 2005, 61: 491~498.
    175. Wu K., Y. Guo, G. J. Head. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Noctuidae) to Bt insecticidal protein during 2001-2004 in China. J. Econ. Entomol, 2006, 99(3): 893~898.
    176. Wu, K. M., Y. H. Lu, H. Q. Feng, Y. Y. Jiang, J. Z. Zhao. Suppression of cotton bollworm in multiple crops in China in areas with Bt toxin-containing cotton. Science, 2008, 321: 1676~1678.
    177. Wu, K., Y. Guo, N. Lv. Geographic variation in susceptibility of Bacillus thuringiensis insecticidal protein in China. J. Econ. Entomol, 1999, 92: 273~278.
    178. Wu, K., Y. Guo, S. Gao. Evaluation of the natural refuge function for Helicoverpa armigera (Lepidoptera: Nocutuidae) within Bacillus thuringiensis transgenic cotton growing areas in northern China. J. Econ. Entomol, 2002, 95: 832~837.
    179. Wu, K., Y. Guo, N. Lv, J. T. Greenplate, R. Deaton. Resistance monitoring of Helicoverpa armigera to Bacillus thuringiensis insecticidal protein in China. J. Econ. Entomol, 2002, 95: 826~831.
    180. Wu, K., Y. Guo, G. Head. Resistance monitoring of Helicoverpa armigera (Lepidoptera: Nocutuidae) to Bt insecticidal protein during 2001-2004 in China. J. Econ. Entomol, 2004, 99: 893~898.
    181. Wu, K. Monitoring and management strategy for Helicoverpa armigera resistance to Bt cotton in China. J. Invertebr. Pathol, 2007, 95: 220~223.
    182. Wu, K., Y. Guo, Y. Wu. Ovarian development of adult females of cotton bollworm and its relation to migratory behavior around Bohai Bay of China. Acta Ecologica Sinica, 2002, 22: 1075~1078.
    183. Xu, X., L.Yu, Y. Wu. Disruption of a Cadherin Gene Associated with Resistance to Cry1Acδ-Endotoxin of Bacillus thuringiensis in Helicoverpa armigera. Appl. Environ. Microbiol, 2005, 71(2): 948~954.
    184. Yang, Y., H. Chen, Y. Wu, Y. Yang, S. Wu . Mutated cadherin alleles from a field population of Helicoverpa armigera confer resistance to Bacillus thuringiensis toxin Cry1Ac. Appl. Environ. Microbiol, 2007, 73(21): 6939~6944.
    185. Yue, B., F. Huang, B. Leonard, S. Moore, D. Andow, D. Cook, K, Emfinger, D. Lee. Screening rare Bt resistance alleles in field population of sugarcane borer (Lepidoptera: Crambidae) using hybridization with a resistant strain. Entomol. Exp. Appl, 2008 (Submitted).
    186. Zhao, J. Z., J. Cao, H. L. Collins, R. T. Roush, E. D. Earle, A. M. Shelton. Transgenic plants expressing two Bacillus thuringiensis toxin delay insect resistance evolution. Nat. Biotechnol, 2003, 21: 1493~1497.
    187. Zhao, J. Z., H. L. Collins, J. D. Tang, J. Cao, E. D. Earle, R. T. Roush, R. T., Escriche, B., J. Ferré, A. M. Shelton. Development and characterization of diamondback moth resistance to transgenic broccoli expressing high levels of Cry1c. Apply. Environ. Microbiol, 2000, 66: 3784~3789.
    188. Zhao, J. Z., J. Cao, H. L.Collins, S. L. Bates, R. T.Roush, E. D. Earle, A. M. Shelton. Concurrent use of transgenic plants expressing a single and two Bacillus thuringiensis genes speeds insect adaptation to pyramided plants. Proc. Natl. Acad. Sci. U S A, 2005, 102: 8426~8430.
    189. Zhang, S.P., H. M. Cheng, Y. L. Gao, G. R.Wang, G. M. Liang, K. M. Wu. Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin, Insect Biochem. Mol. Biol, 2009 (In press).
    190. Zhou, L., Y. Fang, and J. Yang. Investigation on artificial diet in Heliothis armigera. Acta Entomol. Sin, 1981, 24: 108~110.
    191. Zhu, Y. C., F. Y. Liu, Z. P. Xu, J. H. Chang, C. A. Abel, J. L. Shen. A modified F1 screening method for datecting resistance gene alleles to Bt cotton in Helicoverpa armigera (Lepidoptera: Noctuidae). J. Entomol. Sci, 2008, 43(3): 311~319.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700