用户名: 密码: 验证码:
金纳米颗粒在聚合物太阳能电池中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
将太阳能直接转化为电能的太阳能电池是解决当今世界日益严重的能源危机的一条重要途径。聚合物太阳能电池由于具有制备工艺简单、成本低廉、柔韧性好等优点,受到科学家们的广泛关注。然而聚合物太阳能电池相比于商业化的无机太阳能电池,其较低的能量转换效率仍然是制约其实用化的一个重要原因。影响聚合物太阳能电池效率提高的一个重要因素是其活性层的光吸收厚度远大于激子的扩散长度,导致活性层必须牺牲对光的吸收来保证激子的有效扩散。因此,如何在不增加活性层厚度的情况下增强光吸收是提高聚合物太阳能电池性能的一条有效途径。
     贵金属纳米材料具有独特的表面等离子体共振(LSPR)特性,LSPR可以在纳米晶体的周围产生一个强电磁场,而此电磁场作用于周围的物质可以增强它们的光吸收。这一特性使贵金属纳米材料成为提高聚合物太阳能电池光吸收能力的一种有效选择。本论文从金纳米颗粒(Au NPs)的合成和组装出发,以提高聚合物太阳能电池的性能为目标,开展了一系列的工作。
     论文第一章综述了聚合物太阳能电池的原理和器件结构,近几年来的研究进展,以及贵金属纳米材料在聚合物太阳能电池中的应用。
     论文第二章研究了Au NPs Langmuir-Blodgett (LB)单层薄膜的引入对聚合物太阳能电池(ITO/PEDOT:PSS/MEH-PPV:PCBM/Al, ITO:indium tin-oxide; PEDOT:PSS:poly3,4-ethylenedioxy-thiophene:polystyrenesulfonate; MEH-PPV: poly(2-mthoxy-5(2'-ethylhexyloxy)-1,4-phenylenevinylene); PCBM:[6,6]-phenyl-C61-butyric acid methyl ester)性能的影响,结果显示在聚合物太阳能电池的阳极与阳极界面修饰层之间引入氧化金纳米颗粒LB单层薄膜可以增强器件的性能。研究发现氧化金纳米颗粒单层薄膜的加入可以同时提高器件的短路电流Jsc和开路电压Voc,其中Jsc的提高主要源于金纳米颗粒薄膜的LSPR效应,而Voc的增加则归因于插入了高功函的氧化金纳米颗粒薄膜层。
     论文第三章研究了聚合物太阳能电池(ITO/PEDOT:PSS/P3HT:PCBM/Al, P3HT:poly(3-hexylthiophene))阳极界面修饰层(PEDOT:PSS)中掺杂不同粒径Au NPs对器件性能的影响。我们发现,只有当Au NPs粒径大于PEDOT:PSS层厚度时,Au NPs的LSPR效应才能引起活性层P3HT:PCBM吸收的增强;同时,Au NPs粒径的增大可以提高PEDOT:PSS薄膜表面粗糙度,增大其与活性层的接触面积,从而提高器件的空穴收集效率。但是,Au NPs粒径的进一步增大还会引起活性层形貌的变化,使给体/受体界面处的激子分离效率降低。因此,器件的Jsc和能量转化效率PCE的变化趋势是这两方面竞争的结果。
     论文第四章研究了聚合物太阳能电池(ITO/PEDOT:PSS/P3HT:PCBM/Al)活性层(P3HT:PCBM)中掺杂Au NPs对器件性能的增强作用。研究表明,随着加入Au NPs浓度或粒径的增大,聚合物太阳能电池活性层的吸收强度会逐渐增大;但是同时活性层中的激子分离效率会逐渐降低。另外,器件的载流子迁移率也会随入Au NPs浓度增大先增加后减小。
     论文第五章研究了Au NPs在有机-无机杂化太阳能电池(ITO/PEDOT:PSS/CdSe:PCPDTBT/Al, PCPDTBT:poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta [2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)])中的应用,将相同粒径的Au NPs分别掺杂于阳极界面修饰层(PEDOT:PSS)和活性层(CdSe:PCPDTBT)中,均可增强器件的性能。其中,PEDOT:PSS层掺杂低浓度Au NPs后,通过提高空穴的收集效率,使器件的效率从2.95%提高到了3.20%。而CdSe:PCPDTBT活性层掺杂低浓度Au NPs后,同时增加了活性层的光学吸收和空穴的迁移率,从而使器件的效率从2.91%提高到了3.16%。
Solar cell, which can directly convert solar energy into electricity, is one of the most significant approaches to solve the increasing serious energy crisis in the world. Due to their simple fabrication procedure, physical flexibility and low cost, polymer solar cells (PSCs) have attracted great attentions. However, compared with the inorganic solar cells, the low power conversion efficiency (PCE) of PSCs is still one of the main problems for practical applications. A major factor influencing the efficiency greatly is the limited light absorption due to the thin active layer which is limited by the short exciton diffusion length and low carries mobility of polymers. Therefore, it's an efficient approach to enhance performance of PSCs by improving the photon absorption efficiency of active layer while keeping their thickness still thin enough to maintain the effective exciton diffusion and charge transport.
     Metallic nanoparticles (NPs) such as Au and Ag NPs exhibit localized surface plasmon resonance (LSPR) property. The LSPR effect can create strong near-field electromagnetic fields which can improve the optical properties of the surrounding materials. These properties make metallic NPs one of the potential candidates for improving the photon absorption efficiency of PSCs. In this thesis, we reported the performance enhancement of PSCs by incorporating Au NPs or Au NPs films in the hole transport layer (PEDOT:PSS) or the active layer.
     In Chapter1, the working principle, device structure and recent progress of polymer solar cells are reviewed. The applications of noble metallic nanomaterials in PSCs are also summarized.
     In Chapter2, we reported the enhanced performance of PSCs (ITO/PEDOT:PSS/MEH-PPV:PCBM/Al, ITO:indium tin-oxide; PEDOT:PSS:poly3,4-ethylenedioxy-thiophene:polystyrenesulfonate; MEH-PPV:poly(2-mthoxy-5(2'-ethylhexyloxy)-1,4-phenylenevinylene); PCBM:[6,6]-phenyl-C61-butyric acid methyl ester) by incorporation of a Langmuir-Blodgett assembled Au NPs monolayer between the anode and the hole transport layer. Our results show that both open-circuit voltage (Voc) and short-circuit current (Jsc) of PSCs can be improved after incorporating Au NPs monolayer. We attribute the improvement of Jsc to the LSPR effect of Au NPs films, while the improvement of Voc is due to the high work function of the incorporated oxidized Au NPs monolayer.
     In Chapter3, we studied the performance enhancement phenomenon of PSCs (ITO/PEDOT:PSS/P3HT:PCBM/A1, P3HT:poly(3-hexylthiophene)) by incorporation of various sized Au NPs in the anode modification layer (PEDOT:PSS). We found that the light absorption of the active layer can't be improved until the size of Au NPs is larger than the thickness of the PEDOT:PSS layer; besides, as the size of Au NPs increased, the roughness of PEDOT:PSS increased, enlarging the interface areas between PEDOT:PSS and the active layer, and resulting in the improved hole collection efficiency at the anode. However, the morphology of the active layer would change to reduce the D/A interface area, leading to reduction of exciton dissociation efficiency, while further increasing the size of Au NPs. Therefore, the trends of Jsc and PCE of PSCs resulted from the competition between the two effects.
     In Chapter4, we studied the performance enhancement effect of PSCs (ITO/PEDOT:PSS/P3HT:PCBM/A1) by incorporation of Au NPs in the active layer. Our work shows that the light absorption of the active layer can be improved while the exciton dissociation efficiency would be reduced, as increasing the concentration or size of Au NPs. Meanwhile, the carrier mobilities of PSCs were improved at low Au NPs concentration, but reduced while further increasing the Au NPs concentration.
     In Chapter5, we reported the enhanced performance of CdSe:PCPDTBT (PCPDTBT:poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b']-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)]) hybrid solar cells (HSCs) by incorporation of the same sized Au NPs in the PEDOT:PSS layer or the CdSe:PCPDTBT active layer. Compared to the control device, the PCE of HSCs improved from2.95%to3.20%after incorporating Au NPs in the PEDOT:PSS layer, due to the increased hole collection efficiency; while the PCE of HSCs improved from2.91%to3.16%after incorporating Au NPs in the CdSe:PCPDTBT active layer, resulting from the enhanced light absorption intensity and the improved hole mobility of the CdSe:PCPDTBT active layer.
引文
[1]German Advisory Council on Global Change (WBGU). World in transition-a social contract for sustainability:transforming energy systems [M]. Germany:WBGU, Factsheet No.2,2011.
    [2]Becquerel A E, Recherches sur les effets de la radiation chimique de la lumiere solaire, au moyen des courants electriques [J]. Compt Rend Acad Sci,1839,9: 145-149.
    [3]Becquerel A E, Memoire sur les effets electriques produits sous linfluence des rayons solaires [J]. Compt Rend Acad Sci,1839,9:561-567.
    [4]Chapin D M, Fuller C S, Pearson G L. A new silicon P-N junction photocell for converting solar radiation into electrical power [J]. J Appl Phys,1954,25(5):676-677.
    [5]Green M A, Emery K, Hishikawa Y, Warta W, Dunlop E D, Solar cell efficiency tables (version 40) [J]. Prog. Photovolt:Res. Appl.,2012,20:606-614.
    [6]Press Release, First Solar,26 July 2011.
    [7]Wikipedia. http://en.wikipedia.org/wiki/Solar_cell_efficiency [W].
    [8]Repins I, Contreras M A, Egaas B, DeHart C, Scharf J, Perkins C L, To B, Noufi R. 19.9%-efficient ZnO/CdS/CuInGaSe2 solar cell with 81.2% fill factor [J]. Pro. Photovolt:Res. Appl.,2008,16:235-239.
    [9]熊绍珍,朱美芳.太阳能电池基础与应用[M].北京:科学出版社,2009.
    [10]Morooka M, Ogura R, Orihashi M, Takenaka M. Development of dye-sensitized solar cells for practical applications [J]. Electrochemistry,2009,77:960-965.
    [11] http://www. solarserver. com/solar-magazine/solar-news/current/2011/kw46/epfl-reach es-123-efficiency-with-graetzel-solar-cells.html [W].
    [12]Kazmerski L L. Best Research-cell Efficiencies, National Renewable Energy Laboratory (NERL), Dec.11th,2012. http://en.wikipedia.org/wiki/File:PVeff(rev 121211).jpg [W].
    [13]Brabec C J, Sariciftci N S, Hummelen J C. Plastic solar cells [J]. Adv Funct Mater,2001,11(1):15-26.
    [14]Li G, Shrotriya V, Yao Y, et al. Manipulating regioregular poly(3-hexylthiophene): 6,6-phenyl-C-61-butyric acid methyl ester blends-route towards high efficiency polymer solar cells [J]. J Mater Chem,2007,17(30):3126-3140.
    [15]Li G, Zhu R, Yang Y. Polymer solar cells [J]. Nat Photon,2012,6:153-161.
    [16]Sikorski S, Piotrowski T. Photovoltaic phenomena in inhomogeneous semiconductors [J]. Prog Quant Electron,2003,27(5):295-365.
    [17]Hau S K. Materials, Device, and interface engineering to improve polymer-based solar sells [D]. Seattle; University of Washington,2009.
    [18]Peumans P, Yakimov A, Forrest S R. Small molecular weight organic thin-film phoeodetectors and solar cells [J]. J Appl Phys,2003,93:3693-3723.
    [19]Coakley K M, Mcgehee M D. Conjugated polymer photovoltaic cells [J]. Chem Mat,2004,16(23):4533-4542.
    [20]Wohrle D, Meissner D. Organic solar cells [J]. Adv Mater,1991,3(3):129-138.
    [21]Chamberlain G A. Organic solar-cells-a review [J]. Solar Cells,1983,8(1): 47-83.
    [22]Glenis S, Tourillon G, Gamier F. Photoelectrochemical properties of thin-films of polythiophene and derivatives-doping level and structure effects [J]. Thin Solid Films,1984,122(1):9-17.
    [23]Glenis S, Tourillon G, Gamier F. Influence of the doping on the photovoltaic properties of thin-films of poly-3-methylthiophene [J]. Thin Solid Films,1986,139(3): 221-231.
    [24]Tang C W.2-layer organic photovoltaic cell [J]. Appl Phys Lett,1986,48(2): 183-185.
    [25]Yu G, Gao J, Hummelen J C, et al. Polymer photovoltaic cells-enhanced efficiencies via a network of internal donor-acceptor heterojunctions [J]. Science, 1995,270(5243):1789-1791.
    [26]Kawano K, Sakai J, Yahiro M, Adachi C. Effect of solvent on fabrication of active layers in organic solar cells based on poly(3-hexylthiophene) and fullerene derivatives [J]. Sol Energy Mater Sol Cells,2009,93:514-518.
    [27]Liang Y, Wu Y, Yu L P, et al. Development of new semiconducting polymers for high performance solar cells [J]. J Am Chem Soc,2009,131(1):56-57.
    [28]Ma W L, Yang C Y, Gong X, et al. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology [J]. Adv Funct Mater,2005,15(10):1617-1622.
    [29]Peet J, Kim J Y, Coates N E, Ma W L, Moses D, Heeger A J. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols [J]. Nat Mater,2007,6:497-500.
    [30]Yang F, Shtein M, Forrest S R. Controlled growth of a molecular bulk heterojunction photovoltaic cell [J]. Nat Mater,2005,4(1):37-41.
    [31]Gunes S, Neugebauer H, Sariciftci N S. Conjugated polymer-based organic solar cells [J]. Chem Rev,2007,107(4):1324-1338.
    [32]Gray J L. Handbook of photovoltaic science and engineering [M]. John Wiley & Sons Ltd,2002.
    [33]Hoppe H, Niggemann M, Winder C, et al. Nanoscale morphology of conjugated polymer/fullerene-based bulk-heterojuction solar cells [J]. Adv Funct Mater,2004, 14(10):1005-1011.
    [34]Kim Y, Cook S, Tuladhar S M, et al. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells [J]. Nat Mater,2006,5(3):197-203.
    [35]Mihailetchi V D, Xie H X, de Boer B, et al. Charge transport and photocurrent generation in poly(3-hexylthiophene):methanofullerene bulk-heterojunction solar cells [J]. Adv Funct Mater,2006,16(5):699-708.
    [36]Mcneill C R, Halls J J M, Wilson R, et al. Efficient polythiophene/polyfluorene copolymer bulk heterojunction photovoltaic devices:device physics and annerling effects [J]. Adv Funct Mater,2008,18(16):2309-2321.
    [37]Mihailetchi V D, Blom P W M, Hummelen J C, et al. Cathode dependence of the open-circuit voltage of polymer:fullerene bulk heterojunction solar cells [J]. J Appl Phys,2003,94(10):6849-6854.
    [38]Brabec C J, Cravino A, Meissner D, et al. Origin of the open circuit voltage of plastic solar cells [J]. Adv Funct Mater,2001,11(5):374-380.
    [39]Rand B P, Purk D P, Forrest S R. Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells [J]. Phys Rev B,2007,75:115327.
    [40]Scharber M C, Muhlbacher D, Koppe M, et al. Design rules for donors in bulk-heterojunction solar cells-towards 10% energy-conversion efficiency [J]. Adv Mater,2006,18:789-794.
    [41]Vanlaeke P, Swinnen A, Haeldermans I, et al. P3HT/PCBM bulk heterojunction solar cells:relation between morphology and electro-optical characteristics [J]. Sol Energy Mater Sol Cell,2006,90(14):2150-2158.
    [42]Ko C J, Lin Y K, Chen F C, et al. Modified buffer layers for polymer photovoltaic devices [J]. Appl Phys Lett,2007,90(6):063509.
    [43]Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells [J]. Appl Phys Lett,2002,80(7):1288-1290.
    [44]Feng Z, Hou Y, Lei D. The influence of electrode buffer layers on the performance of polymer photovoltaic devices [J]. Renew Energy,2010, 35(6):1175-1178.
    [45]Potscavage W J, Sharma A, Kippelen B. Critical interfaces in organic solar cells and their influence on the open-circuit voltage [J]. Acc Chem Res,2009,42: 1758-1767.
    [46]Nam C Y, Su D, Black C T. High-performance air-processed polymer-fullerene bulk heterojunction solar cells [J]. Adv Funct Mater,2009,19(22):3552-3559.
    [47]Sariciftci N S, Smilowitz L, Heeger A J, et al. Photoinduced electron-transfer from a conducting polymer to buckminsterfullerene [J]. Science,1992,258(5087): 1474-1476.
    [48]Zhou H X, Yang L Q, Stuart A C, et al. Development of Fluorinated benzothiadiazole as a structural unit for a polymer solar cell of 7% efficiency [J]. Angew Chem Int Edit,2011,50(13):2995-2998.
    [49]He Z C, Zhong C M, Huang X, et al. Simultaneous enhancement of open-circuit voltage, short-circuit current density, and fill factor in polymer solar cells [J]. Adv Mater,2011,23(40):4636-4643.
    [50]Small C E, Chen S, Subbiah J, et al. High-efficiency inverted dithienogermole-thienopyrrolodione-based polymer solar cells [J]. Nat Photon,2012,6(2):115-120.
    [51]He Z C, Zhong C M, Cao Y, et al. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure [J]. Nat Photon,2012,6(9): 591-595.
    [52]Dou L, You J, Yang J, et al. Tandem polymer solar cells featuring a spectrally matched low-bandgap polymer [J]. Nat Photon,2012,6(3):180-185.
    [53]Chen H Y, Hou J H, Yu L P, et al. Polymer solar cells with enhanced open-circuit voltage and efficiency [J]. Nat Photon,2009,3(11):649-653.
    [54]Tan Z A, Zhang W Q, Zhang Z G, et al. High-performance inverted polymer solar cells with solution-processed titanium chelate as electron-collecting layer on ITO electrode [J]. Adv Mater,2012,24(11):1476-1481.
    [55]You J B, Chen C C, Dou L T, et al. Metal oxide nanoparticles as an electron-transport layer in high-performance and stable inverted polymer solar cells [J]. Adv Mater,2012,24(38):5267-5272.
    [56]Su M S, Kuo C Y, Yuan M C, et al. Improving device efficiency of polymer/fuller-ene bulk heterojunction solar cells through enhanced crystallinity and reduced grain boundaries induced by solvent additives [J]. Adv Mater,2011,23(29):3315-3319.
    [57]Chang C Y, Cheng Y J, Hung S H, et al. Combination of molecular, morphological, and interfacial engineering to achieve highly efficient and stable plastic solar cells [J]. Adv Mater,2012,24(4):549-553.
    [58]http://www.dlev.com/news-15792 [W].
    [59]Brabec C J, Shaheen S E, Winder C, et al. Effect of LiF/metal electrodes on the performance of plastic solar cells [J]. Appl Phys Lett,2002,80(7):1288-1290.
    [60]Wienk M M, Kroon J M, Janssen R A J, et al Efficient methan0[70]fullerene /MDMO-PPV bulk heterojunction photovoltaic cells [J]. Angew Chem Int Ed,2003, 42(29):3371-3375.
    [61]Irwin M D, Buchholz B, Hains A W, et al. p-Type semiconducting nickel oxide as an efficiency-enhancing anode interfacial layer in polymer bulk-heterojunction solar cells [J]. Proc Natl Acad Sci U S A,2008,105(8):2783-2787.
    [62]Sun Y P, Cui C H, Wang H Q, et al. Efficiency enhancement of polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct via methylthiophene additive [J]. Adv Energy Mater,2011,1(6):1058-1061.
    [63]Li Y F. Molecular Design of photovoltaic materials for polymer solar cells: toward suitable electronic energy levels and broad absorption [J]. Ace Chem Res, 2012,45(5):723-733.
    [64]Su Y W, Lan S C, Wei K H. Organic photovoltaics. [J]. Mater Today,2012,15: 554-562.
    [65]Liang Y Y, Feng D Q, Yu L P, et al. Highly efficient solar cell polymers developed via fine-tuning of structural and electronic properties [J]. J Am Chem Soc, 2009,131(22):7792-7799.
    [66]Piliego C, Holcombe T W, Douglas J D, et al. Synthetic control of structural order in N-alkylthieno[3,4-c]pyrrole-4,6-dione-based polymers for efficient solar cells [J]. J Am Chem Soc,2010,132(22):7595-7597.
    [67]Chen G Y, Cheng Y H, Chou Y J, et al. Crystalline conjugated polymer containing fused 2,5-di(thiophen-2-yl)thieno[2,3-b]thiophene and thieno[3,4-c]pyrrole-4,6-dione units for bulk heterojunction solar cells [J]. Chem Commun,2011,47(17): 5064-5066.
    [68]Chu T Y, Lu J P, Beaupre S, et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b;2',3'-d]silole copolymer with a power conversion efficiency of 7.3%[J]. J Am Chem Soc,2011,133(12):4250-4253.
    [69]Amb C M, Chen S, graham K R, et al. Dithienogermole as a fused electron donor in bulk heterojunction solar cells [J]. J Am Chem Soc,2011,133(26):10062-10065.
    [70]Peet J, Kim J Y, Coates N E, et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols [J]. Nat Mater,2007,6(7): 497-500.
    [71]Hou J H, Chen H Y, Zhang S Q, et al. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on silole-containing polythiophenes and 2,1,3-benzothiadiazole [J]. J Am Chem Soc,2008,130(48): 16144-16145.
    [72]Chen Y C, Yu C Y, Fan Y L, et al. Low-bandgap conjugated polymer for high efficient photovoltaic applications [J]. Chem Commun,2010,46(35):6503-6505.
    [73]Zhang X H, Domercq B, Kippelen B. High-performance and electrically stable C-60 organic field-effect transistors [J]. Appl Phys Lett,2007,91(9):092114.
    [74]Kooistra F B, Mihailetchi V D, Popescu L M, et al. New C-84 derivative and its application in a bulk heterojunction solar cell [J]. Chem Mat,2006,18(13):3068-73.
    [75]Yang C H, Chang J Y, Yeh P H, et al. Preparation and characterization of methanofullerenes for polymer-fullerene bulk heterojunction solar cells [J]. Carbon, 2007,45(15):2951-2956.
    [76]Lenes M, Wetzelaer G, Kooistra F B, et al. Fullerene bisadducts for enhanced open-circuit voltages and efficiencies in polymer solar cells [J]. Adv Mater,2008, 20(11):2116-9.
    [77]Guilbert A A Y, Reynolds L X, Bruno A, et al. Effect of multiple adduct fullerene on microstructure and phase behavior of P3HT:fullerene blend films for organic solar cells [J]. ACS Nano,2012,6(5):3868-3875.
    [78]He Y J, Chen H Y, Hou J H, et al. Indene-C(60) bisadduct:a new acceptor for high-performance polymer solar cells [J]. J Am Chem Soc,2010,132(4):1377-1382.
    [79]Ren S, Chang L Y, Lim S K, et al. Inorganic-organic hybrid solar cell:bridging quantum dots to conjugated polymer nanowires [J]. Nano Lett,2011,11:3998-4002.
    [80]Zhou Y, Velt M E C, Rauscher F, et al. Efficiency enhancement for bulk-heterojunction hybrid solar cells based on acid treated CdSe quantum dots and low bandgap polymer PCPDTBT [J]. Sol Energy Mater& Sol cells,2011,95:1232-1237.
    [81]Dayal S, Kopidakis N, Olson D C, et al. Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency [J]. Nano Lett,2009, 10:239-242.
    [82]Takagahara T, Takeda K. Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials [J]. Phys Rev B,1992,46:15578-15581.
    [83]Huang J, Huang Z, Yang Y, et al. Multiple exciton dissociation in CdSe quantum dota by ultrafast electron transfer to adsorbed methylene blue [J]. J Am Chem Soc, 2010,132:4858-4864.
    [84]Yang B, Chen Z L, Zhang H, et al. From planar-heterojunction to n-I structure: An efficiency strategy to improve short-circuit current and power conversion efficiency of aqueous-solution-processed hybrid solar cells [J]. Energy Environ Sci, 2013,DOI:10.1039/C3EE40481A.
    [85]Guchhait A, Rath A K, Pal A J. To make polymer:quantum dot hybrid solar cells NIR-active by increasing diameter of PbS nanoparticles [J]. Sol Energy Mater& Sol Cells,2011,95:651-656.
    [86]Abrusci A, Ding I K, Snaith H J, et al. Facile infiltration of semiconducting polymer into mesoporous electrodes for hybrid solar cells [J]. Energy & Environ Sci, 2011,4:3051-3058.
    [87]Beek W J E, Wienk M M, Yang X, et al. Hybrid zinc oxide conjugated polymer bulk heterojunction solar cells [J]. J Phys Chem B,2005,109:9505-9516.
    [88]Jeltsch K F, Schadel M, Bonekamp J B, et al. Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods [J]. Adv Funct Mater,2012,22: 397-404.
    [89]Zhou R, Zheng Y, Xue J, et al. Solution-processed nanostructured hybrid solar cells with broad spectral sensitivity and stability [J]. Nanoscale,2012,4:3507-3514.
    [90]Celik D, Krueger M, Velt C, et al. Performance enhancement of CdSe nanorod-polymer based hybrid solar cells utilizing a novel combination of post-synthetic nanoparticles surface treatments [J]. Sol Energy Mater & Sol Cells,2012,98: 433-440.
    [91]Wright M, Uddin A. Organic-inorganic hybrid solar cells:a comparative review [J]. Sol Energy Mater & Sol Cells,2012,107:87-111.
    [92]Park S H, Roy A, Heeger A J, et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%[J]. Nat Photon,2009,3(5):297-302.
    [93]Chiu M Y, Jeng U S, Su M S, et al. Morphologies of self-organizing regioregular conjugated polymer/fullerene aggregates in thin film solar cells [J]. Macromolecules, 2010,43(1):428-432.
    [94]Yao Y, Hou J H, Xu Z, et al. Effect of solvent mixture on the nanoscale phase separation in polymer solar cells [J]. Adv Funct Mater,2008,18(12):1783-1789.
    [95]Li G, Shrotriya V, Huang J S, et al. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends [J]. Nat Mater,2005,4(11): 864-868.
    [96]Li G, Yao Y, Yang H C, et al. "Solvent annealing" effect in polymer solar cells based on poly(3-hexylthiophene) and methanofullerenes [J]. Adv Funct Mater,2007, 17(10):1636-1644.
    [97]Padinger F, Rittberger R S, Sariciftci N S, et al. Effects of postproduction treatment on plastic solar cells [J]. Adv Funct Mater,2003,13(1):85-88.
    [98]van Bavel S S, Sourty E, de With G, et al. Three-dimensional nanoscale organization of bulk heterojunction polymer solar cells [J]. Nano Lett,2009,9(2): 507-513.
    [99]Lee J K, Ma W L, Brabec C J, et al. Processing additives for improved efficiency from bulk heterojunction solar cells [J]. J Am Chem Soc,2008,130(11):3619-3623.
    [100]Chen F C, Tseng H C, Ko C J. Solvent mixtures for improving device efficiency of polymer photovoltaic devices [J]. Appl Phys Lett,2008,92(10):103316.
    [101]Moule A J, Tsami A, Buennagel T W, et al. Two novel cyclopentadithiophene-based alternating copolymers as potential donor components for high-efficiency bulk-heterojunction-type solar cells [J]. Chem Mat,2008,20(12): 4045-4050.
    [102]Reese M O, White M S, Rumbles G, et al. Optimal negative electrodes for poly(3-hexylthiophene):6,6-phenyl C61-butyric acid methyl ester bulk heterojunction photovoltaic devices [J]. Appl Phys Lett,2008,92(5):053307.
    [103]Chen L M, Xu Z, Hong Z R, et al. Interface investigation and engineering-achieving high performance polymer photovoltaic devices [J]. J Mater Chem,2010, 20:2575-2598.
    [104]Po R, Carbonera C, Bernardi A, et al. The role of buffer layers in polymer solar cells [J]. Energy Environ Sci,2011,4(2):285-310.
    [105]Steim R, Kogler F R, Brabec C J. Interface materials for organic solar cells [J]. J Mater Chem,2010,20(13):2499-2512.
    [106]Wei Q S, Nishizawa T, Tajima K, et al. Self-organized buffer layers in organic solar cells [J]. Adv Mater,2008,20(11):2211-2216.
    [107]O'malley K M, Li C Z, Yip H L, et al. Enhanced open-circuit voltage in high performance polymer/fullerene bulk-heterojunction solar cells by cathode modification with a C60 surfactant [J]. Adv Energy Mater,2012,2(1):82-86.
    [108]Zhang F, Ceder M, Inganas O. Enhancing the photovoltage of polymer solar cells by using a modified cathode [J]. Adv Mater,2007,19(14):1835-1838.
    [109]Yang J S, Oh S H, Kin D L, et al. Hole transport enhancing effects of polar solvents on poly(3,4-ethylenedioxythiophene):poly(styrene sulfonic acid) for organic solar cells [J]. ACS Applied Mater & Interfaces,2012,4(10):5394-5398.
    [110]Shrotriya V, Li G, Yao Y, et al. Transition metal oxides as the buffer layer for polymer photovoltaic cells [J]. Appl Phys Lett,2006,88(7):073508.
    [111]Han S, Shin W S, Seo M, et al. Improving performance of organic solar cells using amorphous tungsten oxides as an interfacial buffer layer on transparent anodes [J]. Org Electron,2009,10(5):791-797.
    [112]Jorgensen M, Norrman K, Krebs F C. Stability/degradation of polymer solar cells [J]. Sol Energy Mater Sol Cells,2008,92(7):686-714.
    [113]Li G, Chu C W, Shrotriya V, et al. Efficient inverted polymer solar cells [J]. Appl Phys Lett,2006,88(25):253503.
    [114]Liao H H, Chen L M, Xu Z, et al. Highly efficient inverted polymer solar cell by low temperature annealing of Cs2CO3 interlayer [J]. Appl Phys Lett,2008,92(17): 173303.
    [115]Hau S K, Yip H L, Baek N S, et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer [J]. Appl Phys Lett, 2008,92(25):253301.
    [116]Tao C, Ruan S P, Zhang X D, et al. Performance improvement of inverted polymer solar cells with different top electrodes by introducing a MoO3 buffer layer [J]. Appl Phys Lett,2008,93(19):193307.
    [117]Zhao D W, Sun X W, Jiang C Y, et al. Efficient tandem organic solar cells with an Al/MoO(3) intermediate layer [J]. Appl Phys Lett,2008,93(8):083305.
    [118]Gilot J, Wienk M M, Janssen R a J. Double and triple junction polymer solar cells processed from solution [J]. Appl Phys Lett,2007,90(14):143512.
    [119]Mikhnenko O V, Azimi H, Scharber M, et al. Exciton diffusion length in narrow bandgap polymers [J]. Energy Environ Sci,2012,5(5):6960-6965.
    [120]Kirchartz T, Taretto K, Rau U. Efficiency limits of organic bulk heterojunction solar cells [J]. J Phys Chem C,2009,113(41):17958-17966.
    [121]Shrotriya V, Wu E H E, Li G, et al. Efficient light harvesting in multiple-device stacked structure for polymer solar cells [J]. Appl Phys Lett,2006,88(6):064104.
    [122]Gilot J, Barbu I, Wienk M M, et al. The use of ZnO as optical spacer in polymer solar cells:theoretical and experimental study [J]. Appl Phys Lett,2007,91(11): 113520.
    [123]Kim J Y, Kim S H, Heeger A J, et al. New architecture for high-efficiency polymer photovoltaic cells using solution-based titanium oxide as an optical spacer [J]. Adv Mater,2006,18(5):572-576.
    [124]Chen F C, Wu J L, Hung Y. Spatial redistribution of the optical field intensity in inverted polymer solar cells [J]. Appl Phys Lett,2010,96(19):193304.
    [125]Roy A, Park S H, Heeger A J, et al. Titanium suboxide as an optical spacer in polymer solar cells [J]. Appl Phys Lett,2009,95(1):013302.
    .[126] Zhou Y H, Zhang F L, Tvingstedt K, et al. Multifold polymer solar cells on flexible substrates [J]. Appl Phys Lett,2008,93(3):033302.
    [127]Chen Y Q, Elshobaki M, Ye Z, et al. Microlens array induced light absorption-enhancement in polymer solar cells [J]. Phys Chem Chem Phys,2013,15:4297-4302.
    [128]Na S I, Kim S S, Jo J, et al. Efficient polymer solar cells with surface relief gratings fabricated by simple soft lithography [J]. Adv Funct Mater,2008,18(24): 3956-3963.
    [129]Long Y B. Improving optical performance of inverted organic solar cells by microcavity effect [J]. Appl Phys Lett,2009,95(19):193301.
    [130]Ko D H, Tumbleston J R, Zhang L, et al. Photonic crystal geometry for organic solar cells [J]. Nano Lett,2009,9(7):2742-2746.
    [131]Wu J L, Chen F C, Hsiao Y S, et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells [J]. ACS Nano,2011,5(2):959-867.
    [132]刘双.金纳米结构材料在生物医学上的研究进展[J].化学物理通讯,2012,13(6):8-16.
    [133]Cobley C M, Chen J Y, Xia Y N, et al. Gold nanoparticles:a class of multifunctional materials for biomedical applications [J]. Chem Soc Rev,2011,40(1): 44-56.
    [134]Kelly K L, Coronado E, Zhao L L, et al. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment [J]. J Phys Chem B,2003,107(3):668-677.
    [135]Rand B P, Peumans P, Forrest S R, et al. Long-range absorption enhancement in organic tandem thin-film solar cells containing silver nanoclusters [J]. J Appl Phys, 2004,96:7519-7526.
    [136]Stuart H R, Hall D G. Absorption enhancement in silicon on insulator waveguides using metal island films [J]. Appl Phys Lett,1996,69(16):2327-2328.
    [137]Stuart H R, Hall D G. Island size effects in nanoparticles-enhanced photodetectors [J]. Appl Phys Lett,1998,73(26):3815-3817.
    [138]Jahng W S, Francis A H, Moon H, et al. Is indium tin oxide a suitable electrode in organic solar cells? Photovoltaic properties of interfaces in organic p/n junction photodiodes [J]. Appl Phys Lett,2006,88(9):093504.
    [139]Kang M G, Xu T, Guo L J, et al. Efficiency enhancement of organic solar cells using transparent plasmonic Ag nanowire electrodes [J]. Adv Mater,2010,22: 4378-4383.
    [140]Yang L Q, Zhang T, Zhou H X, et al. Solution-processed flexible polymer solar cells with silver nano wires electrodes [J]. ACS Appl Mater & Interfaces,2011,2(10): 4075-4084.
    [141]Yu Z B, Li L, Zhang Q W, et al. Silver nanowire-polymer composite electrodes for efficient polymer solar cells [J]. Adv Mater,2011,23(38):4453-4458.
    [142]Leem D S, Edwards A, Faist M, et al. Efficient organic solar cells with solution-processed silver nano wires electrodes [J]. Adv Mater,2011,23(38): 4371-4375.
    [143]Sachse C, Mueller-Meskamp L, Bormann L, et al. Transparent, dip-coated silver nanowire electrodes for small molecule organic solar cells [J]. Org Electron,2013, 14(1):143-148.
    [144]Reinhard M, Eckstein R, Slobodskyy A, et al. Solution-processed polymer-silver nanowire top electrodes for inverted semi-transparent solar cells [J]. Org Electron,2013,14(1):273-277.
    [145]Pegg L J, Schumann S, Hatton A. Enhancing the open-circuit voltage of molecular photovoltaics using oxidized Au nanoparticles [J]. ACS Nano,2010,4(10): 5671-5678.
    [146]Kim S S, Na S I, Jo J, et al. Plasmon enhanced performance of organic solar cells using electrodeposited Ag nanoparticles [J]. Appl Phys Lett,2008,93(7): 073307.
    [147]Morfa A J, Rowlen K L, Romero M J, et al. Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics [J]. Appl Phys Lett,2008, 92(1):013504.
    [148]Pei J N, Tao J L, Tian W J, et al. Efficiency enhancement of polymer solar cells by incorporating a self-assembled layer of silver nanodisks [J]. Sol Energy Mater & Sol Cells,2011,95(12):3281-3286.
    [149]Heo M, Cho H, Jung J W, et al. High-performance organic optoelectronic devices enhanced by surface plasmon resonance [J]. Adv Mater,2011,23(47): 5689-5693.
    [150]Yoon W J, Jung K Y, Berger P R, et al. Plasmon-enhanced optical absorption and photocurrent in organic bulk heterojunction photovoltaic device using self-assembled layer of silver nanoparticles [J]. Sol Energy Mater & Sol Cells,2010, 94(2):128-132.
    [151]Chen F C, Wu J L, Huang M H, et al. Plasmonic-enhanced polymer photovoltaic devices incorporating solution-processable metal nanoparticles [J]. Appl Phys Lett,2009,95(1):013305.
    [152]Qiao L F, Wang D, He S L, et al. Localized surface plasmon resonance enhanced organic solar cell with gold nanospheres [J]. Appl Energy,2011,88(10): 848-852.
    [153]Wu J L, Chen F C, Hsu C S, et al. Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells [J]. ACS Nano,2011,5(2):959-967.
    [154]Fung D D S, Qiao L F, Choy W C H, et al. Optical and electrical properties of efficiency enhanced polymer solar cells with Au nanoparticles in a PEDOT-PSS layer [J]. J Mater Chem,2011,21(41):16349-16356.
    [155]Kim I, Lee T S, Jeong D S, et al. Size effects of metal nanoparticles embedded in a buffer layer of organic photovoltaics on plasmonic absorption enhancement [J]. J Phys D:Appl Phys,2012,45(6):065101.
    [156]Rentenberger S, Vollmer A, Zojer E, et al. UV/ozone treated Au for air-stable low hole injection barrier electrodes in organic electronics [J]. J Appl Phys,2006, 100(5):053701.
    [157]Yang J, You J B, Yang Y, et al. Plasmonic polymer tendem solar cell [J]. ACS Nano,2011,5(8):6210-6217.
    [158]Kim K, Carroll D L. Roles of Au and Ag nanoparticles in efficiency enhancement of poly(3-octlthiophene)/C60 bulk heterojunction photovoltaic devices [J]. Appl Phys Lett,2005,99(11):113304.
    [159]Naidu B V K, Park J S, Kim S C, et al. Novel hybrid polymer photovoltaics made by generating silver nanoparticles in polymer:fullerene bulk-heterojunction structures [J]. Sol Energy Mater & Sol Cells,2008,92(4):397-401.
    [160]Kim C H, Cha S H, Kim S C, et al. Silver nanowire embedded in P3HT:PCBM for high-efficiency hybrid photovoltaics device applications [J]. ACS Nano,2011, 5(4):3319-3325.
    [161]Wang D H, Kim D Y, Heeger A J, et al. Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles [J]. Angew Chem Int Ed,2011,50(24):5519-5523.
    [162]Wang C C D, Choy W C H, Duan C, et al. Optical and electrical effects of gold nanoparticles in active layer of polymer solar cells [J]. J Mater Chem,2012,22(3): 1206-1211.
    [163]Xie F X, Choy W C H, Wang C C D, et al. Improve the efficiency of polymer solar cells by incorporating gold nanoparticles into all polymer layers [J]. Appl Phys Lett,2011,99(15):153304.
    [164]Yang X, Chueh C C, Jen A K Y, et al. High-efficiency polymer solar cells achieved by doping plasmonic metallic nanoparticles into dual charge selecting interfacial layers to enhance light trapping [J]. Adv Energy Mater,2013, DOI: 10.1002/aenm.201200726.
    [165]Lu L Y, Luo Z Q, Yu L P, et al. Cooperative plasmonic effect of Ag and Au nanoparticles on enhancing performance of polymer solar cells [J]. Nano Lett,2013, 13(1):59-64.
    [166]Li X H, Choy W C H, Yang Y, et al. Dual plasmonic nanostructures for high performance inverted organic solar cells [J]. Adv Mater,2012,24(22):3046-3052.
    [167]Yang P D. Wires on water [J]. Nature,2003,425(6955):243-244.
    [168]Tao A, Sinsermsuksakul P, Yang P. Tunable plasmonic lattices of silver nanocrystals [J]. Nat Nanotechnol,2007,2(7):435-440.
    [169]欧阳健明.LB膜原理与应用[M].暨南大学出版社.1999.
    [170]SchultzDG, LinXM, LiD, et al.Structure, wrinkling, and reversibility of Langmuir monolayers of gold nanoparticles [J]. J Phys Chem B,2006,110(48): 24522-24529.
    [171]GaoY, ChenX Q, XuH, et al. Highly-efficient fabrication of nanoscrolls from functionalized grapheme oxide by Langmuir-Blodgett method [J]. Carbon,2010, 48(15):4475-4482.
    [172]Brust M, Walker M, Bethell D, et al. Synthesis of thiol-derivatized gold nanoparticles in a two-phase liquid-liquid system [J]. J Chem Soc Chem Commun, 1994,7:801-801.
    [173]Tzeng S, Lin K, He J C, et al. Templated self-assembly of colloidal nanoparticles controlled by electrostatic nanopatterning on a Si3N4/SiO2/Si electrets [J]. Adv Mater,2006,18(10):1147-1151.
    [174]Tsutsui G, Huang S J, Sakaue H, et al. Well-size-controlled colloidal gold nanoparticles dispersed in organic solvents [J]. Jpn J Appl Phys,2001,40(4): 346-349.
    [175]Chen C F, Tzeng S, Chen H Y, et al. Tunable plasmonic response from alkanethiolated-stabilized gold nanoparticles superlattices:Evidence of near-field coupling [J]. J Am Chem Soc,2008,130(8):824-826.
    [176]Jain P K, Huang W Y, EI-Sayed M A. On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticles pairs:A plasmon ruler equation [J]. Nano Lett,2007,7(18):2080-2088.
    [177]Perrault S D, Chan W C W. Synthesis and surface modification of highly monodispersed, spherical gold nanoparticles of 50-200 nm [J]. J Am Chem Soc,2009, 131(47):17042-17043.
    [178]Frens G. Controlled nucleation for the regulation of particle size in monodisperse gold suspensions [J]. Nat Phys Sci,1973,241(1):20-22.
    [179]Enustun B V, Turkevich J. Coagulation of colloidal gold [J]. J Am. Chem Soc, 1963,85(21):3317-3328.
    [180]Bouyer F, Robben A, Yu W L, et al. Aggregation of colloidal particles in the presence of oppositely charged poly electrolytes:Effect of surface charge heterogeneities [J]. Langmuir,2001,17(17):5225-5231.
    [181]Caironi M, Agostinelli T, NataliD, et al. External quantum efficiency versus charge carriers mobility in polythiophene/methanofullerene based planar photodetectors [J]. JAppl Phys,2007,102(2):024503.
    [182]Hsu M H,Yu P C, Huang J H, et al. Balanced carrier transport in organic solar cells employing embedded indium-tin-oxide nanoelectrodes [J]. Appl Phys Lett,2011, 98(7):073308.
    [183]Peng B, Guo X, Cui X H, et al. Performance improvement of polymer solar cells by using a solvent-treated poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) buffer layer [J]. Appl Phys Lett,2011,98(24):243308.
    [184]Hau S K,Yip H L, Leong K, et al. Spraycoating of silver nanoparticles electrodes for inverted polymer solar cells [J]. OrgElectron,2009,10(6):719-723.
    [185]Konda R B, Mundle R,Pradhan A K, et al. Surface plasmon excitation via Au nanoparticles in n-CdSe/p-Si heterojunction diodes [J], Appl Phys Lett,2007,91(19): 191111.
    [186]Chen L M, Xu Z, Yang Y, et al. Interface investigation and engineering: achieving high performance polymer photovoltaic devices [J], J Mater Chem,2010, 20(13):2575-2598.
    [187]Markov D E, Blom P W M. Migration-assisted energy transfer at conjugated polymer/metal interfaces [J]. Phys Rev B,2005,72(16):161401.
    [188]Zhokhavets U, Erb T, Ssariciftci N S, et al. Effect of annealing of poly(3-hexylthiophene)/fullerene bulk heterojunction composites on structural and optical properties [J]. Thin Solid Film,2006,496(6) 679-682.
    [189]Drees M, Hoppe H, Winder C, et al. Stabilization of the nanomorphology of polymer-fullerent "bulk heterojunction" blends using a novel polymerizable fullerene derivative [J]. J Mater Chem,2005,15(48):5158-5163.
    [190]Topp K, Borchert H, Johnen F, et al. Impact of the incorporation of Au Nanoparticles into Polymer/Fullerene solar cells [J]. J Phys Chem A,2010,114(11): 3981-3989.
    [191]Zhu J F, Xue M, Hoekstra R, et al. Light concentration and redistribution in polymer solar cells by plasmonic nanoparticles [J]. Nanoscale,2012,4(6):1978-1981.
    [192]Daniel M C, Astruc D. Gold nanoparticles:Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology [J]. Chem Rev,2004,104(1):293-346.
    [193]Mayer A C, Scully S R, Hardin B E, et al. Polymer-based solar cells [J]. Mater Today,2007,10(11):28-33.
    [194]Mandoc M M, Koster L J A, Blom P W M. Optimum charge carrier mobility in organic solar cells [J]. Appl Phys Lett,2007,90(13):133504.
    [195]Mihailetchi V D, van Duren J K J, Blom P W M, et al. Electron transport in a methanofillerene [J]. Adv Funct Mater,2003,13(1):43-46.
    [196]Lampert M A, Mark P. Current injection in solids [M]. Academic Press, New York,1970.
    [197]Koster L J A, Smits E C P, Mihailetchi V D, et al. Device model for the operation of polymer/fullerene bulk heterojunction solar cells [J]. Phys Rev B,2005, 72(8):085205.
    [198]Zheng T H, Choy W C H, Sun Y X. Hybrid nanoparticles/organic devices with strong resonant tunneling behaviors [J]. Adv Funct Mater,2009,19(16):2648-2653.
    [199]Xu Z, Chen L M, Yang G W, et al. Vertical phase separation in poly(3-hexylthiophene):fullerene derivative blends and its advantage for inverted structure solar cells [J]. Adv Funct Mater,2009,19(8):1227-1234.
    [200]Huynh W U, Dittmer J J, Alivisatos A P. Hybrid nanorod-polymer solar cells [J]. Science,2002,295(5564):2425-2427.
    [201]Fu W F, Shi Y, Chen H Z, et al. High efficiency hybrid solar cells using post-deposition ligand exchange by monothiols [J]. Phys Chem Chem Phys,2012,14: 12094-12098.
    [202]Yang J, Tang A W, Zhou R J, et al. Effects of nanocrystal size and device aging on performance of hybrid poly(3-hexylthiophenen):CdSe nanocrystal solar cells [J]. Sol Energy Mater& Sol cells,2011,95(2):476-482.
    [203]Yu W W, Qu L, Peng X G, et al. Experimental determination of the extinction coefficient of CdTe, CdSe and CdS nanocrystals [J]. Chem Mater,2003,15(14): 2854-2860.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700