用户名: 密码: 验证码:
板坯连铸结晶器内流动状态及传热行为的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在连铸过程中,结晶器是钢水成型的最后一道工序,结晶器内钢液的流动特性不仅关系到结晶器的传热、夹杂物的上浮,而且还与铸坯的表面及内部质量有着非常密切的关系。深入了解和控制结晶器内钢液的流动状态和传热行为是保证高效连铸工艺顺行的重要条件。
     本研究以重钢板坯连铸结晶器为原型,基于商用软件FLUENT操作平台,采用连续性方程、动量方程及能量方程建立结晶器内钢液流动的三维数学模型,模拟研究了结晶器内钢液的流动状态和传热行为。通过数值模拟方法研究了浸入式水口(SEN)结构参数(水口倾角、底部形状和水口出口面积比)及连铸工艺参数(拉速、插入深度和吹气量等)对结晶器内钢液流场和温度场的影响,分析了其影响规律及形成原因,并与物理模拟进行对比,为优化SEN结构参数及连铸工艺参数提供依据。
     采用物理模拟实验与数值模拟相结合的方法,优选板坯结晶器水口。物理模拟结果表明:常规冶炼拉速条件下,160mm厚度的结晶器B1#和B2#水口较优;190mm厚度结晶器2#和3#水口较优;230mm厚度结晶器2#和7#水口较优。数值模拟结果表明:高拉速条件下,160mm厚度结晶器,B2#水口较优;190mm厚度结晶器,2#水口较优;230mm厚度结晶器7#水口较优。
     通过建立和求解夹杂物的运动方程,分析了夹杂物在结晶器内的运动轨迹。结果表明:夹杂物运动的轨迹与钢液的流线图相似;在其他情况相同的情况下,夹杂物颗粒数量对去除率影响不大;夹杂物的直径越大、密度越小,越容易除去;靠近浸入式水口壁面的夹杂物易被除去;当拉速较大、水口插入深度较大、结晶器断面宽度较宽时,钢液对结晶器窄面的冲击深度较大,夹杂物不易上浮,去除率较低。
In the continuous casting process, mold is the last process during molten steel shaped, the flow field characteristic in mold is not only affect heat transfer and inclusion removal rate, but also has a very close relationship on slab surface quality and internal quality. In-depth understanding and controlling the molten steel flow field and heat transfer behavior in the mold is an important condition to ensure efficient continuous casting process.
     The slab mold at Chongqing Iron and Steel Company was the object for investigation in this paper, based on the commercial software FLUENT, using the continuity equation, momentum equation and energy equation, this article established the mathematical model to simulate the flow field and heat transfer behavior in mold. By using numerical simulation method, this paper studied how the submerged entry nozzle (SEN) structural parameters (SEN exit area ratio, the bottom structure of SEN and SEN port obliquity), continuous casting process parameters (casting speed, immerged depth and blowing volume, etc.) influence mold flow field and the temperature field, analyzed the impact of the law and its cause, compared with the physical simulation, provided the basis for optimizing the structural parameters of SEN and continuous casting process parameters.
     In this paper, the submerged entry nozzle was selecte by using physical simulation and numerical simulation. The physical simulation results showed: 160mm thickness of mold preferred B1# and B2# nozzle, 190mm thickness of mold preferred 2# and 3# nozzle, 230mm thickness of mold preferred 2# and 7# nozzle. Numerical simulation method was used to select the same thickness of the different sections on better nozzles at high casting speed, the nozzles were preliminary selected in physical simulation. The results showed: 160mm thickness of mold preferred B2 # nozzle, 190mm thickness of mold preferred 2 # nozzle, 230mm thickness of mold preferred 7# nozzle.
     3-D numerical model which describes the flow of liquid steel and the inclusion’s trajectories in mold has been carried out, by solving the equations of motion of inclusions, the study analyzes the inclusions trajectory in the mold. The results show that the trajectories of inclusions are similar to the streamline of steel; the numbers of inclusions have less effect on the removal rate; the larger diameter, smaller density and near the submerged entry nozzle wall inclusions are easy to remove; the high casting speed, the larger immersion depth of nozzle, the wider of mold section, the impacted depth of the molten steel is deeper, this is not beneficial for the inclusions removing.
引文
[1]贺道中.连续铸钢[M].冶金工业出版社.北京:2007.
    [2]干勇,仇圣桃,萧泽强.连续铸钢过程数学物理模拟[M].冶金工业出版社.北京:2001.
    [3]蔡开科,程士富.连续铸钢原理与工艺[Ml.北京:冶金工业出版社,1994.
    [4] B. G. Thomas and Lifeng ZHANG. Mathematical Modeling of Fluid Flow in Continuous Casting [J]. ISIJ International, 2001,41(10): 1181–1193.
    [5]包燕平,张涛,蒋伟等.板坯连铸结晶器内钢液流场的三维数学模型[J].北京科技大学学报,2001,23(2):206-210.
    [6]赵静,杨军,邢长虎等.连铸结晶器内流场研究进展[J].现代铸铁,2003,(6) : 7-10.
    [7] TAKATANI, K.,Y. TANIZAWA,H. MIZUKAMI. Mathematical Model for Transient Fluid Flow in a Continuous Casting Mold [J]. ISIJ Int.2001, 41(10):1252-1261.
    [8]朱苗勇,樊俊飞.计算机模拟仿真在过程冶金中的地位和应用[J].宝钢技术, 1997 (4): 24-27.
    [9] Szekely J, Yadoya R T. The Physical and Mathematical Modeling of the Flow Field in the Mold Region in Continuous Casting System [J]. Met Trans B,1973(4):1379-1388.
    [10] Thomas B G, Mika L J, Najjar F M. Simulation of Fluid Flow Inside Continuous Slab casting Machine [J]. Met Trans B,1990,(21B):387-400.
    [11] YANH Hongliang, ZHAO Loamgang, et al. Mathematical Simulation on Coupled Flow, Heat, and Solute Transport in Slab Continuous Casting Process [J]. Metall. Trans. B(29B):1345-1356.
    [12] Huang X, Thomas B G, Najjar F M. Modeling Superheat Removal During Continuous Casting of Steel Slabs [J]. Met Trans B,1992(23B):339-356.
    [13]文光华,李刚等.高速板坯连铸结晶器内流场、温度场的数值模拟[J].重大自然学报,1997,20(11):23-29.
    [14] Flint P J. A Three-dimensional Finite Difference Model of Heat Transfer Fluid Flow and Solidification in the Continuous Slab Caster [A]. Proc. 73rdSteelmaking Conf [C]. Iron and Steel Society, Warrendale:1990.
    [15] KIM Deok-Soo, KIM Woo-Seung, CHO Kee-Hyeon. Numerical Simulation of the Coupled Turbulent Flow and Macroscopic Solidification in Continuous Casting with Electromagnetic Brake [J]. ISIJ International, 2000,40(7):670-676.
    [16] Lait J, Brimacombe J K, and Weinberg F. Mathematical Modeling ofHeat Flow in the Continuous Casting of Steel [J]. Ironmaking and Steelmaking, 1974(2): 90-98.
    [17] Lehman A F, Tallback G R, Kollberg S G, et al: Fluid Flow Control in Continuous Casting Using Various Configurations of Static Magnetic Fields [J]. Int Symposium On EPM94, Nagoya, ISIJ,1994:372-377.
    [18] Idogawa A, Tozawa H, Takeuchi S. et al, Control of Molten Steel Flow in Continuous Casting Mold by Two Static Magnetic Fields Imposed on Width [J]. Int Symposium On EPM94, Nagoya, ISIJ,1994:378-383.
    [19] Tanaka T, Furuhashi S, Yoshida M. Flow Control Using High Frequency Magnetic Field in Continuous Casting Mold [J]. Int Symposium On EPM94, Nagoya, ISIJ,1994:248-253.
    [20]黄维通,等·连铸结晶器内三维流动过程的数值计算方法[J].北京科技大学学报, 1994(12):527-531.
    [21]杨秉俭,苏俊义.连铸结晶器中钢液三维紊流流动的数值模拟[J].西安交通大学学报,1997,31(4):67-72
    [22]张胤,贺友多等.板坯连铸结晶器内流动及传热过程的熟悉模型[J].钢铁研究,2001,5(10):31-34.
    [23]包燕平,张涛等.板坯连铸结晶器内钢液流场的三维数学模型[J].北京科技大学学报,2001,23(4):106-110.
    [24]王永胜,顾武安等.板坯连铸水口内钢液流动的数值模拟[J].钢铁研究学报,2008,20(8):16-20.
    [25]朱苗勇,刘家奇等.板坯连铸结晶器内钢液流动过程的模拟仿真[J].钢铁,1996,30(8):23-27.
    [26] Lait J,Brimacombe J K, and Weinberg F. Mathematical Modeling of Heat Flow in the Continuous Casting of Steel [J]. Ironmaking and Steelmaking, 1974(2): 90-98.
    [27] Mazumda D A. Consideration about the Concept of Effective Thermal Conductivity in Continuous Casting [J]. ISIJ International,1989,29(6):524-528.
    [28]张炯明,王立峰等.板坯连铸结晶器传热系数[J].金属学报,2003,39(12):1281-1284.
    [29]伍成波,王谦等.板坯连铸结晶器温度场的计算机仿真[J].重庆大学学报,2002,25 (12):31-34.
    [30] Thomas B.G, Li G, Moitra A, Habing D. 80 th Steelmaking Con [C], Chicago, IL, Iron and Steel Society, 1997:13.
    [31] Thomas B.G, Moitra A, Habing D, Azzi J. Proc 1st European Con Continuous Casting [C], Vol.2, Florence, Italy: Associazione Italiana di Metallurgia,1991:417.
    [32]郭佳,蔡开科.板坯连铸结晶器铜板温度场研究[J].炼钢,1994, 6: 27-31.
    [33]杨甲申,赵敏,张继强.连铸机结晶器铜板温度场分析[J].重型机械, 2003, 6: 12-14.
    [34]崔小朝,刘才.结晶器铜管变形和临界压力分析[J].燕山大学学报, 1999, 23(4): 327-330.
    [35]杜素周,张丙奇,张少军等.漏斗结晶器热应力的研究[J].重型机械, 2003, 3: 17-19.
    [36]王宝峰,谢延敏,麻永林.小方坯高速连铸时结晶器应力场有限元模拟[J].包头钢铁学院院报, 2003, 22(3): 201-207.
    [37]康丽,王恩刚等.连铸结晶器温度场及热变形的数值模拟[J].材料与冶金学报2006,5(9): 190-194.
    [38]刘旭东,朱苗勇等.板坯连铸结晶器热行为研究[J].金属学报,2006,42:1081-1086.
    [39] Kouji TAKATANI, Yoshinori TANIZAWA, Hideo MIZUKAMI, et al. Mathematical Model for Transient Fluid Flow in a Continuous Casting Mold [J]. ISIJ International, 2001,41:1252-1261.
    [40] Hua Bai, B.G.Thomas. Turbulent Flow of Liquid Steel and Argon Bubbles Slide-Gate Tundish Nozzles:PartI Model Development and Validation [J]. Metallurgical and Materials Transactions B, 2001( 32B):253-267.
    [41] Hua Bai,B.G.Thomas. Turbulent Flow of Liquid Steel and Argon Bubbles Slide-Gate Tundish Nozzles: PartIl Effect of Operation Conditions and Nozzle Design [J]. Metallurgical and Materials Transactions B, 2001 (32B): 269-284.
    [42] Hua Bai, B.G.Thomas. Effects of Clogging, Argon Injection and Continuous Casting Conditions on Flow and Air Aspiration in Submerged Entry Nozzles [J]. Metallurgical and Materials Transactions B, 2001 (32B): 707-722.
    [43] B.G.Thomas, X.Huang. Effect of Argon Gas on Fluid Flow in a Continuous Slab Casting Mold [M]. Steelmaking Conference Proceedings, 1993: 273-288.
    [44]曹娜,朱苗勇.吹氩板坯连铸结晶器内钢/渣界面行为的数值模拟[J].金属学报,2008,44(1): 79-84.
    [45]罗志国,倪冰等.利用FLUENT模拟连铸结晶器内的气液两相流动[J].工业加热,2008, 37(1):6-7.
    [46]于海岐,朱苗勇.板坯连铸结晶器电磁制动和吹氩过程的多相流动[J].金属学报2008,44(5):619-625.
    [47] W. Damen G. A.bbl G. de Gendt.氩气泡在连铸坯中的不均匀分布[J].鞍钢技术1998(3):59-59.
    [48] Baokuan Li, Toshimitsu Okane, Takateru Umeda. Modeling of Molten Metal Flow in a Continuous Casting Process Considering the Effects of Argon Gas Injection and Static Magnetic-Field Application [J]. Metallurgical and Materials Transactions B, 2000 (31B): 1491-1503.
    [49]马范军,文光华等.板坯连铸结晶器内吹入气体对钢液行为的影响[J].炼钢,2000(3):42-45.
    [50] R.SANCHEZ-PEREZ, R.D.MORALES. A Physical Model for the Two-phase Flow in a Continuous Casting Mold [J]. ISIJ International, 2003,43(5):637-646.
    [51] Tiebiao Shi, B.G.Thomas. Effect of Gas Bubble Size on Fluid Flow in Continuous Casting Mold [J]. Continuous Casting Consortium,2000.
    [52] B.G.Thomas, Alex Dennisov, Hua Bai. Behavior of Argon Bubbles during Continuous Casting of Steel [J]. Department of Mechanical and Industrial Engineering University of Illinois at Urbana-Champain 1206 West Green Street. Urbana,1997.
    [53] B.G.Thomas, X.Huang, R.C.Sussman. Simulation of Argon Gas Flow Effects in a Continuous Casting Slab Caster [J]. Mater Trans. B,1994,25B:527-545.
    [54]于会香,朱国森等.板坯连铸结晶器内钢液吹氩行为的数值模拟[J].北京科技大学学报, 2003,25(3):215-217.
    [55]曹娜,朱苗勇等,吹氩板坯连铸结晶器内双循环流的形成条件[J].金属学报,2008,44(5): 626-630.
    [56]雷洪,朱苗勇等.水口吹氩对结晶器弯月面波动的影响[J].中国有色金属学报,1998,8(2):468-471.
    [57] R?Dekkers, B?Blanpain P W. Steel Cleanliness at Sidmar [C]. ISSTech2003 Conference Proceedings, eds., ISS Warrandale, PA,2003:197-209.
    [58]赵兴武.国外板坯高速连铸技术[J].钢铁钒钛,1996,17(2):42-50.
    [59]蔡开科,程士富.连续铸钢原理与工艺[M].北京:冶金工业出版社,1999:222-234.
    [60]邓安元,赫冀成,贾光霖.方坯凝固过程中夹杂物的运动轨迹[J].东北大学学报,2000,21(5):532-535.
    [61]雷洪,朱苗勇,赫冀成.连铸结晶器内非金属夹杂物运动行为模拟[J].过程工程学报,2001,1(2):138-141.
    [62]雷洪,赫冀成.板坯连铸机内钢液流动和夹杂物碰撞长大行为[J].金属学报,2007,43(11):1195-1200.
    [63]李宝宽,霍慧芳,栾叶君.流动控制结晶器内磁场和吹氩对夹杂物粒子群运动的影响[J].金属学报,2003,39(9):932-937.
    [64] Lifeng Zhang, UN Aoki, Brian G, Thomas. Inclusion Removal by Bubble Flotation in a Continuous Casting Mold [J]. Metallurgical and Materials Transactions B, 2006, 37B:361-379.
    [65] Lifeng Zhang, Brian G, Thomas. Numerical simulation on inclusion transport in continuous casting mold [J]. Metallurgy, 2006,13(4):293-300.
    [66] Youjong KWON, Jian ZHANG, Hae-Geon LEE. Water Model and CFD Studies of Bubble Dispersion and Inclusions Removal in Continuous Casting Mold of Steel [J]. ISIJ, 2006,46(2):257-266.
    [67] Lifeng Zhang, Yufeng Wang, Xiangjun Zuo. Flow Transport and Inclusion Motion in Steel Continuous-Casting Mold under Submerged Entry Nozzle Clogging Condition [J].Metallurgical and Materials Transactions B, 2008, 39B:534-550.
    [68] Quan Yuan, Brian G, Thomas, S.P. Vanka. Study of Transient Flow and Particle Transport in Continuous Steel Caster Molds: Part II. Particle Transport [J]. Metallurgical and Materials Transactions B, 2004, 35B:703-714.
    [69] Hiroyuki TANAKA. Ryoji TSUJINO., etc. Effect of Length of Vertical Bending-type Continuous Section Casting on Inclusion Removalin Vertical Machine [J]. ISIJ International, 1994,34(6):498-506.
    [70] L. Zhang, B.G. Thomas, etc. Inclusion Investigation during Clean Steel Production at Baosteel [C]. ISS-AIME, Warrendale, 2003:141-156.
    [71] Lifeng Zhang, Subo Yang. etc. Investigation of Fluid Flow and Steel Cleanliness in the Continuous Casting Strand [J]. Metallurgical and Materials Transactions B, 2007, 38B:63-83.
    [72]张邦文,邓康,雷作胜等.连铸中间包夹杂物聚合与去除的数学模型[J].金属学报,2004,40 (6):623-628.
    [73]兰岳光,邹宗树,姜茂发等.超低头连铸板坯夹杂物分析[J].特殊钢,2003,24(3):48-50.
    [74]刘友荣,宋景欣,程乃良等.梅山钢厂连铸坯非金属夹杂物成因及行为研究[J].炼钢,2003,19(2):36-40.
    [75]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [76]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京理工大学出版社,2004.
    [77] Nguyen A V, Evans G M. Computational Fluid Dynamics Modeling of Gas Jets Impinging onto Liquid Pools[J]. Applied Mathematical Modelling, 2006, 30:1472-1484.
    [78] Thomas B G, Yuan Q. Comparison of Four Methods to Evaluate Fluid Velocities in a Continuous Slab Casting Mold.[J]. ISIJ Int, 2001,41(10):1262-1271.
    [79]于会香.连铸板坯结晶器内浸入式水口的优化研究[D].学位论文.北京:北京科技大学,2002.
    [80]郑淑国,朱苗勇.多流连铸中间包内钢液流动特性的分析模型[J].金属学报,2005,41(10):1073.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700