用户名: 密码: 验证码:
线性特征抽取研究及其在人脸识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人脸识别技术是生物特征识别领域中的一个研究热点,其主要任务是根据人脸图像中的有效信息进行个体的身份识别。本文以代数统计为研究工具,在流形学习和子空间学习的基础上,提出了新的线性特征抽取方法,并将其应用于人脸识别,将其与现阶段的主流方法进行了比较,验证了本文方法的有效性。本文的主要工作和创新之处如下:
     1.深入研究二维主成分分析中的相关性问题,提出最小化相关性的二维主成分分析算法。
     二维主成分分析是一种直接利用图像矩阵构造散布矩阵的方法,在2003年后得到广泛应用及推广,一批基于“二维”的新方法应运而生。本文指出在二维主成分分析中,特征向量的分量之间是相关的,并给出此相关性的数学表达,进一步提出了最小化相关性的二维主成分分析。该方法改进了二维主成分分析的目标函数,在最大化特征向量间总体散度的同时,最小化特征向量各分量间的相关性。
     2.基于张量脸模型的方法是为了解决在各种外在因素(光照、角度、表情等)影响下的人脸识别问题,但是其目标函数的解决较复杂,且存在多个未知参数。于是,我们提出用矩阵分解来解决张量脸模型。
     新方法的优点有三:一是我们的方法只含较少的未知参数,参数的可选择范围也更大,而且实验表明通过矩阵分解得到的闭式解更加稳定和有效;二是在样本训练阶段,我们的方法计算复杂度小于其他的张量脸方法;三是我们的方法扩展了张量脸模型的应用范围,如将其应用于图像重构。
     3.用非负矩阵分解的算法解决有关二维数据特征抽取的问题。
     二维主成分分析是一种基于整体脸的方法,保留了人脸部件之间的拓扑关系;而非负矩阵分解是基于局部特征的识别方法,通过提取局部信息来实现分类。将两种算法的优点融合在一起,提出非负二维主成分分析。因此,该方法解决了传统非负矩阵分解未加强分类的问题。此外,该方法在矩阵分解之前不需要将图像矩阵转换为图像向量,从而保留了数据本身的图像结构。
     4.同时考虑数据分布的局部性和非局部性,提出无监督的差分鉴别特征提取方法。
     局部保持投影只考虑了投影后的局部性,而忽视了非局部性。针对这个问题,我们的方法引入非局部散布矩阵,提出无监督的差分鉴别特征提取方法,通过最大化非局部和局部之间的散度差来寻找最优变换矩阵,并成功应用于人脸识别。该方法同时引入非局部和局部的信息,揭示隐含在高维图像空间中的非线性结构;采用差分的形式求解最优变换矩阵,避免“小样本”问题;对LPP中的邻接矩阵进行了修正,更准确地描述样本之间的邻近关系。
     5.考虑了数据分布的潜在流形结构,采用新的图像距离度量方法以及新的鉴别特征抽取思想,提出基于中心距离的鉴别特征抽取方法。
     该方法是一种有监督的线性特征抽取方法,它首先计算样本之间的中心距离,并以此距离作为依据寻找类内和类间共计K个近邻;然后,该方法寻找线性投影轴,使得降维后的同类近邻间的距离尽可能地近,而类间近邻间的距离尽可能地远。
Face recognition technique is a hot branch in the field of biometrics. The aim of face recognition is to recognize individual identities according to the effective information in facial images. In this paper, based on manifold learning and subspace learning we use algebra statistics as our research tools to propose some novel linear feature extraction for face recognition. Furthermore, we compare these proposed approaches with current popular face recognition methods and verify the effectiveness of our approaches. The main work and innovation of this dissertation includes:
     1. Through investigation and research on correlation in two-dimensional principal component analysis (2DPCA), we propose an improved 2DPCA based on minimized correlation.
     In 2DPCA, the covariance matrix is constructed with the 2D image matrices directly. Since 2003,2DPCA has been widely applied and numerous novel methods based on two dimensions have emerged. This paper finds that arbitrary components belonging to any feature vector are correlated and presents the corresponding mathematical expressions. Based on this, we put forward our improved 2DPCA, which modifies the objective function of original 2DPCA. Our algorithm maximizes the total scatter of the projected samples, and meanwhile it minimizes the correlation within features.
     2. Tensor model based face recognition aims to address the problem of face recognition with various factors (lighting, viewpoint, expression, etc.). However, tensor model is not a preferable choice because the solution of its objective function is complex and its objective function has many unknown parameters. Thus we propose tensor model based methods using matrix factorization.
     Firstly, this proposed method has fewer unknown parameters and the parameters can be chosen from a wider range. Comprehensive experiments on face image database validate the steadiness and effectiveness of our closed solution. Secondly, at the phase of samples training, our computation complexity is lower than that in previous tensor model based methods. Lastly, we further apply the tensor model based methods to image reconstruction.
     3. Applying the idea in the non-negative matrix factorization (NMF), we solve a problem in two-dimension based feature extraction.
     2DPCA is an algorithm based on the "whole face" and preserves the topology of facial components; while NMF is an algorithm based on localized features and extracts local information. In this paper, we integrate the merits of 2DPCA and NMF and further propose a novel method called Non-negative 2DPCA. Compared with original NMF, the proposed method enhances the discriminating ability. Moreover, in the new method, images do not need to be transformed into a vector prior to feature extraction and thus the facial structures are preserved.
     4. Taking both "locality" and "nonlocality" of data distributions into consideration, we propose a novel unsupervised difference discriminant feature extraction.
     Locality preserving projections (LPP) only considers the information of the "locality" and ignores that of the "nonlocality". To solve this problem, a novel unsupervised difference discriminant feature extraction is presented. This method extracts an optimal transformation matrix based on maximal nonlocal and local scatter difference and has been successfully applied to face recognition. The proposed method:
     1) takes into account both the local and nonlocal quantities and seeks the nonlinear structure hiding in high-dimensional data.
     2) adopts the difference form in order to avoid small sample size problem.
     3) modifies the adjacency matrix in LPP so that the proposed method can catch the neighborhoods relationship exactly.
     5. Taking into consideration the intrinsic manifold of data distribution, we adopt new image distance measure to extract discriminant features, and then propose a novel discriminant feature extraction based on center distance.
     This proposed method, as a supervised linear feature extraction, computes the center distance between any two samples. Based on this distance, it searches the K neighborhoods in the same class and in the different classes. Then, it computes the projection axes that can pull the neighborhoods in the same class as closely as possible and push the neighborhoods in the different classes as far as possible.
引文
[1]李月敏,陈杰.快速人脸检测技术综述.全国第16届计算机科学与技术应用学术会议论文集[C],2004:771-774.
    [2]梁路宏,艾海舟,徐光佑,张拔.人脸检测研究综述.计算机学报,2002,25(5):449-458.
    [3]E. Hjelmas, B. K. Low. Face Detection:A survey. Computer Vision and Image Understanding,2001:236-274.
    [4]W. Zhao, R. Chellappa, P. J. Phillips, et al. Face Recognition:A Literature Survey. ACM Computing Surveys,2003,35(4):399-459.
    [5]R. Chellappa, C. L. Wilson, S. Sirohey. Human and Machine Recognition of Faces:A Survey. Proceedings of the IEEE,1995,83(5):705-741.
    [6]A. Pentland. Looking at People:Sensing for Ubiquitous and Wearable Computing. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000,22(1):107-119.
    [7]A. G. Maxim. On Internal Representations in Face Recognition Systems. Pattern Recognition,2000,33(7):1161-1177.
    [8]刘青山,卢汉清,马颂德.综述人脸识别中的子空间方法[J].自动化学报,2003,29(6):900-911.
    [9]张翠平,苏光大.人脸识别技术综述[J].中国图像图形学报,2000,5(11):885-894.
    [10]A. Samal, P. A. Iyengar. Automatic Recognition and Analysis of Human Faces and Facial Expressions:A Survey. Pattern Recognition,1992,25(1):65-77.
    [11]Ian Craw, Nicholas Costen, Takashi Kato, et al. How Should We Represent Faces for Automatic Recognition? IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(8):725-736.
    [12]周杰,卢春雨,张长水,李衍达.人脸自动识别方法综述[J].电子学报,2000,28(4):102-106.
    [13]刘党辉,沈兰荪,Kin-ManLam.人脸识别研究进展[J].电路与系统学报,2004,9(1):85-94.
    [14]J. G. Daugman. How Iris Recognition Works. IEEE Transactions on Circuits and Systems for Video Technology,2004,14(1):21-30.
    [15]V. Dorairaj, N. Schmid, G. Fahmy. Performance Evaluation of Non-ideal Iris based Recognition System Implementing Global ICA Encoding. In: Proceedings of the International Conference on Image Processing, Italy,2005: 285-288.
    [16]R. Cappelli, D. Maio, D. Maltoni, J. L. Wayman and A. K. Jain. Performance Evaluation of Fngerprint Verification Systems. IEEE Transactions on Pattern Analysis Machine Intelligence,2006,8(1):3-18.
    [17]D. Maio, D. Malton, R. Cappell, J. L. Wayman, A. K. Jain. FVC2000: Fingerprint Verification Competition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(3):402-412
    [18]X. Y. Jing, D. Zhang. A Face and Palmprint Recognition Approach based on Discriminant DCT Feature Extraction [J]. IEEE Transactions on Systems, Man and Cybernetics,2004,34(6):2405-2415.
    [19]D. Zhang, K. W. Kin, J. You, et al. Online Palmprint Identification [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9): 1041-1050.
    [20]J. Hashemi, E. Fatemizadeh. Biometric Identification through Hand Geometry [A]. The International Conference on Computer as a Tool [C].2005,2: 1011-1014.
    [21]R. Sanchez-Reillo, C. Sanchez-Avila, A. Gonzales-Marcos. Biometric Identification through Hand Geometry Measurements [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence.2000,22(10):1168-1171.
    [22]T. Nakamoto, T. Ozawa, Y. Shibata. Improvement of Odor Recognition Chip[J]. IEEE Sensors 2003,2:1203-1208.
    [23]T. B. Ludermir, A. Yamazaki. Neural Networks for Odor Recognition in Artificial Noses [A]. International Joint Conference on Neural Networks [C],2003,1:143-148.
    [24]B. Kusumoputro, P. Irwanto, W. Jatmiko. Optimization of Fuzzy-neural Structure through Genetic Algorithms and its Application in Artificial Odor Recognition-system [A]. Asia-Pacific Conference on Circuits and Systems [C].2002,2:47-51.
    [25]L. Yuan, Z. C. Mu, Y. Zhang, et al. Ear Recognition using Improved Non-negative Matrix Factorization [A]. International Conference on Pattern Recognition [C],2006, 4:501-504.
    [26]D. J. Hurley, M. S. Nixon, J. N. Carter. Automatic Ear Recognition by Force Field Transformations [J]. IEEE Colloquium on Visual Biometrics,2000,1:1-5.
    [27]H. Chen, B. Bhanu. Human Ear Recognition in 3D [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2007,29(4):718-737.
    [28]A. Kale, A. Sundaresan, A. N. Rajagopalan, N. P. Cuntoor, A. K. Roy-Chowdhury, V. Kruger and R. Chellappa. Identification of Humans using Gait. IEEE Transactions on Image Processing,2004,13(9):1163-1173.
    [29]S. Sarkar, P. J. Phillips, Z. Liu, I. R. Vega, P. Grother, K. W. Bowyer. The HumanID Gait Challenge Problem:Data Sets, Performance and Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):162-177.
    [30]J. Mantyjarvi, J. Koivumaki, P. Vuori. Keystroke Recognition for Virtual Keyboard [A]. IEEE International Conference on Multimedia and Expo [C], Lausanne, Switzerland,2002:429-432.
    [31]R. Plamondon, G. Lorette. Automatic Signature Verification and Writer Identification:The State of The Art. Pattern Recognition,1989,22(2):107-131.
    [32]J. Daugman. Face and Gesture Recognition:Overview. IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):675-676.
    [33]X. D. Ding, C. Fang. Discussions on Some Problems in Face Recognition. Advances in Biometric Person Authentication, Lecture Notes in Computer Science 3338,2004:47-56.
    [34]Q. Yang, X. O. Tang. Recent Advances in Subspace Analysis for Face Recognition. Advances in Biometric Person Authentication, Lecture Notes in Computer Science 3338,2004:275-287.
    [35]M. Turk, A. Pentland. Eigenface for Recognition. Journal of Cognitive Neuroscience,1991,3(1):71-86.
    [36]M. Kirby, L. Sirovich. Application of the Karhunen-Loeve Procedure for the Characterization of Human Faces. IEEE Transactions on Pattern Analysis and Machine Intelligence,1990,12(1):103-108.
    [37]D. L. Swets, J. Weng. Using Discriminant Eigenfeatures for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):831-836.
    [38]H. Yu, J. Yang. A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition. Pattern Recognition,2001,34(10): 2067-2070.
    [39]W. S. Yambor, B. A. Draper, J. R. Beveridge. Analyzing PCA-based Face Recognition Algorithms:Eigenvectors Selection and Distance, Measures. In: Proceedings of the 2nd Workshop on Empirical Evaluation in Computer Vision, Dublin,2000.
    [40]H. Moon, P. J. Phillips. Analysis of PCA-based Face Recognition Algorithms. Empirical Evaluation Techniques in Computer Vision, IEEE Computer Society Press,1998:57-71.
    [41]R. A. Fisher. The Use of Multiple Measurements in Taxonomic Problems [J]. Annals of Eugenics,1936,7:179-188.
    [42]Wilks, S. S.. Mathematical Statistics. New York:Wiley,1962:577-578.
    [43]R. Duda, P. Hart. Pattern Classification and Scene Analysis. New York: Wiley,1973.
    [44]J. W. Sammon. An Optimal Discriminant Plane. IEEE Transactions on Compute,1970,19(9):826-829.
    [45]D. H. Foley, J. W. Sammon Jr. An Optimal Set of Discriminant Vectors. IEEE Transactions on Compute,1975,24(3):281-289.
    [46]J. Duchene, S. Leclercq. An Optimal Transformation for Discriminant and Principal Component Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,1988,10(6):978-983.
    [47]Z. Jin, J. Y. Yang, Z. S. Hu, Z. Lou. Face Recognition based on the Uncorrelated Discriminant Transformation. Pattern Recogntion,2001,34(7): 1405-1416.
    [48]Z. Jin, J.Y.Yang, Z. M. Tang, Z. S. Hu. A Theorem on the Uncorrelated Optimal Discriminant Vectors. Pattern Recogntion,2001,34(10):2041-2047.
    [49]S. J. Randys, A. K. Jain. Small Sample Size Effects in Statistical Pattern Recognition:Recommendations for Practitioners. IEEE Transactions on Pattern Analysis and Machine Intelligence,1991,13(3):252-264.
    [50]P. N. Belhumeur, et al. Eigenface vs. Fisherfaces:Recognition using Class Specific Linear Projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19(7):711-720.
    [51]J. Yang, J. Y. Yang. Why can LDA be Performed in PCA Transformed Space? Pattern Recognition,2003,36(2):563-566.
    [52]陈伏兵,张生亮,高秀梅,杨静宇.小样本情况下Fisher线性鉴别分析的理论及其验证.中国图像图形学报,2005,10(8):984-991.
    [53]X. S. Zhuang, D. Q. Dai. Inverse Fisher Discriminant Criteria for Small Sample Size Problem and Its Application to Face Recognition. Pattern Recogntion,2005, 38(11):2192-2194.
    [54]X. S. Zhuang, D. Q. Dai. Improved Discriminant Analysis for High-dimensional Data and Its Application to Face Recognition. Pattern Recognition,2007,40(5): 1570-1578.
    [55]L. Chen, H. M. Liao, M. Ko, et al. A New LDA-based Face Recognition System Which can Solve the Small Sample Size. Pattern Recognition,2000, 33(10):1713-1726.
    [56]H. Yu, J. Yang. A Direct LDA Algorithm for High-dimensional Data with Application to Face Recognition. Pattern Recognition,2001,34(10): 2067-2070.
    [57]D. Q. Dai, P. C. Yuen. Regularized Discriminant Analysis and Its Application to Face Recognition. Pattern Recognition,2003,36(3):845-847.
    [58]P. Comon. Independent Component Analysis, A New Concept?[J]. Signal Processing,1994,36(3):284-314.
    [59]A. J. Bell, T. J. Sejnowski. An Information-maximization Approach to Blind Separation and Blind Deconvolution [J]. Neural Computation,1995,7(6): 1129-1159.
    [60]J. F. Cardos. High-Order Contrasts for Independent Component Analysis. Neural Computation,1999,11(1),157-192.
    [61]J. F. Cardoso. Multidimensional Independent Component Analysis. IEEE International Conference on Acoustics, Speech and Signal Processing, Seattle, WA, USA,1998:1941-1944.
    [62]K. J. Johnson, Robert E. Synovec. Pattern Recognition of Jet Fuels: Comprehensive GC×GC with ANOVA-based Feature Selection and Principal Component Analysis. Chemometrics and Intelligent Laboratory Systems,2002, 60(1-2):225-237.
    [63]M. S. Bartlett, J. R. Movellan, T. J. Sejnowski. Face Recognition by Independent Component Analysis. IEEE Transactions on Neural Networks,2002,13:1450-1464.
    [64]O. Deniz, M. Castrillon, M. Hernandez. Face Recognition using Independent Component Analysis and Support Vector Machines. Pattern Recognition Letters, 2003,24(13):2153-2157.
    [65]C. J. Liu, H. Wechsler. Comparative Assessment of Independent Component Analysis (ICA) for Face Recognition. Proceedings of International Conference on Aideo Based Biometric Person Authentication, USA, Washington DC,1999.
    [66]K. Back, B. A. Draper, J. R. Beveridge. PCA vs. ICA:A Comparison on the FERET Data Set. In:Proceedings of International Conference on Computer Vision, Pattern Recognition and Image Processing, North Carolina Durham,2002:824-827.
    [67]J. Yang, D. Zhang, J. Y. Yang. Is ICA Significantly Better than PCA for Face Recognition? In:Processings of the 10th International Computer Vision,2005,1: 198-203.
    [68]J. Yang, D. Zhang, J. Y. Yang. Constructing PCA Baseline Algorithms to Re-evaluate ICA-based Face Recognition Performance, IEEE Transactions on Systems, Man and Cybernetics, Part B,2007,37(4):1015-1021.
    [69]D. D. Lee, H. S. Seung. Learning the Parts of Objects with Nonnegative Matrix Factorization. Nature,1999,401:788-791.
    [70]S. Z. Li, X. W. Hou, H. J. Zhang. Learning Spatially Localized, Parts-based Representation [C]. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Washington, USA,2001:207-212.
    [71]S. Zafeiriou, A. Tefas, I. Pitas. Discriminant NMFfaces for Frontal Face Verification [C]. In:The Machine Learning for Signal Processing Techinical Committee, Mystic, USA,2005:355-359.
    [72]X. F. He, P. Niyogi. Locality Preserving Projections [C]. In:Proceedings of the 16th Annual Neural Information Processing Systems Conference, Vancouver, 2003:153-160.
    [73]X. F. He, S. C. Yan, Y. X. Hu, et al. Face Recognition using Laplacianfaces [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005, 27(3):328-340.
    [74]X. F. He. Incremental Semi-Supervied Subspace Learning for Image Retrieval. In ACM conference on Multimedia,2004.
    [75]W. W. Yu, X. L. Teng, C. Q. Liu. Face Recognition Using Discriminate Locality Preserving Projections. Image and Vision Computing,2006,24: 239-248.
    [76]J. Yang, D. Zhang, Z. Jin, J. Y. Yang. Unsupervised Discriminant Projection Analysis for Feature Extraction. In:Proceedings of the 18th International Conference on Pattern Recognition,2006.
    [77]D. Xu, D. Tao, X. Li and S. C. Yan. Face Recognition:A Generalized Marginal Fisher Analysis Approach. International Journal of Image and Graphics,2007,7(3):583-591.
    [78]H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos. MPCA:Multilinear Principal Component Analysis of Tensor Objects[J]. IEEE Transactions on Neural Networks,2008,19(1):18-39.
    [79]D. Xu, S. C. Yan, L. Zhang. Reconstruction and Recognition of Tensor-based Objects with Concurrent Subspace Analysis [J]. IEEE Transactions on Circuits and Systems for Video Technology,2008,18(1):36-47.
    [80]S. C. Yan, D. Xu, Q. Yang. Multilinear Discriminant Analysis for Face Recognition[J]. IEEE Transactions on Image Processing,2007,16(1): 212-220.
    [81]D. Tao, X. Li, X. Wu. General Tensor Discriminant Analysis and Gabor Features for Gait Recognition[J]. IEEE Transactions Pattern Analysis and Machine Intelligence,2007,29(10):1700-1715.
    [82]G. Dai, D. Y. Yeung. Tensor Embedding Methods. In:Proceedings of the 21th National Conference on Artificial Intelligence,2006:330-335.
    [83]X. Li, S. Lin, S. Chen. Discriminant Locally Linear Embedding [J]. IEEE Transactions on Systems, Man and cybernetics,2008,38(2):342-352.
    [84]M. A. O. Vasilescu, D. Terzopoulos. Multilinear Analysis of Image Ensembles:Tensorfaces. In:Proceedings of the 7th European Conference on Computer Vision,2002:447-460.
    [85]M. A. O. Vasilescu, D. Terzopoulos. Multilinear Image Analysis for Facial Recognition. In:Proceedings of the 16th International Conference on Pattern Recognition,2002:511-514.
    [86]S. Rana, W. Liu, M. Lazarescu, S. Venkatesh. Recognising Faces inUnseenModes: A Tensor based Approach. In 19th International Conference on Computer Vision and Pattern Recognition,2008:1-8.
    [87]S. Rana, W. Liu, M. Lazarescu, S. Venkatesh. Efficient Tensor based Face Recognition. In 19th International Conference on Pattern Recognition,2008: 1-4.
    [88]S. Rana, W. Liu, M. Lazarescu, S. Venkatesh. A Unified Tensor Framework for Face Recognition. Pattern Recognition,2009,42(11):2850-2862.
    [89]D. Ridder, M. Loog and M. Reinders. Local Fisher embedding. In:Proceedings of 17th International Conference on Pattern Recognition, Cambridge, UK,2004.
    [90]K. C. Kwak, W. Pedrycz. Face Recognition using A Fuzzy Fisherfaces Classifier, Pattern Recognition,2005,38(10):1717-1732.
    [91]S. Petridis, S. T. Perantonis. On The Relation between Discriminant Analysis and Mutual Information for Supervised Linear Feature Extraction. Pattern Recognition, 2004,37(5):857-874.
    [92]W. M. Zheng, C. R. Zou and L. Zhao. Weighted Maximum Margin Discriminant Analysis with Kernels. Neurocomputing,2005,67:357-362.
    [93]B. Scholkopf, A. Smola, K. R. Muller. Nonlinear Component Analysis as A Kernel Eigenvalue Problem. Neural Computation,1998,10(5):1299-1319.
    [94]B. Scholkopf, S. Mika, C. Burges, P. Knirsch, K. R. Muller, G. Ratsch, and A. Smola. Input Space vs. Feature Space in Kernel-based Methods. IEEE Transactions on Neural Networks,1999,10(5):1000-1017.
    [95]H. S. Seung and D. D. Lee. The Manifold Ways of Perception. Science,2000, 290:268-2269.
    [96]J. B. Tenenbaum, V. deSilva and J. C. Langford. A Global Geometric Frameword for Nonlinear Dimensionality Reduction. Science,2000,290:2319-2323.
    [97]S. T. Roweis and L. K. Saul. Nonlinear Dimensional Reduction by Locally Linear Embedding. Science.2000,290:2323-2326.
    [98]F. R. Bach, M. I. Jordan. Kernel Independent Component Analysis, Journal of Machine Learning Research,2002,3:1-48.
    [99]G. Baudat, F. Anouar. Generalized Discriminant Analysis using a Kernel Approach. Neural Computation,2000,12(10):2385-2404.
    [100]S. Mika, G. Ratsch, J. Weston, B. Scholkopf and K. R. Muller. Fisher Discriminant Analysis with Kernels. IEEE International Workshop on Neural Networks for Signal Processing Ⅸ, Madison (USA),1999:41-48.
    [101]S. Mika, G. Ratsch and K.-R. Muller. A Mathematical Programming Approach to the Kernel Fisher algorithm. Advances in Neural Information Processing Systems 13,2001:591-597.
    [102]S. Mika, A. J. Smola and B. Scholkopf. An Improved Training Algorithm for Kernel Fisher Discriminants. In Proceedings of Artificial Intelligence and Statistics, San Francisco, CA,2001:98-104.
    [103]S. Mika, G. Ratsch, J. Weston, B. Scholkopf, A. Smola and K. R. Muller. Constructing Descriptive and Discriminative Non-linear Features: Rayleigh Coefficients in Kernel Feature Spaces. IEEE Transaction on Pattern Analysis and Machine Intelligence,2003,25(5):623-628.
    [104]V. Roth, V. Steinhage. Nonlinear Discriminant Analysis using Kernel Functions. Advances in Neural Information Processing systems, S. A. Solla, T. K. Leen and K. R. Mueller (Eds). Cambridge, MA:MIT Press,1999:568-574.
    [105]J. Yang, A. F. Frangi, J. Y. Yang, et al. KPCA plus LDA:A Complete Kernel Fisher Discriminant Framework for Feature Extraction and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27(2):230-44.
    [106]高秀梅,杨静宇,杨健.一种最优的核Fisher鉴别分析与人脸识别[J].系统仿真学报,2004,16(12):2864-2868.
    [107]Y. Xu, J. Y. Yang, J. Yang. A Reformative Kernel Fisher Discriminant Analysis. Pattern Recognition,2004,37(6):1299-1302.
    [108]Y. Xu, J. Y. Yang, J. F. Lu, et al. An Efficient Renovation on Kernel Fisher Discriminant Analysis and Face Recognition Experiments. Pattern Recognition, 2004,37(10):2091-2094.
    [109]Y. Dai, Y. Nakano. Face-texture Model based on SGLD andlts Application in Face Detection in A Color Scene. Pattern Recognition,1996,29(6):1007-1017.
    [110]张莉,周伟达,焦李成.核聚类算法[J].计算机学报,2002,25(6):587-590.
    [111]徐蓉,姜峰,姚鸿勋.流形学习概述[J].智能系统学报,2006,1(1):44-51.
    [112]S. J. Wang, J. L. Lai. Geometrical Learning, Descriptive Geometry and Biomimetic Pattern Recognition. Neurocomputing,2005,67:9-28.
    [113]Z. H. Wang, H. Y. Mo, H. X. Lu, S. J. Wang. A Method of Biomimetic Pattern Recognition for Face Recognition. In:Proceedings of the International Joint Conference on Neural Networks,2003,3:2216-2221.
    [114]K. Y Chang and J. Ghosh. A Unified Model for Probabilistic Principal Surfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001, 3(1):22-41.
    [115]L. K. Saul and S. T. Roweis. Think Globally, Fit Locally:Unsupervised Learning of Low Dimensional Manifolds. Journal of Machine Learning Research,2003,4: 119-155.
    [116]J. Gomes and A. Mojsilovic. A Variational Approach to Recovering a Manifold from Sample Points. European Conference on Computer Vision, Copenhagen,2002.
    [117]G. Hinton, P. Dayan and M. Revow. Modeling the Manifolds of Images of Handwritten Digits. IEEE Transactions on Neural Network,1997,8(1):65-74.
    [118]M. Belkin and P. Niyogi. Laplacian Eigenmaps for Dimensionality Reduction and Data Representation. Neural Computation,2003,15(6):1373-1396.
    [119]X.He, S. C. Yan, Y. Hu, H.Zhang. Learning a Locality Preserving Subspace for Visual Recognition. In:Proceedings of 9th International Conference on Computer Vision, France,2003:385-392.
    [120]S. C. Yan, D. Xu, B. Zhang, H. J. Zhang. Graph Embedding:a General Framework for Dimensionality Reduction. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2005:830-837.
    [121]S. C. Yan, D. Xu, B. Zhang, H. J. Zhang. Graph Embedding and Extensions: a General Framework for Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51.
    [122]H. T. Chen, H. W. Chang and T. L. Liu. Local Disciminant Embedding and Its Variants. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2005:846-853.
    [123]J. Yang, D. Zhang, J. Y. Yang, B. Niu. Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007, 29(4):650-664.
    [124]J. Wright, A. Y. Yang, A. Ganesh, et al. Robust Race Recognition via Sparse Representation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009,31(2):210-227.
    [125]Dudaro, P. E. Hart, D. G. Stork. Pattern classification [M](2nd ed). New York:John Wiley & Sons Inc,2001.
    [126]S. MATANABE. Pattern Recognition:Human and Mechanical [M]. New York:John Wiley & Sons Inc,1985.
    [127]M. Mikhail, D. Bongar. Pattern Recognition [M]. Washington:Spartan Books,1970.
    [128]J. Li, J. Wang. Automatic Linguistic Indexing of Pictures by A Statistical Modeling Approach[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2003,25(9):1075-1088.
    [129]L. Itti. A Model of Saliency-based Visual Attention for Rapid Scene Analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1998, 20(11):1254-1259.
    [130]S. Sarkar. The Human ID Gait Challenge Problem:Data Sets, Performance and Analysis [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005,27(2):162-177.
    [131]S. Chang. The Holy Grail of Content-based Media Analysis [J]. IEEE Multimedia Magazine,2002,9(2):6-10.
    [132]H. Wang, N. Ahja. Rank-R Approximation of Tensors:Using Image-as-Matrix Representation. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2005,2:346-353.
    [133]H. Kong, L. Wang, E. K. Teoh, et al. Generalized 2D Principal Component Analysis for Face Image Representation and Recognition[J]. Neural Networks, 2005,18:585-594.
    [134]J. Sun, D. Tao, C. Faloutsos. Beyond Streams and Graphs:Dynamic Tensor Analysis. In:Proceedings of the 12th ACM SIGKDD International Conferenc,2006: 374-383.
    [135]J. Ye. Generalized Low Rank Approximations of Matrices [J]. Machine Learning, 2005,61:167-191.
    [136]H. Wang, A. N. Ahuja. A Tensor Approximation Approach to Dimensionality Reduction [J]. International Journal of Computer Vision,2008,76(3):217-229.
    [137]K. Liu, Y. Q. Cheng, J. Y. Yang, et al. Algebraic Feature Extraction for Image Recognition based on An Optimal Discriminant Criterion [J]. Pattern Recognition, 1993,26(6):903-911.
    [138]J. Yang, D. Zhang, A. F. Frangi, J. Y. Yang. Two-dimensional PC A:a New Approach to Appearance based Face Representation and Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2004,26:131-137.
    [139]J. Yang, J. Y. Yang. From Image Vector to Matrix:a Straight Forward Image Projection Technique-IMPCA vs. PCA. Pattern Recognition,2002,35(9):1997-1999.
    [140]L. Wang, X. Wang, X. Zhang and J. Feng. The Equivalence of Two-dimensional PCA to Line-based PCA. Pattern Recognition Letter,2005,26(1):57-60.
    [141]D. Zhang, Z. H. Zhou. (2D)2PCA:Two-directional Two-dimensional PCA for Efficient Face Representation and Recognition. Neurocomputing,2005,69:224-231.
    [142]W. Zuo, D. Zhang, K. Wang. Bidirectional PCA with Assembled Matrix Distance Metric for Image Recognition. IEEE Transactions on Systems, Man and Cybernetics, Part B,2006,36:863-872.
    [143]D. Zhang, Z. H. Zhou, S. Chen. Diagonal Principal Component Analysis for Face Recognition. Pattern Recognition,39:140-142,2006.
    [144]P. Sanquansat, W. Asdornwised, S. Marukate, S. Jitapunkul. Image Cross-Covariance Analysis for Face Recognition. TENCON 2007-2007 IEEE Region 10 Conference.
    [145]S. C. Chen, Y. L. Zhu. Feature Extraction Approaches based on Matrix Pattern: MatPCA and MatFLDA [J]. Pattern Recognition Letters,2005,26(8):1157-1167.
    [146]E. Acar, B. Yener. Unsupervised Multiway Data Analysis:a Literature Survey [J]. Knowledge and Data Engineering,2009,21(1):6-20.
    [147]X. F. He, D. Cai, S. C. Yan. Neighborhood Preserving Embedding. In:Proceedings of the 10th IEEE International Conference on Computer Vision,2005:1208-1213.
    [148]H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos. A Taxonomy ofEmerging Multilinear Discriminant Analysis Solutions for Biometric Signal Recognition. Biometrics:Theory, Methods and Applications, New York:Wiley, 2008.
    [149]D. Xu, S. C. Yan, L. Zhang. Reconstruction and Recognition of Tensor-based Objects with Concurrent Subspaces Analysis [J]. IEEE Transactions on Circuits and Systems for Video Technology,2008,18(1):36-47.
    [150]H. Lu. Multilinear Subspace Learning for Face and Gait Recognition [D]. Toronto, University of Toronto,2008.
    [151]H. Lu, K. N. Platanions, A. N. Venetsanopoulos. Uncorrelated Multilinear Principal Component Analysis through Successive Variance Maximization. In: Proceedings of International Conference on Machine Learning,2008:616-623.
    [152]H. Lu, K. N. Plataniotis, and A. N. Venesanopoulost. Uncorrelated Multilinear Discriminant Analysis with Regularization and Aggregation for Tensor Object Recognition [J]. IEEE Transactions on Neural Networks,2009,20(1):103-123.
    [153]D. Tao, X. Li, X. Wu. Elapsed Time in Human:a New Approach. In:Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing,2006, 2:177-180.
    [154]Y. Wang, S. Gong. Tensor Discriminant Analysis for View-based Object Recognition. In:Proceedings of International Conference on Pattern Recognition, 2006,3:33-36.
    [155]张丽梅,乔立山,陈松灿.基于张量模式的特征提取及分类器设计综述.山东大学学报,2009,39(2):6-15.
    [156]C. S. Lee, A. Elgammal. Towards Scalable View-invariant Gait Recognition: Multilinear Analysis for Gait. In:Proceedings of International Conference on Audio and Video-Based Biometric Person Authentication,2005:395-405.
    [157]H. Wang, N. Ahuja. Facial Expression Decomposition. In:Proceedings of the 9th IEEE International Conference on Computer Vision,2003,2:958-965.
    [158]W. Zhao, R. Chellappa, A. Rosenfel, P. Phillips. Face Recognition:a Literature Survey[R]. Technical Report CAR-TR-948, UMD CS-TR-4167R, August,2002.
    [159]M. Li, B. Yuan.2D-LDA:a Novel Statistical Linear Discriminant Analysis for Image Matrix, Pattern Recognition Letter,2005,26(5):527-532.
    [160]H. Xiong, M. N. S. Swamy, M. O. Ahmad. Two-dimensional FLD for Face Recognition, Pattern Recognition,2005,38:1121-1124.
    [161]S. C. Chen, Y. L. Zhu. Subpattern-based Principl Component Analysis, Pattern Recognition,2004,37:1081-1083.
    [162]M. Heiler, C. Schnorr. Learning Sparse Representations by Non-negative Matrix Factorization and Sequential Cone Programming. Journal of Machine Learning Research,2006,7(7):1385-1407.
    [163]P. Kroonenberg, J. D. Leeuw. Principal Component Analysis of Three-mode Data by Means of Alternating Least Squares Algorithms. Psychometrika.1980,45:69-97.
    [164]S. G. Shan, B. Cao, et al. Unified Principal Component Analysis with Generalized Covariance Matrix for Face Recognition. In:Proceedings of IEEE Conference on Computer Vision and Pattern Recognition,2008
    [165]W. Gao, B. Cao, S.Shan, X.Chen, D.Zhou, X. Zhang and D. Zhao. The Cas-peal Large-scale Chinese Face Database and Baseline Evaluations. IEEE Transactions on Systems, Man and Cybernetics, Part A,2008,38(1):149-161.
    [166]A. Georghiades, P. Belhumeur, D. Kriegman. From Few to Many:Iillumination Cone Models for Face Recognition under Variable Lighting and Pose. IEEE Transactions on Pattern Analysis and Machine Intelligence,2001,23 (6):643-660.
    [167]B. W. Bader, T. G. Kolda. Tensor toolbox version 2.2.,2007. http://csmr.ca.sandia.gov/tgkolda/TensorToolbox.
    [168]H. Lu, K. N. Plataniotis, A. N. Venetsanopoulos. Uncorrelated Multilinear Discriminant Analysis with Regularization and Aggregation for Tensor Object Recognition. IEEE Transaction on Neural Networks,2009,20(1):103-123.
    [169]P.O. Hoyer. Non-negative Sparse Coding. IEEE International Workshop on Neural Networks for Signal Processing, Vaiais, Switzerland,2002:557-565.
    [170]B. A. Olshausen, D. J. Field. Emergence of Simple-cell Receptive Field Properties by Learning a Sparse Code for Natural Images. Nature,1996,381: 607-609.
    [171]W. X. Liu, N. N. Zheng, X. F. Lu. Non-negative Matrix Factorization for Visual Coding. In:Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, Hong Kong,2003:293-296.
    [172]S. Zafoiriou, A. Tefas, I. Pitas. Discriminant NMF Faces for Frontal Face Verification[C]. IEEE International Workshop on Machine Learning for Signal Processing, Connecticut, USAE,2005:355-359.
    [173]P. Paatero, U. Tapper. Positive Matrix Factorization:a Non-negative Factor Model with Optimal Utilization of Error Estimates of Data Values. Environmetrics,1994, 5:111-126.
    [174]刘维湘,郑南宁,游屈波. 非负矩阵分解及其在模式识别中的应用.2006,51(3):241-250.
    [175]S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H. J. Zhang. Multilinear Discriminant Analysis for Face Recognition. IEEE Transaction on Image Processing,2007,16(1):212-220.
    [176]S. Yan, D. Xu, Q. Yang, L. Zhang, X. Tang, H. Zhang. Discriminant Analysis with Tensor Represenation. In IEEE Computer Society Conference on Computer Vision and Pattern Recognition,2005,526-532.
    [177]D. D. Lee, H. S. Seung. Algorithms for Non-negative Matrix Factorization [J]. Neural Information Processing Systems,2000:556-562.
    [178]I. Buciu, I. Pitas. Application of Non-negative and Local Non-negative Matrix Factorization to Facial Expression Recognition. In:Proceedings of the 17th International Conference on Pattern Recognition, Washington, USA,2004:288-291.
    [179]X. Chen, L. Gu, S. Z. Li, et al. Learning Representative Local Features for Face Detection. IEEE Proceedings of Computer Vision and Pattern Recognition, Kauai, USA,2001:1126-1131.
    [180]S. E. Palmer. Hierarchical Structure in Perceptual Representation[J]. Cognitive Psychology,1997,9(3):441-474.
    [181]E. Wachsmuth, M. W. Oram, D. I. Perret. Recognition of Objects and Their Component Parts:Responses of Single Unites in The Temporal Cortex of The Macaque [J]. Cerebral Cortex,1994,4(5):509-522.
    [182]N. K. Logothetis, D. L. Sheinbery. Visual Object Recognition [J]. Annual Review of Neuroscience,1996,19(1):577-621.
    [183]I. Biedeman. Recognition-by-components:a Theory of Human Image Understanding [J]. Psychological Review,1987,94(1):115-147.
    [184]S. Ullman. High-Level Vision:Object Recognition and Visual Cognition [M]. Cambridge MA,1996.
    [185]G. H. Golub, C. F. Van Loan. Matrix Computations [M](3nd ed). Johns Hopkins University Press, Baltimore, Md,1996.
    [186]J. Ye, R. Janardan, C. H. Park, et al. An Optimization Criterion for Generalized Discriminant Analysis on Undersampled Problems [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence,2004,26(8):982-994.
    [187]I. Buciu, I. Pitas. A New Sparse Image Representation Algorithm Applied to Facial Expression Recognition [C]. In:Proceedings of IEEE Workshop on Machine Learning for Signal Processing, Sao Luis, Brazil,2004:539-548.
    [188]H. Zhao, Y. P. Chi, J. T. Kwok. A Novel Incremental Principal Component Analysis and Its Application for Face Recognition [J]. IEEE Transactions on Systems Man Cybernetics,2006,36(4):873-886.
    [189]A. Shashua, A. Levin, S. Avidan. Manifold Pursuit:a New Approach to Appearance based Recognition. In:Proceedings of 16th International Conference on Pattern Recognition. Canada,2002:590-594.
    [190]宋枫溪,程科,杨静宇,等.最大散度差和大间距线性投影与支持向量机[J].自动化学报,2004,30(11):890-896
    [191]宋枫溪,杨静宇,刘树海,等.基于多类最大散度差人脸表示方法[J].自动化学报,2006,32(3):378-385.
    [192]D. Tao, X. Li, X. Wu. General Tensor Discriminant Analysis and Gabor Features for Gait Recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(10):1700-1715.
    [193]J. Yang, D. Zhang, J. Y. Yang. "Non-Locality" Preserving Projection and Its Application to Palmprint Recognition. In:Proceedings of the 9th International Conference on Control, Automation, Robotics and Vision. Singapore, Singapore, 2006:1-4.
    [194]李武军,王崇骏,张炜,陈世福.人脸识别综述.模式识别与人工智能,2006,19(1):58-66.
    [195]D. L. Swets, J. Weng. Using Discriminant Eigenfeatures for Image Retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence,1996,18(8):831-836.
    [196]Q. B. Gao, Z. Z. Wang. Center-based Nearest Neighbor Classifier[J]. Pattern Recognition,2007,40(1):346-349.
    [197]J. Ham, D. Lee, S. Mika, B. Scholkopf. A Kernel View of The Dimensionality Reduction of Manifolds. In:Proceedings of the 21th International Conference on Machine Learning,2004:369-376.
    [198]Y. Fu, S. C. Yan, T. S. Huang. Classification and Feature Extraction by Simplexization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2008,3(1):91-100.
    [199]D. Hu, G. Y. Feng, Z. T. Zhou. Two-dimensional Locality Preserving Projection (2DLPP) with Its Application to Palmprint Recognition. Pattern Recognition,2007, 40(1):339-342.
    [200]Y. Z. Li, G. M. He, J. Y. Yang.2DUDP:Novel Method of Feature Extraction based on Image Matrix. Chinese Control Conference,2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700