用户名: 密码: 验证码:
特细砂泵送混凝土收缩特性试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
经过几十年大规模的工程建设,中粗砂资源日渐匮乏,开发利用特细砂拌制混凝土已成为节约资源、降低成本的重要途径。研究大流动性特细砂混凝土的强度发展规律和收缩特性,对特细砂混凝土泵送施工及其推广应用具有重要的理论意义和应用价值。
     本文针对特细砂泵送混凝土强度低、易开裂、收缩大等急待解决的问题,首先采用二次通用旋转组合设计安排试验,研究砂率、水胶比、粉煤灰掺量、减水剂掺量和骨料级配五个主要混凝土配制参数对强度的影响规律。提出适合泵送的特细砂混凝土配制参数取值范围及较优参数组合。在此基础上,采用平板试验法,分别从材料性能、配比参数和环境因素三方面研究了其对混凝土塑性收缩的影响;从配制参数、抗裂组分和外加剂三方面研究混凝土自由干燥收缩率和约束收缩率,得出以下主要结论:
     ⑴影响特细砂泵送混凝土强度的因素主次顺序为水胶比>粉煤灰掺量>减水剂掺量>砂率>粗骨料级配。利用特细砂配制泵送混凝土的有效途径是掺用粉煤灰和减水剂尽量减小水胶比。在试验选定的研究范围内,砂率和粗骨料级配则对混凝土的强度影响不显著,可根据混凝土可泵性等其它技术指标确定其合理取值范围。
     ⑵特细砂泵送混凝土强度随着砂率的增大先升后降;水胶比和粉煤灰掺量越大,混凝土强度愈低;减水剂由小增大的过程中,混凝土强度先增大后减小,最优掺量为0.64%;当中石、小石均为50%时,混凝土抗压强度最高。
     (3)配制特细砂泵送混凝土水胶比取值范围宜为0.35~0.45,砂率宜为27%~31%,粉煤灰掺量宜在15%~25%。配制强度等级为C40、可泵性良好的特细砂泵送混凝土配制参数的最优组合为水胶比0.35、粉煤灰掺量15%、砂率31%、减水剂掺量1.0%,20~40㎜卵石占粗骨料总量的50%~75%。
     (4)粉煤灰在特细砂泵送混凝土中使用能使塑性收缩裂缝面积减小42.7%~57.9%。高效减水剂能使混凝土塑性裂缝面积减少23.0%~57.3%。聚丙烯纤维能使混凝土塑性裂缝面积分别减少11.8%~62.6%,且能使塑性裂缝细化。掺泵送剂、引气剂也能有效减小混凝土塑性收缩。
     (5)特细砂泵送混凝土存在临界砂率使混凝土塑性收缩较小,砂率由小增大的过程中,混凝土裂缝面积先减后增。砂率不能过大或过小,存在最优砂率。在试验范围内,砂率为27%时特细砂泵送混凝土塑性收缩最小。
     (6)影响混凝土塑性收缩环境因素的主次顺序为表面温度>表面风速>环境温度>空气相对湿度>混凝土浇筑温度。各环境因素之间对混凝土水分蒸发速率和裂缝面积的影响呈线性相关,交互效应不明显。
     (7)混凝土后期的干燥收缩随着水胶比的减小而增大。在特细砂泵送混凝土中掺加尽可能多的大粒径石子有利于混凝土抗裂性能。
     (8)掺用粉煤灰聚、聚丙烯纤维和膨胀剂能有效减少混凝土干燥收缩。90d龄期混凝土,掺粉煤灰比不掺粉煤灰混凝土自由干缩率降低13.6%~24.9%,约束收缩减小14.1%~25.8%;掺入纤维能减小自由干燥收缩18%~33%,减小约束收缩12%~24%;膨胀剂减小自由干燥收缩14%~23%,约束收缩10%~25%。
     (9)早强剂会增加混凝土干燥收缩,并且混凝土干燥收缩率在整个试验龄期内随着早强剂掺量的增加而增加。90d龄期掺加早强剂可增加自由干燥收缩率5%~12%,约束收缩率增加13%~24%。
After several decades of large-scale construction, the coarse sand resources become deficient. So the utilization of ultra-fine sand to prepare concrete has become an important way to reduce costs and resources. The research of the strength and shrinkage characteristics law of high liquidity ultra-fine sand pumping concrete has very important theory significance and the application value.
     In order to find a better way to solve the problem that ultra-fine sand pumping concrete meet: low intensity, easy to crack, great shrink and other most pressing problem. Firstly, this atticle use the second-degree ploynomial regression analysis and rotation design to research the effects of the sand percentage, water-cement ratio, fly ash percentage, superplasticizer content and aggregate gradation of concrete to the strength of ultra-fine sand pumping concrete. It has find a way to preparation of ultra-fine sand pumping concrete and better combinations of the parameters. Further, on this basis, the research on plastic shrinkage and drying shrinkage of ultra-fine sand pumping concrete were executed. Flat-panel means was used to mesure the plastic shrinkage of concrete in this research. Respectively, the material properties, mix parameters and environmental factors on the effects of plastic shrinkage of concrete were studied in this article. Effects of the mix parameters, anti-cracking material, additive composition on concrete drying shrinkage were studied in this article. In addition to the free-drying shrinkage of plain concrete, the test also produced speciment with a steel bar in the center in order to study the drying shrinkage under restraint. Main conclusion as follows:
     ⑴The order of parameters affect the strength of ultra-fine sand pumped concrete is water-cement ratio>fly ash percentage>superplasticizer content>sand percentage>coarse aggregate gradation. The effective way to prepare ultra-fine sand pumping concrete is mixed with fly ash and water-reducing agent to minimize the water-cement ratio. In the trial range, the effect of sand percentage and coarse aggregate gradation on the strength of concrete is not significant. And they could be certained by the pumpability and other technical indicators.
     ⑵Strength of ultra-fine sand pumping concrete first increases and then decreased with the increases of sand percentage. When water-cement ratio and fly ash increases the strength of concrete declined. When Superplasticizer increases the strength of concrete first increases and then decreased, the optimal content is 0.64%. When small or mid-size stone percent is 50%, strength of concrete is the highest .
     (3) The better range of water-cement ratio of ultra-fine sand pumped concrete should be 0.35~0.45;better sand percentage range is 27%~31%;better fly ash percentage range is 15%~25%. Water-cement ratio 0.35, fly ash percentage 15%, sand percentage 31%, superplasticizer percentage 1.0%, 20~40㎜ gravel coarse accounted for 50~70% will be the best range of preparation of C40 ultra-fine sand pumping concrete.
     (4) Fly ash could reduce the area of plastic shrinkage cracks about 42.7%~57.9%. Concrete superplasticizer can reduce the area of plastic shrinkage cracks about 23.0%~57.3%. Plastic polypropylene fiber could reduce the area of plastic shrinkage cracks of concrete by 11.8%~62.6%. Pumping agent and air-entraining agent also could reduc the plastic shrinkage of concrete effectively.
     (5)There exist a climacteric sand percentage that less plastic shrinkage of concrete. Plastic shrinkage crack aera would be decreased first and then increased with the increase of sand percentage. In the scope of the trial, the plastic shrinkage of concrete is lowest when the sand percent is 27%.
     (6) The order of environmental factors that effect the plastic shrinkage of concrete is surface temperature > surface wind speed> ambient temperature> air relative humidity> pouring temperature. The effects of environmental factors on crack area and evaporation rate of concrete water linearly, the interactive effect was not obvious.
     (7) Drying shrinkage of concrete would be increase with the water-cement ratio lower in later period. It is good for ultra-fine sand pumping concrete to prevent drying shrink if mix more large-size gravel in concrete.
     (8) Take 90d age concrete drying shrinkage as a reference: fly ash could reduce free shrinkage rate of 13.6%~24.9% than zero-volume fly ash concrete, restrained shrinkage decreased 25.8%~14.1%. Polypropylene fiber can reduce the free drying shrinkage of concrete 18%~33%, restrained shrinkage 12%~24%. Expansive agent decreased free drying shrinkage of concrete by 14%~23%, restrained shrinkage 10%~25%.
     (9) Concrete accelerator agents will increase the drying shrinkage. 90d age concrete adding 5%~12% of free-drying shrinkage, restrained shrinkage rate 13%~24%.
引文
[1]张蔺.特细砂的应用问题浅析.西部探矿工程[J],2008(6):207-209
    [2]王卫红,高智双.特细砂混凝土配比设计与高扬程泵送技术[J],铁道建筑技术,2000.6.
    [3]梁秋红,黎昀.特细砂混凝土的应用及其经济性[J],广西水利水电, 2001.2:73-75.
    [4]彭崇.桐子壕航电工程特细砂混凝土应用技术总结[J],四川水利发电,2002.9:5-9
    [5]杨润香;陈世丽;索亚萍等.黄河水洗特细砂混凝土的研究[J],陕西建筑,2006,1:38-40
    [6]贾海华;刘娟红;宋少民,粉煤灰特细砂混凝土在固原车站工程中的应用[J],粉煤灰综合利用,2001,2:10-11
    [7]彭元甲.特细砂混凝土的配制与应用[J].甘肃水利水电技术,1997.2.
    [8]龚云龙.特细砂在水利工程中的应用[J].江苏水利,1999年第12期:32
    [9]姜波.机制砂掺特细砂在混凝土桥梁施工中的运用[J],山西建筑,2008,11.
    [10]廖太昌,机制砂加特细砂配制泵送混凝土试验及应用[J],铁道建筑技术,2004,S1
    [11]蒲心诚,等.特细砂超高强高性能混凝土的配制技术[J].重庆建筑大学学报,1999.2.
    [12]李相国.绿色高性能水工泵送混凝土试验研究[J],混凝土,2006,10.
    [13]彭玉林.掺粉煤灰泵送混凝土在水工隧洞工程中的应用前景[J],水利水电技术,2007,9.
    [14]张胤,陶建勋.砂率对混凝土可泵性的影响[J],贵州工业大学学报,2004年第4期:88-90
    [15]彭崇.桐子壕航电工程特细砂混凝土应用技术总结[J],四川水利发电,2002.9:5-9
    [16]贾海华,刘娟红,宋少民.粉煤灰特细砂混凝土在固原车站工程中的应用[J],粉煤灰综合利用,2001,2:10-11
    [17]张雄,张小伟,李旭峰.混凝土结构裂缝防治技术[M].化学工业出版社.2007年1月第1版.
    [18]薛建荣,陶杰.用开封特细砂配制混凝土试验研究[J].中国建材,2008(3):85-87
    [19] JGJ/T 10-95,混凝土泵送施工技术规程[S].北京:中国建筑工业出版社,1995.
    [20]雍本.特种混凝土设计与施工[M],建筑工业出版社,第二版:232-233
    [21]王龙梅,等.掺合料对混凝土可泵性影响浅析[J].低温建筑技术,2008.2.
    [22]李金玉,等.水工混凝土耐久性的研究和应用[M],中国电力出版社,2004年11月第4版
    [23]吴中如主编.重大水工混凝土结构病害检测与健康诊断.[M],高等教育出版社.2005年11月第一版
    [24]刘霞.混凝土重力高坝坝踵开裂对坝体受力性能的影响研究[D],西北农林科技大学.2008年5月
    [25]王铁梦.工程结构裂缝控制[M].中国建筑工业出版社,1997年8月第一版:6
    [26]宋春香.补偿收缩混凝土在渠道防渗工程中的应用研究[D],西北农林科技大学.2007年5月
    [27]孙志恒,等.水工混凝土建筑物的检测、评估与缺陷修补工程应用[M],中国水利水电出版社.2004年1月
    [28]叶玉珍.水工建筑物裂缝及修补方法[J].水工建筑物设计与加固[A],黄河水利出版社,武永新,吴正桥,于玉森主编.2002(9):302
    [29]潘家铮主编.水工建筑物的温度控制[M].水利水电出版社.1999年11月第1版
    [30] Swayze,M.A.,Early Concrete Volume Change and Theircontrol[J].ACI, Proceedings, V.38, 1942,PP425-440
    [31] Soroushian P,Mirza F,Alhozaimy A.Plastic shrinkage cracking of Polypropylene fibrereinforced concrete[J]. ACI Materials,Journal,1995,92(5):553-560.
    [32] Filho R D,Sanjuán M A. Effect of low modulus sisal and Polypropylene fibre on the free and restrained shrinkage of mortars at early age[J].Cement and Concrete Research,1999,29(11):1597- 1604
    [33] DAN RAVINA and RAHEL SHALON. Plastic Shrinkage Cracking[J].ACI Journal,1968, 4:282-291.
    [34] F.H.Wittmann. On the Action of Capillay Pressure[J].CCR,1976,16:49-56.
    [35]周永元,朱耀台,钱晓倩.混凝土干缩的物理力学机制描述[A].高强与高性能混凝土及其应用专题研讨会论文集
    [36]张德榆.特细砂泵送混凝土在瑞奇大厦的应用[J].施工技术, 2000 (5)
    [37]吴芳,等.聚丙烯纤维控制特细砂混凝土[J].重庆建筑大学学报.2003年10月:81-86
    [38]杨红霞,闫竹玲,刘雅君.陕北沙漠特细砂混凝土性能的试验研究[J].水泥与混凝土.2008(2)
    [39]何育文.特细砂混凝土配合比设计及应用[J].人民珠江.2006(3):34-52
    [40]张阔.特细砂在商品混凝土中的应用[J].商品混凝土,2005(6):54-56
    [41] Dan Ravina. Properties of fresh concrete incorporating a high volume of fly ash as partial fine sand replacement[J]. Materials and Structures, 1997,30(10): 473-479.
    [42]刘涛.试论泵送砼塑性裂缝的预防和处理[J].工程技术.2006(2)
    [43]谢建军.混凝土塑性裂缝分析控制与研究[J].西部探矿工程.2008(2)
    [44]王龙梅,等.掺合料对混凝土可泵性影响浅析[J].低温建筑技术,2008.2.
    [45]张德榆.特细砂泵送混凝土在瑞奇大厦的应用[J].施工技术, 2000 (5)
    [46]薛媛.矿物掺和料/聚丙烯纤维混凝土抗冲磨特性试验研究[D],西北农林科技大学.2008年5月
    [47]成全喜,江书杰,孙锦镖.聚丙烯纤维混凝土抗裂性能试验研究[J],天津城市建设学院学报.2003年9月:265-268
    [48]葛其荣,等.宁波白溪水库二期面板聚丙烯纤维混凝土试验研究[J],建筑结构.2001,31(9):63-66
    [49] Parviz Soroushianand Siavosh Ravanbakhsh. Control of Plastic Shrinkage Cracking with Specialty Cellulose Fibers[J].ACI Materials Journal,July-August1998:429-435.
    [50] Miroslaw Grzybowskiand Surendra P.Shah. Shrinkage Cracking of Fiber Reinforced Concrete[J].ACI Matrrials Journal,March-April 1990:138-148.
    [51]钱春香,耿飞,李丽.聚丙烯纤维提高水泥砂浆抗塑性开裂的机理[J].东南大学学报,2005年9月:786-791
    [52]刘兰强.聚丙烯纤维在混凝土中的阻裂效应研究[J].公路,2000, 6 :28-34.
    [53]王川.大流动性混凝土塑性收缩裂缝研究[D].重庆大学研究生学位论文.2002.
    [54]张彦超,陈晓宁,方传海.混凝土的干燥收缩经验公式探讨[J].建筑工程.
    [55]刘刚,张皓.砼干燥收缩经验公式研究[J].农机化研究,2005(5):142-143.
    [56]李光伟.水工特细砂混凝土性能试验[J],水利水电科技进展,2006(8):18-20
    [57]谢祥明,黄绪通.特细砂水工混凝土配合比设计的“三低一超”法[J].混凝土,2003,(8):55-60.
    [58]王文全,黄绪通.特细砂混凝土配合比设计原则及施工应用[J],四川水利,2004.3
    [59]麦家煊,陈铁.水工结构工程[M],中国环境科学出版社.2003年12月
    [60] Parviz Soroushian,Faiz Mirza and Abdulrahman Alhozaimy.Plastic Shrinkage Crack-ing of Polypropylene Fiber Reinforced Concrete[J].ACI Materials Journal,September-October 1995:553-560
    [61]丁晓春,唐华,郭永平.炎热环境中混凝土配合比对塑性收缩裂缝的影响[J],中国建材科技,2000年5月:43-47
    [62]王文娇.混凝土碱-骨料反应综合抑制措施试验研究[D],西北农林科技大学.2008年5月
    [63]张远海,王利平.特细砂混凝土应用的技术要点[J],建筑技术,第28卷第1期
    [64]马少军,张慧莉,董鹏.双掺硅粉粉煤灰高性能混凝土的配制技术[J].中国农村水利水电,2005年第4期:64-69.
    [65]张德榆.特细砂混凝土泵送施工工艺实践[J].建筑技术,第33卷第1期.
    [66] GB 50119-2003,混凝土外加剂应用技术规范[S].北京:中国建筑工业出版社,2003.
    [67]袁志发,周静芋主编.试验设计与分析[M].高等教育出版社,2000年8月第一版
    [68]孙兆林.MATLAB 6.X图像处理[M],清华大学出版社.2002年5月第1版
    [69]姚利君,等.混凝土膨胀剂在不同养护条件下的膨胀性能研究[J].商品混凝土,2006(3):29-32,2006,(7):85-86.
    [70]高春勇.化学外加剂对混凝土收缩开裂的影响[D].2004年6月

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700