用户名: 密码: 验证码:
9p21.3多态性位点与中国汉族人群冠心病、2型糖尿病的关联研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的冠心病和2型糖尿病都是由遗传因素和环境因素共同作用的复杂性疾病,两者有着类似的发生基础,严重危害人类健康并成为国民经济的重大负担。现阶段,以单核苷酸多态性(single nucleotide polymorphisms,SNPs)为基础的全基因组关联分析(genome-wide association analysis studies,GWAS)是当今复杂性疾病遗传学研究的重要方法。2007年GWAS发现位于人类9号染色体短臂2区1带3亚带(9p21.3)的SNPs可增加冠心病/心梗和2型糖尿病的发病风险,其中rs10116277与rs1333049位于两个相邻的单体型区域,分别是rs10116277与rs1333049之间44-kb的冠心病危险区域和rs10965243与rs10757283之间4kb的2型糖尿病危险区域。最近,两项以欧洲人群为基础的关联研究发现这两个单体型区域可能通过不同的机制来增加冠心病和2型糖尿病的发病风险。由于2型糖尿病与冠心病可能有着共同的遗传基础,因此我们假设上述2型糖尿危险区域在中国汉族人群中与冠心病也存在关联,并通过中国汉族人群大样本病例对照关联分析,以进一步复制9p21.3上2型糖尿病的GWAS易感位点,同时分析这一位点上的SNPs与冠心病的关联性。
     方法本研究以中国汉族人群为研究对象,共入选379例2型糖尿病患者,1093例冠心病患者和1695例对照个体,采用高分辨率溶解曲线(high resolution meltanalysis technology,HRM)进行两个阶段(two-stage)的关联分析研究:第一阶段,对包含379例2型糖尿病,496例冠心病和849例对照个体的中国中部人群进行分析,研究rs2383208,rs10811661和rs10757283与2型糖尿病、冠心病的关联性;第二阶段,对包含597例冠心病和846例对照个体的中国北部人群进行分析,以验证rs2383208,rs10811661和rs10757283与冠心病的关联性。最后,对1093例冠心病患者冠状动脉粥样硬化狭窄的严重程度进行Gensini评分,并通过数值变量关联分析和四分位法的病例对照关联分析,研究rs2383208,rs10811661和rs10757283与Gensini分值之间的关联性。采用多因素logistic回归分析和多元线性回归分析校正传统危险因素(如年龄、性别、吸烟、体重指数、血脂等)对关联分析结果的影响。
     结果在中国汉族人群中,两个SNPs(rs10811661和rs10757283)与2型糖尿病持续关联(rs10811661-T,P=0.020,OR=1.23,95%CI:1.03–1.47,P-adj=0.021;rs10757283-C,P=0.003,OR=1.30,95%CI:1.09–1.54,P-adj=0.004);同时,它们也与冠心病相关(stage1:rs10811661-T,P=0.030,OR=1.19,95%CI:1.02–1.40,P-adj=0.048;rs10757283-C,P=0.026,OR=1.20,95%CI:1.02–1.40,P-adj=0.013;Stage2:rs10811661-T,P=0.028,OR=1.18,95%CI:1.02–1.38,P-adj=0.031;rs10757283-C,P=0.039,OR=1.17,95%CI:1.01–1.36,P-adj=0.035)。其中,rs10811661和rs10757283与冠心病的关联最显著(rs10811661-T,P=0.002,OR=1.19,95%CI:1.06–1.33, P-adj=0.003; rs10757283-C, P=0.003, OR=1.18,95%CI:1.06–1.32,P-adj=0.001)。而rs2383208与糖尿病不关联(P>0.1),与冠心病仅在合并群体中显示接近于阳性的关联性P值(rs2383208-G,P=0.058,OR=1.11,95%CI:1.00–1.24)。最后,三个SNPs中仅rs10757283与冠心病患者的冠状动脉粥样硬化严重程度的Gensini分值相关联(rs10757283-C:线性回归分析P=2.48×10-9,P-adj=0.002;四分位法病例对照关联分析,4thvs.1st,P=2.48×10-10,OR=2.09,95%CI:1.65–2.64,P-adj=0.006)。
     结论首先,我们发现9p21.3基因座上rs10811661和rs10757283在中国汉族人群中与2型糖尿病持续关联,且与之前研究报道的危险效应大小一致(OR=1.2-1.3)。其次,我们证实该糖尿病危险区域也是冠心病的一个新的易感位点,且可能通过不同机制参与冠心病的发生和发展。最后,我们发现rs10757283可能同时影响冠状动脉粥样硬化的进展和冠心病的发病风险。而进一步分析UCSC和Genevar数据库发现,以rs10811661和rs10757283为代表的9p21.3区域内没有已知基因,但却有大量的基因表达调控元件如增强子等存在,且rs10757283可调节其下游基因DMRTA1的表达。因此,我们可以推测以rs10811661和rs10757283为代表的9p21.3基因座可能通过调节DMRTA1基因的表达而参与冠心病和2型糖尿病的发生和发展,具体的分子遗传学机制有待进一步的研究探讨。
     综上,本研究在以往全基因组关联分析结果的基础上,采用大样本的病例对照关联分析验证方法,首次发现了中国汉族人群冠心病和2型糖尿病的共同易感位点——以rs10811661和rs10757283为代表的9p21.3区域,其中rs10757283与冠心病患者冠状动脉粥样硬化的严重程度密切相关。这是我国乃至世界上冠心病和2型糖尿病防治研究领域的一项重要突破,为进一步开展两重大复杂性疾病的防治研究提供了崭新的科学依据。
Objective Leading by interactions among multiple genetic and environmental factors,coronary artery disease and type2diabetes are two main major disorders, which seriouslyreduce the people’s quality of life and become the great burden of the national economy. Atpresent, the genome-wide association analysis studies (GWAS) based on single nucleotidepolymorphisms (SNPs) become the important method of the genetic research for complexdisorders. In2007, GWAS have reported that the9p21.3locus associated with coronaryartery disease and myocardial infarction, as well as type2diabetes, and rs10116277andrs1333049located separately on the two adjacent haplotype blocks (44-kb coronary arterydisease block from rs10116277to rs1333049and4-kb type2diabetic block fromrs10965243to rs10757283). Most recently, two studies based on European populations alsoreported that the two blocks might contribute to the risk of the two disorders in differentways. As type2diabetes and coronary artery disease has possible common genetic basis,we hyperthesised that there might be common genetic antecedents between type2diabetesand coronary artery disease in the type2diabetic risk locus. Therefore, we investigated alarge scale case-control association analysis study in Chinese Han population, in order tofurther replicate type2diabetic GWAS SNPs on9p21.3, as well as to analysis theassociation between these SNPs and coronary artery disease.
     Methods Based on the Chinese Han population, we toltally selected379type2diabetes,1093coronary artery diseases and1695control subjects, used the high resolution meltanalysis technology (HRM) and finished2-stage association analysis: In stage-1, westudied379type2diabetes,496coronary artery diseases and849controls in theGeneID-Central-China cohort, to analysis the association of rs2383208, rs10811661andrs10757283with coronary artery disease, as well as type2diabets. In stage-2, we studied597coronary artery diseases and846controls in the GeneID-Northern-China cohort and tovalidate the association of the SNPs with coronary artery disease. We also estimated theseverity of atherosclerosis in all subjects with coronary artery disease by the Gensiniscoring system, and investigated the association between the selected SNPs and the Gensiniscores by liner regression analysis and quartile case-controal analysis. The traditional risk factors, such as age, sex, smoking, BMI, cholestroal and so on, were adjusted by multiplelogistic regression analysis and multiple linear regression analysis.
     Results Two SNPs (rs10811661and rs10757283) were continuously associated with type2diabetes (rs10811661-T, P=0.020, OR=1.23,95%CI:1.03–1.47, P-adj=0.021;rs10757283-C, P=0.003, OR=1.30,95%CI:1.09–1.54, P-adj=0.004). At the same time,theyalso assocated with coronary artery disease (stage-1, rs10811661-T, P=0.030, OR=1.19,95%CI:1.02–1.40, P-adj=0.048; rs10757283-C, P=0.026, OR=1.20,95%CI:1.02–1.40,P-adj=0.013; Stage-2, rs10811661-T, P=0.028, OR=1.18,95%CI:1.02–1.38, P-adj=0.031;rs10757283-C, P=0.039, OR=1.17,95%CI:1.01–1.36, P-adj=0.035). Here, the associationof rs10811661and rs10757283with coronary artery disease were the most significant(rs10811661-T, P=0.002, OR=1.19,95%CI:1.06–1.33, P-adj=0.004; rs10757283-C,P=0.003, OR=1.18,95%CI:1.06–1.32, P-adj=0.001). Though negatively asscoated withthe two diseases in the separate cohort with P values more than0.1, rs2383208gained anear signifcant association result in the combined population for coronary artery disease(rs2383208-G, P=0.058, OR=1.11,95%CI:1.00–1.24, P-adj=0.061). In the end, onlyrs10757283was significantly associated with the Gensini scors in the patients withcoronary artery disease (rs10757283-C: liner regression analysis, P=2.48×10-9, β=0.267,P-adj=0.002; case-control analysis based on Quartile analysis,4thvs.1st, P=9.50×10-10, OR=2.09,95%CI:1.65–2.64, P-adj=0.006).
     Conclusions Firstly, we found that rs10811661and rs10757283on9p21.3werecontinuously associated with type2diabetes in Chinese Han population, which was inaccordance with previous studies in risk effect (OR=1.2-1.3). Secondly, we demonstratedthat the same diabetic region was a novel risk locus for coronary artery disease, whichmight function in a different way. Finally, we found that rs10757283might both influencethe atherosclerosis development and increase coronary artery disease risk in Chinese Hanpopulation. Further studies based on the UCSC and Genevar database indicated the9p21.3locus represented by rs10757283and rs10811661has no known genes, but lots of geneexpression regulation elements, such as enhancer. And rs10757283could regulate theexpression of its downstream gene DMTRA1. Therefore, we may conclude that the9p21.3risk locus, represented by rs10811661and rs10757283, might influence the development of coronary artery diseases and type2diabetes by regulating the expression of DTMRA1.Further studies are needed to clarify the specific molecular biological mechanisms,
     Above all, based on the previous GWAS works, we performed the large scalecase-control association analysis, and for the first time found the common genetic risk locus(9p21.3represented by rs10811661and rs10757283) for coronary artery disease and type2diabetes. And rs10757283was also correlated with the severity of coronary atherosclerosis.This is an important breakthrough in the field of studies on the two complex disorders inChina even all over the world, which provides a new scientific basis for the furtherprevention and treatment research on coronary artery disease and type2diabetes.
引文
1. Roger VL, Go AS, Lloyd-Jones DM, et al. American Heart Association StatisticsCommittee and Stroke Statistics Subcommittee. Heart disease and strokestatistics—2012update: a report from the American Heart Association. Circulation2012;125:2-220.
    2. He J, Gu D, Wu X, et al. Major causes of death among men and women in China. N.Engl. J. Med2005;353:1124-34.
    3.汪樊.中国汉族人群冠心病全基因组关联分析[学位论文]2011。
    4. Marenberg ME, Risch N, Berkman LF, et al. Genetic susceptibility to death fromcoronary heart disease in a study of twins. N Engl J Med1994;330:1041-1046.
    5. Zdravkovic S, Wienke A, Pedersen NL, et al. Heritability of death from coronary heartdisease: a36-year follow-up of20966Swedish twins. J Intern Med2002;252:247-254.
    6. Zdravkovic S, Wienke A, Pedersen NL, et al. Genetic infuences on angina pectoris andits impact on coronary heart disease. Eur J Hum Genet2007;15:872-877.
    7. Wang L, Fan C, Topol SE, et al. Mutation of MEF2A in an inherited disorder withfeatures of coronary artery disease. Science2003;302(5650):1578-81.
    8. Mani A, Radhakrishnan J, Wang H, et al. LRP6mutation in a family with earlycoronary disease and metabolic risk factors. Science2007;315(5816):1278-82.
    9. Wang L, Houser ER, Shah SH, et al. Peakwide Mapping on Chromosome3q13Identifes the Kalirin Gene as a Novel Candidate Gene for Coronary Artery Disease.Am J Hum Genet2007;80:650–663.
    10. Girelli D, Martinelli N, Trabetti E, et al. ALOX5AP gene variants and risk of coronaryartery disease: an angiography-based study. European Journal of Human Genetics2007;15(9):959-966.
    11. Samani NJ, Erdmann J, Hall AS, et al. WTCCC and the Cardiogenics Consortium.Genomewide association analysis of coronary artery disease. N Engl J Med2007;357:443–453.
    12. Clarke R, Peden JF, Hopewell JC, et al.; PROCARDIS Consortium. Genetic variantsassociated with Lp(a) lipoprotein level and coronary disease. N Engl J Med2009;361:2518–2528.
    13. Erdmann J, Grosshennig A, Braund PS, et al.; Italian Atherosclerosis, Thrombosis, andVascular Biology Working Group; Myocardial Infarction Genetics Consortium;Wellcome Trust Case Control Consortium; Cardiogenics Consortium, Deloukas P,Thompson JR, Ziegler A, Samani NJ, Schunkert H. New susceptibility locus forcoronary artery disease on chromosome3q22.3. Nat Genet2009;41:280–282.
    14. Myocardial Infarction Genetics Consortium, Kathiresan S, Voight BF, Purcell S,Musunuru K, et al. Genome-wide association of early-onset myocardial infarction withsingle nucleotide polymorphisms and copy number variants. Nat Genet2009;41:334–341.
    15. Soranzo N, Spector TD, Mangino M, et al. A genome-wide meta-analysis identifies22loci associated with eight hematological parameters in the HaemGen consortium. NatGenet2009;41:1182–1190.
    16. Schunkert H, K nig IR, Kathiresan S, et al. Large-scale association analysis identifies13new susceptibility loci for coronary artery disease. Nat Genet2011;43:333–338.
    17. Coronary Artery Disease (C4D) Genetics Consortium. A genome-wide associationstudy in Europeans and South Asians identifies five new loci for coronary arterydisease. Nat Genet2011;43:339–344.
    18. Wang F, Xu CQ, He Q, et al. Genome-wide association identifies a susceptibility locusfor coronary artery disease in the Chinese Han population. Nat Genet2011;43:345-9.
    19. The IBC50K CAD Consortium. Large-scale gene-centric analysis identifies novelvariants for coronary artery disease. PLoS Genet2011;7(9):e1002260.
    20. Lu X, Wang L, Chen S, et al. Genome-wide association study in Han Chinese identifiesfour new susceptibility loci for coronary artery disease. Nat Genet2012;44:890-894.
    21. CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg C,.Large-scale association analysis identifies new risk loci for coronary artery disease.Nat Gene2013;45(1):25-33.
    22. Roberts R, Marian AJ, Dandona S, Stewart AFR. Genomics in Cardiovascular Disease.J Am Coll Cardiol2013;doi:10.1016/j.jacc.2012.12.054.
    23. Peden JF, Farrall M. Thirty-five common variants for coronary artery disease: the fruitsof much collaborative labour. Hum Mol Genet2011;20:R198-205.
    24. Prins BP, Lagou V, Asselbergs FW, Snieder H, Fu J. Genetics of coronary artery disease:Genome-wide association studies and beyond. Atherosclerosis2012;225:1-10.
    25. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for2010and2030. Diabetes Res Clin Pract2010;87:4–14.
    26. Hanis CL. Genetics of non-insulin-dependent diabetes among Mexican Americans:approaches and perspectives. In Genetic Approaches to Noncommunicable Diseases.Berg K, Boulyjenkov V, Christen Y, Eds. Springer-Verlag, Berlin Heidelberg.1996.
    27. Das SK, ElbeinSC. The genetic basis of type2diabetes. Cell Sci2006;2(4):100–131.
    28. McIntyre EA, Walker M. Genetics of type2diabetes and insulin resistance: knowledgefrom human studies. Clin Endocrinol (Oxf)2002;57(3):303–311.
    29. Barnett AH, Eff C, Leslie RD, Pyke DA. Diabetes in identical twins. A study of200pairs. Diabetologia1981;20:87–93.
    30. Newman B, Selby JV, King MC, et al. Concordance for type2(non-insulin dependent)diabetes in male twins. Diabetologia1987;30:763–768.
    31. Kaprio J, Tuomilehto J, Koskenvuo M, et al. Concordance for type1(insulin-dependent) and type2(non-insulin-dependent) diabetes in apopulation-based cohort of twins in Finland. Diabetologia1992;35:1060–1067.
    32. Lo SS, Tun RY, Hawa M, Leslie RD. Studies of diabetic twins. Diabetes Metab Rev.1991;7:223–238.
    33. Medici F, Hawa M, Ianari A, Pyke DA, Leslie RD. Concordance rate for type IIdiabetes in monozygotic twins: actuarial analysis. Diabetologia1999;42:146–150.
    34. Kobberling, JTH. Emperical risk figures of first degree relatives of non-insulindependent diabetes. London: Academic Press;1982.
    35. Risch N. Linkage strategies for genetically complex traits. III. The effect of markerpolymorphism on analysis of affected relative pairs. Am J Hum Genet1990;46:242–253.
    36. Lander ES, Schork NJ. Genetic dissection of complex traits. Science1994;265:2037–2048.
    37. Barroso I. Genetics of Type2diabetes. Diabet Med2005;22:517–535.
    38. Zeggini E. A new era for Type2diabetes genetics. Diabet Med2007;24:1181–1186.
    39. Barroso I, Luan J, Middelberg RP, et al. Candidate gene association study in type2diabetes indicates a role for genes involved in beta-cell function as well as insulinaction. PLoS Biol2003;1:E20.
    40. Ghosh S, Schork NJ. Genetic analysis of NIDDM. The study of quantitative traits.Diabetes1996;45:1–14.
    41. Elbein SC. The genetics of human noninsulin-dependent (type2) diabetes. J Nutr1997;127:1891S–1896S.
    42. Frayling TM. Anew era in fnding type2diabetes genes: the unusual suspects. DiabetMed2007;24:696–701.
    43. Frayling TM. Genome-wide association studies provide new insights into type2diabetes aetiology. Nat Rev Genet2007;8:657–662.
    44. Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide associationsignals in UK samples reveals risk loci for type2diabetes. Science2007;316:1336–1341.
    45. Saxena R, Voight BF, Lyssenko V, et al.; Diabetes Genetics Initiative of Broad Instituteof Harvard and MIT, Lund University, and Novartis Institutes of BioMedical Research.Genome-wide association analysis identifes loci for type2diabetes and triglyceridelevels. Science2007;316:1331–1336
    46. Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type2diabetes in Finns detects multiple susceptibility variants. Science2007;316:1341–1345.
    47. Sladek R, Rocheleau G, Rung J, et al. A genome-wide association study identifes novelrisk loci for type2diabetes. Nature2007;445:881–885.
    48. Wellcome Trust Case Control Consortium. Genome-wide association study of14,000cases of seven common diseases and3,000shared controls. Nature2007;447:661–678.
    49. Steinthorsdottir V, Thorleifsson G, Reynisdottir I, et al. A variant in CDKAL1infuences insulin response and risk of type2diabetes. Nat Genet2007;39:770–775.
    50. Ying Wu, Li H, Loos RJ, et al. Common Variants in CDKAL1, CDKN2A/B, IGF2BP2,SLC30A8, and HHEX/IDE Genes Are Associated With Type2Diabetes and ImpairedFasting Glucose in a Chinese Han Population. Diabetes2008;57:2834–2842.
    51. Palmer ND, Goodarzi MO, Langefeld CD, et al. Quantitative trait analysis of type2diabetes susceptibility loci identifed from whole genome association studies in theInsulin Resistance Atherosclerosis Family Study. Diabetes2008;57:1093–1100.
    52. Staiger H, Machicao F, Stefan N, et al. Polymorphisms within novel risk loci for type2diabetes determine beta-cell function. PLoS ONE2007;2:e832.
    53. Grarup N, Rose CS, Andersson EA, et al. Studies of association of variants near theHHEX, CDKN2A/B and IGF2BP2genes with type2diabetes and impaired insulinrelease in10,705Danish subjects validation and extension of genome-wide associationstudies. Diabetes2007;56:3105–3111.
    54. Consortium, T.I.H., A haplotype map of the human genome. Nature,2005.437: p.1299–1320.
    55. International HapMap consortium, Frazer KA, Ballinger DG, Cox DR, et al. A secondgeneration human haplotype map of over3.1million SNPs. Nature2007;449:851–861.
    56. Pajunen P, Koukkunen H, Ketonen M, et al. Five-year risk of developing clinicaldiabetes after frst myocardial infarction; the FINAMI study. Diabet Med2005;22:1334-1337.
    57. Mozaffarian D, Marfsi R, Levantesi G, et al. Incidence of new-onset diabetes andimpaired fasting glucose in patients with recent myocardial infarction and the effect ofclinical and lifestyle risk factors. Lancet2007;370:667-675.
    58. Wagenknecht LE, Bowden DW, Carr JJ, et al. Familial aggregation of coronary arterycalcium in families with type2diabetes. Diabetes2001;50:861–866
    59. Stern MP. Diabetes and cardiovascular disease: the “common soil” hypothesis.Diabetes1995;44:369–374.
    60. Watkins H, Farrall M. Genetic susceptibility to coronary artery disease:from promise toprogress. Nat Rev Genet2006;7:163-173.
    61. Prokopenko I, McCarthy MI, Lindgren CM. Type2diabetes: new genes, newunderstanding. Trends Genet2008;24:613-621.
    62. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant on chromosome9p21affects the risk of myocardial infarction. Science2007;316:1491-1493.
    63. Helgadottir A, Thorleifsson G, Magnusson KP, et al. The same sequence variant on9p21associates with myocardial infarction, abdominal aortic aneurysm andintracranial aneurysm. Nat Genet2008;40:217–224.
    64. Silander K, Tang H, Myles S, et al. Worldwide patterns of haplotype diversity at9p21.3,a locus associated with type2diabetes and coronary heart disease (Abstract). GenomeMed2009;1:51.
    65. Broadbent HM, Peden JF, Lorkowski S, et al.; PROCARDIS consortium.Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightlylinked SNPs in the ANRIL locus on chromosome9p. Hum Mol Genet2008;17:806–814.
    66. Gori F, Specchia C, Pietri S, et al.; GISSI Prevenzione Investigators; SIBioCGISSIPrevenzione Group. Common genetic variants on chromosome9p21are associatedwith myocardial infarction and type2diabetes in an Italian population. BMC MedGenet2010;11:60.
    67. Cho YM, Kim TH, Lim S, et al. Type2diabetes-associated genetic variants discoveredin the recent genome-wide association studies are related to gestational diabetes in theKorean population. Diabetologia2009;52:253–261.
    68. Lee YH, Kang ES, Kim SH, et al. Association between polymorphisms in SLC30A8,HHEX, CDKN2A/B, IGF2BP2, FTO, WFS1, CDKAL1, KCNQ1and type2diabetesin the Korean population. J Hum Genet2008;53:991–998.
    69. Omori S, Tanaka Y, Takahashi A, et al. Association of CDKAL1, IGF2BP2,CDKN2A/B, HHEX, SLC30A8, and KCNJ11with susceptibility to type2diabetes ina Japanese population. Diabetes2008;57:791–795.
    70. Horikawa Y, Miyake K, Yasuda K, et al. Replication of genome-wide associationstudies of type2diabetes susceptibility in Japan. J Clin Endocrinol Metab2008;93:3136–3141.
    71. Takeuchi F, Serizawa M, Yamamoto K, et al. Confrmation of multiple risk Loci andgenetic impacts by a genome-wide association study of type2diabetes in the Japanesepopulation. Diabetes2009;58:1690–1699.
    72. Tabara Y, Osawa H, Kawamoto R, et al. Replication study of candidate genesassociated with type2diabetes based on genome-wide screening. Diabetes2009;58:493–498.
    73. Ng MC, Park KS, Oh B, et al. Implication of genetic variants near TCF7L2, SLC30A8,HHEX, CDKAL1, CDKN2A/B, IGF2BP2, and FTO in type2diabetes and obesity in6,719Asians. Diabetes2008;57:2226–2233.
    74. Shi L, Li C, Wang C, et al. Assessment of association of rs2200733on chromosome4q25with atrial fbrillation and ischemic stroke in a Chinese Han population. HumGenet2009;126:843–849.
    75. Cheng X, Shi L, Nie S, et al. The Same Chromosome9p21.3Locus Is Associated WithType2Diabetes and Coronary Artery Disease in a Chinese Han Population. Diabetes2011;60:680-684.
    76. Xu C, Wang F, Wang B, et al. Minor allele C of chromosome1p32single nucleotidepolymorphism rs11206510confers risk of ischemic stroke in the Chinese Hanpopulation. Stroke2010;41:1587-92.
    77. American Diabetes Association. Standards of medical care in diabetes—2008.Diabetes Care2008;31(Suppl.1):S12–S54.
    78. Shen GQ, Li L, Rao S, et al. Four SNPs on chromosome9p21in a South Koreanpopulation implicate a genetic locus that confers high cross-race risk for developmentof coronary artery disease. Arterioscler Thromb Vasc Biol2008;28:360–365.
    79. Kapur A, Hall RJ, Malik IS, et al. Randomized comparison of percutaneou coronaryintervention with coronary artery bypass grafting in diabetic patients.1-year results ofthe CARDia (Coronary Artery Revascularization in Diabetes) trial. J Am Coll Cardiol2010;55:432–440.
    80. Mancia G, De Backer G, Dominiczak A, et al.; Management of Arteria Hypertension ofthe European Society of Hypertension; European Society of Cardiology.2007Guidelines for the Management of Arterial Hypertension: The Task Force for theManagement of Arterial Hypertension of the European Society of Hypertension (ESH)and of the European Society of Cardiology (ESC). J Hypertens2007;25:1105–1187.
    81. Ye S, Willeit J, Kronenberg F, Xu Q, Kiechl S. Association of genetic variation onchromosome9p21with susceptibility and progression of atherosclerosis: apopulation-based, prospective study. J Am Coll Cardiol2008;52:378–384.
    82. Wilson PW, D'Agostino RB, Levy D, et al. Prediction of coronary heart disease usingrisk factor categories. Circulation1998;97:1837–1847.
    83. Leaman DM, Brower RW, Meester GT, et al. Coronary artery atherosclerosis: Severityof the disease, severity of angina pectoris and compromised left ventricular function.Circulation1981;63:285–299.
    84. Gensini G. A more meaningful scoring system for determining the severity of coronaryheart disease. Am J Cardiol1983;51:606.
    85. Guidelines for coronary angiography. A report of the American College ofCardiology/American Heart Association Task Force on Assessment of Diagnostic andTherapeutic Cardiovascular Procedures (Subcommittee on Coronary Angiography). JAm Coll Cardiol1987;10:935–950.
    86. Spears JR, Sandor T, Als AV, et al. Computerized image analysis for quantitativemeasurement of vessel diameter from cineangiograms. Circulation1983;68:453–461.
    87. Eigler N, Praff JM, Whiting J, et al. The role of digital angiography in the evaluation ofcoronary artery disease. Int J Cardiol1986;10:3-13.
    88. Gang Huang, Zhao JL, Du H, et al. Coronary Score adds Prognostic Information forPatientsWith Acute Coronary Syndrome. Circ J2010;74:490–495.
    89. Gensini G. Coronary arteriography In Heart Diseae. Braunwald E, ed. Philadelphia:WB Saunders1980:352-353.
    90. The Interleukin-6Receptor Mendelian Randomisation Analysis (IL6R MR)Consortium: Swerdlow DI, Holmes MV, Kuchenbaecker KB, et al. The interleukin-6receptor as a target for prevention of coronary heart disease: a mendelianrandomisation analysis. Lancet2012;379:1214–24.
    91. Dupont WD, Plummer WD Jr. Power and sample size calculations. A review andcomputer program. Control Clin Trials1990;11:116–128.
    92. Nielsen DM, Ehm MG, and Weir BS. Detecting marker-disease association by testingfor Hardy-Weinberg disequilibrium at a marker locus. The American Journal of HumanGenetics1998;63(5):1531-1540.
    93. Guo SW, Thompson EA. Performing the exact test of Hardy-Weinberg proportion formultiple alleles. Biometrics1992;48(2):361-372.
    94. Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genomeassociation and population-based linkage analyses. Am J Hum Genet2007;81:559-575.
    95. Lancaster HO, Seneta E. Chi?Square Distribution.1969.
    96. Truett J, Cornfield J, Kannel W. A multiple analysis of the risk of coronary heartdisease in Framingham. J Chronic Dis1967;20:5112-524.
    97.孙振球,医学统计学.人民卫生出版社,2005.
    98. MICHAEL JR. The stablized probability plot. Biometrika1983;70(1):11-17.
    99.武东,费鹤良,汤银才,PP图及其在可靠性中的应用.上海师范大学学报(自然科学版)2004;33(2):13-1.
    100. Bradley RA. Obitutary: Frank Wilcoxon. Biometrics1966;22(1):192-194.
    101. Karas J, Savage R. Publications of Frank wilcoxon(1892-1965). Biometrics1967;23(1):1-10.
    102. Reich DE, Cargill M, Bolk S, et al. Linkage disequilibrium in the human genome.Nature2001;411(6834):199-204.
    103. Yang TP, Beazley C, Montgomery SB, et al. Genevar: a database and Java applicationfor the analysis and visualization of SNP-gene associations in eQTL studies.Bioinformatics (Oxford, England)2010;26(19):2474-6.
    104. Kompass KS, Witte JS. Co-Regulatory Expression Quantitative Trait Loci Mapping:Method and Application to Endometrial Cancer. BMC Med Genomics2011;4(1):6.
    105. Wang P, Dawson JA, Keller MP, et al. A Model Selection Approach for ExpressionQuantitative Trait Loci (eQTL) Mapping. Genetics2011;187(2):611-21.
    106. Wang J, Yu H, Xie W, et al. A global analysis of QTLs for expression variations in riceshoots at the early seedling stage. Plant J2010;63(6):1063-74.
    107. Ponsuksili S, Murani E, Schwerin M, et al. Identification of expression QTL (eQTL) ofgenes expressed in porcine M. longissimus dorsi and associated with meat quality traits.BMC Genomics2010;11:572.
    108. Majewski J, Pastinen T. The study of eQTL variations by RNA-seq: from SNPs tophenotypes. Trends Genet2011;27(2):72-9.
    109. Zhou L, Zhang X, He M, et al. Associations between single nucleotide polymorphismson chromosome9p21and risk of coronary heart disease in Chinese Han population.Arterioscler Thromb Vasc Biol2008;28:2085-2089.
    110. Yang XC, Zhang Q, Chen ML, et al. MTAP and CDKN2B genes are associated withmyocardial infarction in Chinese Hans. Clin Biochem2009;42:1071-1075.
    111. Ding H, Xu Y, Wang X, et al.9p21Is a shared susceptibility locus strongly for coronaryartery disease and weakly for ischemic stroke in Chinese Han population. CircCardiovasc Genet2009;2:338–346.
    112. Libby P, Theroux P. Pathophysiology of coronary artery disease. Circulation2005;111:3481-3488
    113. Nica AC, Parts L, Glass D, et al. and MuTHER Consortium. The architecture of generegulatory variation across multiple human tissues: the MuTHER study. PLoS genetics2011;7(2):e1002003.
    114. Ottolenghi C, Fellos M, Barbieri M, et al. Novel paralogy relations among humanchromosomes support a link between the phylogeny of doublesex-related genes and theevolution of sex determination. Genomics2002;79:333-343.
    1. Nussbaum RL, McInnes RRR, Willard HF, et al. Thompson&Thompson Genetics inMedicine.北京大学医学出版社.2007.
    2. McKusick VA. Online Medelian inheriantance in main: catalogs of autosomaldominant, autosomal recessive and X-linked phenotypes athttp://www3.ncbi.nlm.nib.gov.
    3. Hamosh A, Scott AF, et al. Online Mendelian Inheritance in Man (OMIM), aknowledgebase of human genes and genetic disorders. Nucl Acids Res2002;30(1):52-5.
    4. Marian A.J., Brugada R, Roberts R. Cardiovascular Diseases caused by GeneticAbnormalities. In: Fuster V, Walsh RA, Harrington RA, editors. Hurst's The Heart.13th ed. New York, NY: McGraw HIll;2011. p.1783-826.
    5. Lehmann, H., Klein, U. E. Familial sinus node dysfunction with autosomal dominantinheritance. Brit. Heart J1978;40:1314-1316.
    6. Marian AJ, Belmont J. Strategic approaches to unraveling genetic causes ofcardiovascular diseases. Circ Res2011;108(10):1252-69.
    7. Pennisi E. Genome sequencing. Search for pore-fection. Science2012;336(6081):534-7.
    8. Herman DS, Lam L, Taylor MR, et al. Truncations of titin causing dilatedcardiomyopathy. N Engl J Med2012;366(7):619-28.
    9. Norton N, Li D, Rieder MJ, et al. Genome-wide studies of copy number variation andexome sequencing identify rare variants in BAG3as a cause of dilated cardiomyopathy.Am J Hum Genet2011;88(3):273-82.
    10. Theis JL, Sharpe KM, Matsumoto ME, et al. Homozygosity mapping and exomesequencing reveal GATAD1mutation in autosomal recessive dilated cardiomyopathy.Circ Cardiovasc Genet2011;4(6):585-94.
    11. Galmiche L, Serre V, Beinat M, et al. Exome sequencing identifies MRPL3mutation inmitochondrial cardiomyopathy. Hum Mutat2011;32(11):1225-31.
    12. Harakalova M, van Harssel JJ, Terhal PA, et al. Dominant missense mutations inABCC9cause Cantu syndrome. Nat Genet;44(7):793-6.
    13. van de Laar IM, Oldenburg RA, Pals G, et al. Mutations in SMAD3cause a syndromicform of aortic aneurysms and dissections with early-onset osteoarthritis. Nat Genet2011;43(2):121-6.
    14. Comino-Mendez I, Gracia-Aznarez FJ, Schiavi F, et al. Exome sequencing identifiesMAX mutations as a cause of hereditary pheochromocytoma. Nat Genet2011;43(7):663-7.
    15. Granados-Riveron JT, Ghosh TK, Pope M, et al. Alpha-cardiac myosin heavy chain(MYH6) mutations affecting myofibril formation are associated with congenital heartdefects. Hum Mol Genet2010;19(20):4007-16.
    16. Chan L, Boerwinkle E. Gene-environment Interactions and Gene Therapy inAtherosclerosis. Cardiol Rev1994;2(3):130-7.
    17. Tiret L, Godefroy T, Lubos E, et al.; AtheroGene Investigators. Genetic analysis of theinterleukin-18system highlights the role of the interleukin-18gene in cardiovasculardisease. Circulation2005;112:643-650.
    18. van Minkelen R, Wettinger SB, de Visser MC, et al. Haplotypes of the interleukin-1receptor antagonist gene, interleukin-1receptor antagonist mRNA levels and the riskof myocardial infarction. Atherosclerosis2009;203:201-5.
    19. Blagodatskikh KA, Evdokimova MA, Agapkina IuV, et al. Gene IL-6G(-174)C andgene IL-10G(-1082)A polymorphisms are associated with unfavourable outcomes inpatients with acute coronary syndrome. Mol Biol (Mosk)2010;44:839-46.
    20. Chen Y, Huang H, Liu S, et al. IL-16rs11556218gene polymorphism is associatedwith coronary artery disease in the Chinese Han population. Clin Biochem2011;44:1041-4.
    21. Zhang X, Pei F, Zhang M, et al. Interleukin-17A gene variants and risk of coronaryartery disease: a large angiography-based study. Clin Chim Acta2011;412:327-31.
    22. The Interleukin-6Receptor Mendelian Randomisation Analysis (IL6R MR)Consortium: Swerdlow DI, Holmes MV, Kuchenbaecker KB, et al. The interleukin-6receptor as a target for prevention of coronary heart disease: a mendelianrandomisation analysis. Lancet2012;379:1214–24.
    23. Wang F, Xu CQ, He Q, et al. Genome-wide association identifies a susceptibility locusfor coronary artery disease in the Chinese Han population. Nat Genet2011;43:345-9.
    24. CARDIoGRAMplusC4D Consortium, Deloukas P, Kanoni S, Willenborg C,.Large-scale association analysis identifies new risk loci for coronary artery disease.Nat Gene2013;45(1):25-33.
    25. Califano A, Butte AJ, Friend S, et al. Leveraging models of cell regulation and GWASdata in integrative network-based association studies. Nat Genet2012;44(8):841-7.
    26. Zhong H, Yang X, Kaplan LM, et al. Integrating pathway analysis and genetics of geneexpression for genome-wide association studies. Am J Hum Genet2010;86(4):581-91.
    27. Ravasi T, Suzuki H, Cannistraci CV, et al. An atlas of combinatorial transcriptionalregulation in mouse and man. Cell2010;140(5):744-52.
    28. Roberts R, Marian AJ, Dandona S, Stewart AFR. Genomics in Cardiovascular Disease.J Am Coll Cardiol2013;doi:10.1016/j.jacc.2012.12.054.
    29. Kabesch M, Schedel M, Carr D, Woitsch B, Fritzsch C, Weiland SK, Mutius E.IL-4/IL-13pathway genetics strongly influence serum IgE levels and childhoodasthma. J allergy clin immunol2006;117:269-274.
    30. Meder B, Haas J, Keller A, et al. Targeted next-generation sequencing for themolecular genetic diagnostics of cardiomyopathies. Circ Cardiovasc Genet2011;4(2):110-22.
    31. Wallentin L, James S, Storey RF, et al. Effect of CYP2C19and ABCB1singlenucleotide polymorphisms on outcomes of treatment with ticagrelor versus clopidogrelfor acute coronary syndromes: a genetic substudy of the PLATO trial. Lancet2010;376(9749):1320-8.
    32. Mega JL, Close SL, Wiviott SD, et al. Cytochrome p-450polymorphisms and responseto clopidogrel. N Engl J Med2009;360(4):354-62.
    33. Roberts JD, Wells GA, Le May MR, et al. Point-of-care genetic testing forpersonalisation of antiplatelet treatment (RAPID GENE): a prospective, randomised,proof-of-concept trial. Lancet2012;379(9827):1705-11.
    34. Carlquist JF, Anderson JL. Using pharmacogenetics in real time to guide warfarininitiation: a clinician update. Circulation2011;124(23):2554-9.
    35. Anderson JL, Horne BD, Stevens SM, et al. A randomized and clinical effectivenesstrial comparing two pharmacogenetic algorithms and standard care forindividualizing warfarin dosing (CoumaGen-II). Circulation2012;125(16):1997-2005
    36. Link E, Parish S, Armitage J, et al The SEARCH Collaborative Group. SLCO1B1variants and statin-induced myopathy--a genomewide study. N Engl J Med2008;359(8):789-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700