用户名: 密码: 验证码:
肝癌靶向多肽的筛选及X1/MePEG-PLA-CS纳米粒的靶向性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肝细胞癌(hepatocellular carcinoma, HCC)是我国最常见的恶性肿瘤之一,其死亡率居恶性肿瘤的第2位。HCC的治疗方法主要包括肝切除术、原位肝移植、肝动脉栓塞化疗、经皮无水酒精注射、射频消融、微波消融、冷冻术、放疗、抗激素疗法、生物治疗及中药治疗等。目前,手术切除仍是治疗原发性肝癌的首选方法,然而肝癌患者实施根治性切除后,5年复发率高、转移率高,仍是肝癌临床治疗的难题。
     近年来,随着基因转移技术的日趋成熟,基因治疗已经成为生物科学和临床医学的研究热点之一。纳米粒基因转运体是近年发展起来的一种新型的非病毒基因转运载体。它是将DNA、RNA等基因治疗分子包裹在纳米颗粒之中或吸附在其表面,同时也在颗粒表面偶联特异性的靶向分子,通过靶向分子与细胞表面特异性受体结合,在细胞摄取作用下进入胞内,实现安全有效的靶向性基因治疗。筛选肝癌细胞特异性靶向分子,并将其与纳米基因载体结合,已成为提高纳米基因载体肝癌治疗效果的关键问题之一。
     为此,本文通过噬菌体展示肽库技术,筛选获得了一批能够与肝癌细胞特异性结合的短肽,对其与肝癌细胞的结合特异性进行鉴定。本研究为制备纳米基因载体转运系统,使其能有效的保护转运基因不被核酶降解,并具备较高的基因转染效率、有效的输送基因至靶位点以及良好的生物相容性奠定了实验基础。
     第一部分噬菌体肽库技术筛选人肝癌细胞HepG2特异性粘附肽
     目的:
     通过噬菌体展示肽库技术,使用体外细胞和动物体内,筛选出能够和人肝癌细胞HepG2结合紧密的短肽。
     方法:
     (1)以人肝癌细胞(HepG2)为筛选靶细胞,对噬菌体随机十二库(Ph.D.-12TMPhage Display Peptide Library Kit)进行三轮体外细胞筛选。建立HepG2荷瘤裸鼠实验动物模型,进行一轮动物体内筛选。
     (2)通过体外、体内共四轮筛选后,随机挑取30个噬菌体克隆,取DNA序列测定,并进行氨基酸序列的同源性分析。
     结果:
     (1)经过筛选使噬菌体在HepG2细胞上出现了显著富集,回收噬菌体的滴度由第一轮的7.2×103pfu增加到第三轮筛选后的2.5×106pfu,增加了300余倍,回收率也显著提高,由第一轮的4.8×10-6增至第三轮筛选后的1.67×10-3。
     (2)挑取的30个样本中有27个噬菌体克隆测序结果有效,这些噬菌体克隆的序列中有部分重复,其中序列X1重复19次,序列X2重复3次,序列X3重复4次,序列X4重复1次。重复最多的序列为X1 (QSFASLTDPRVL)。经BLAST分析发现,在已知蛋白质数据库中未发现与此短肽序列完全一致或具有较好同源性的蛋白质分子。
     结论:
     成功地从噬菌体随机12肽文库中筛选到了在体内、体外均具有特异性靶向肝癌细胞和肝癌组织能力的噬菌体克隆。
     第二部分肝癌特异性粘附肽的特异性鉴定
     目的:
     分析鉴定X1噬菌体克隆及人工合成短肽SA1与肝癌细胞HepG2及肝癌组织结合的特异性。
     方法:
     (1)ELISA法鉴定所选噬菌体单克隆与HepG2细胞的结合特异性。
     (2)通过免疫细胞化学染色,鉴定X1噬菌体克隆与肝癌细胞结合的特异性;通过免疫组织化学染色,鉴定X1噬菌体克隆与人肝癌组织结合的特异性。
     (3)利用免疫荧光技术观察人工合成肽SA1与肝癌细胞HepG2的结合特异性。
     (4)体内回输、免疫组织化学方法鉴定噬菌体克隆在体内的特异性靶向效果。
     结果:
     (1)所筛选出来的噬菌体都具有较好的肿瘤细胞特异性结合能力,其中阳性最高的克隆也正是在随机测序中重复频率最高的序列为X1的噬菌体克隆。
     (2)免疫细胞化学染色及免疫组织化学染色均显示,X1噬菌体克隆对肝癌细胞的结合靶向性明显高于对照细胞,并能与肝癌组织特异性结合。
     (3)免疫荧光显色证实,FITC-SA1肽能特异性地结合于肝癌细胞的胞膜及核周胞浆。
     (4)噬菌体肽X1在肿瘤组织中比其他正常组织中有更高的富集效果,说明通过血液循环,此噬菌体肽能与肿瘤组织能特异性结合。
     结论:
     X1肽(QSFASLTDPRVL)是所有筛选得到的克隆中具有最强的特异性结合能力的,可以特异性地结合肝癌细胞和肝癌组织,而与正常肝细胞和肝组织没有明显的结合。同时X1肽具有很好的体内靶向活性,可以通过血液循环系统迅速、特异地富集到肿瘤组织中。
     第三部分Xl/MePEG-PLA-CS纳米粒的制备及其靶向性研究
     目的:
     构建纳米基因载体转运系统,使其能有效的保护转运基因不被核酶降解,并具备较高的基因转染效率、有效的输送基因至靶位点以及良好的生物相容性。
     方法:
     (1)制备甲氧基聚乙二醇-聚乳酸-壳聚糖(MePEG-PLA-CS)纳米粒,检测其粒径、DNA结合效率及细胞毒性。
     (2)将噬菌体X1肽与MePEG-PLA-CS纳米颗粒偶联,观察其对肝癌细胞转染效率的影响。
     结果:
     (1)制备的MePEG-PLA-CS纳米粒粒径为103.2±9.6nm,表面带正电荷,DNA结合效率为93.2±2.9%,可保护所携带DNA免受核酸酶的降解;对正常的肝细胞(L-02)在一定的剂量范围内无细胞毒性,只在高浓度下才会表现出一定的细胞毒性作用。
     (2)与脂质体、MePEG-PLA-CS纳米粒比较,偶联了噬菌体X1肽的MePEG-PLA-CS纳米粒的转染效率更高。
     结论:
     制备的MePEG-PLA-CS纳米粒是一种稳定、低毒高效的纳米基因载体;有X1肽靶向的MePEG-PLA-CS纳米粒,具有更高的转染效率,能进一步靶向肝癌HepG2细胞,为肝癌的靶向诊断及治疗奠定了实验基础。
Hepatocellular carcinoma(HCC) is one of the most common and malignant tumors, and it has the second mortality rate among malignant tumors in China. Thus, and treatment of HCC is extremely critical. The treatment of HCC include liver resection, orthotopic liver transplantation (OLT), transcatheter arterial chemoembolization (TACE), percutaneous ethanol injection (PEI), radiofrequency ablation (RFA), microwave ablation (MCT), frozen surgery, radiotherapy, anti-hormone therapy, biological therapy and traditional Chinese medicine treatment etc. At present, surgical resection of primary liver cancer is still the preferred method. However, after radical resection, high recurrence rate after 5 years and high metastasis ratio are still problems in clinical therapy for HCC.
     In recent years, gene therapy has become popular in biological science and clinical research as the gene transfer techniques matures day by day. Nanoparticle is developing as a new non-viral gene delivery vector. Gene therapeutical molecules molecules, such as DNA, RNA, are are encapsulated into or loaded on the surface of nanoparticles. At the same time, specific ligands and monoclonal antibodies are linked to the surface of nanoparticles. The nanopartieles/DNA complexes can be taken into target cells by receptor-mediated endocytosis, so that the effective target gene therapy is achieved.
     Therefore, we screened the peptides that bind specifically to the hepatoma cells using phage display peptides library, and identified the specificity of the phages to hepatoma cells. We also constructed a gene delivery system with high efficiency of gene transfer, targeting ability, efficiency of protection to DNA from DNase degradation and good biocompatibility, especially high stability and the ability to prolong gene transfer. Our research established good scientific foundation for the application of the nanoparticle-mediated gene delivery and gene therapy.
     Chapter one
     Screening for hepatocellular carcinoma cell specific binding peptides
     Objective:
     To screen the peptides that bind specifically to the hepatoma cells using in vitro and in vivo phage display technology.
     Methods:
     (1) Three rounds of panning were conducted in vitro, which were targeted at HepG2 cell lines. Experimental Animal Models of hepatoma were established on nude mouse, and one round of panning was conducted in vivo.
     (2) After 4 rounds of panning,30 phage clones picked randomly were sequenced to identify the consensus sequence.
     Results:
     (1) After 4 rounds of panning in vitro, phages that bind to the HepG2 cells were enriched from 7.2×103pfu at the first round to 2.5×106pfu at the third round of panning (with an increase of more than 300-fold); the output/input ratio was also increased from 4.8×10-6 at the first round to 1.67x 10"3 at the third round of panning.
     (2) After panning from hepatoma cells in vitro and in vivo,30 phage clones were randomly picked and sequenced.4 sequences were obtained from these 30 clones. X1 was repeated 19 times, X2 was repeated 3 times, X3 was repeated 4 times, and X4 was repeated 1 time. Among them, X1 (QSFASLTDPRVL) was the most repeats. Low homology between the peptide sequences was displayed by the phages and no known proteins was identified by BLAST analysis.
     Conclusions:
     Peptides that can specifically bind to hepato-carcinoma cells both in vitro and in vivo were selected from 12-phage display library by in vitro and in vivo phage display technology.
     Chapter Two
     Identification of binding specificity of X1 phage and peptide SA1 to Hepatoma cells
     Objective:
     To identify the affinity of X1 phage and peptide SA1 to hepatoma carcinoma cells in order to make nano-drug carrier with high target to hepatoma in the future.
     Methods:
     (1) The affinity of phages with hepatoma cells was examined by enzyme-linked immunosorbent assay (ELISA).
     (2) Immunocytochemical staining were performed to determine the specificity of the phages to hepatoma cells, and immunohistochemical staining was used to examine the binding specificity of the phages to hepatoma tissues.
     (3) Immunoflurescence microscopy was used to study the binding of synthesized peptides to hepatoma cells.
     (4) Identifying the targeting effectiveness of phages by injection in vivo and immunohistochemical staining.
     Results:
     (1) The phages selected by screening all have specific binding affinity to hepatoma cells, and the highest positive is the phage X1 (QSFASLTDPRVL) the most repeats.
     (2) Immunocytochemical staining and immunohistochemical staining suggested that X1 phage preferably binds to hepatoma cells rather than controls, and phage was also found to be able to bind to hepatoma tissue sections.
     (3) Using immunofluorescence microscopy, fluorescence labeled FITC-SA1 peptide was observed on the membrane and in the perinuclear cytoplasm of hepatoma cells.
     (4) The X1 phage shows higher enrichment in tissue of tumor than normal tissue, it could specifically bind to hepatoma tissues after blood circulation.
     Conclusions:
     The peptide X1 (QSFASLTDPRVL) has the best targeting ability among all candidates. It can bind to hepatocarcinoma cells and hepatocarcinoma tissues, but not delete normal liver cells. And this peptide also has the specific binding ability in vivo; it can accumulate to the tumor tissues rapidly through the blood vessel system.
     Chapter Three
     The preparation and targeting study of X1/MePEG-PLA-CS nanoparticle
     Objective:
     To construct an idea gene delivery system with high efficacy of gene transfer, targeting ability, effect of protection to DNA from DNase degradation and good biocompatibility, especially high stability and the ability to prolong gene transfer.
     Methods:
     (1) Using copolymer methoxypolyethyleneglycol-PLA (MePEG-PLA), and chitosan (CS) to prepare MePEG-PLA-CS nanoparticle. Detect the particle diameter and efficiency of DNA and cytotoxicity.
     (2) Coupling the peptide X1 and MePEG-PLA, observing the effect of transfection efficiency with X1/MePEG-PLA-CS nanoparticle.
     Results:
     (1) The particle diameter of MePEG-PLA-CS is 103.2±9.6 nm, the surface bands positive charge, efficiency of DNA is 93.2±2.9%, MePEG-PLA-CS/DNA complexes could protect the DNA from degradation of DNaseⅠ.In our research,we found that MePEG-PLA-CS nanoparticles had no obvious cell toxicity to L-02 cells at proper concentration,but cell toxicity could be showed at high concentration.
     (2) The MePEG-PLA-CS nanoparticle that binds phage X1 has higher transfection efficiency compared with MePEG-PLA-CS nanoparticle.
     Conclusions:
     The MePEG-PLA-CS is a stable nanoparticle and had higher transfection efficiency while with much lowert oxicity in vivo. The MePEG-PLA-CS nanoparticle binding with phage X1 has higher transfection efficiency compared with MePEG-PLA-CS nanoparticle. Furtherly targeting to hepatoma carcinoma cell, established experimental fundament for Diagnosis and treatment of HCC.
引文
[1]Parkin DM, Bray F, Ferlay J, et al.Global cancer statisties,2002.CA Cancer J Clin 2005; 55:74-108.
    [2]陈万青,邹小农,张思维.中国肝癌死亡率地理分布分析[J].实用肿瘤学杂志,2008,22(3):2012 203.
    [3]Hortobagyi GN. Opportunities and challenges in the development of targeted therapies[J]. Semin Oncol,2004,31(1 Suppl 3):21
    [4]Lee E Y, Kang J H, Kim K A, et al. Development of a rapid, immune chromatographic strip test for serum asialo alpha 1-acid glycoprotein in patients with hepatic disease. Immunol Methods,2006,308(1-2):116-123
    [5]刁勇等基因治疗研究进展.药学进展,2001,25(1):12-16.
    [6]Borchard G. Chitosans for gene delivery. Adv Drug Deliv Rev 2001; 52:145-50
    [7]Illum L. Chitosan and its use as a pharmaceutical excipient. Pharm Res 1998; 15: 1326-31.
    [8]Li XW, Lee DK, Chan AS, Alpar HO. Sustained expression in mammalian cells with DNA complexed with chitosan nanoparticles. Biochim Biophys Acta 2003; 1630:7-18.
    [9]Greenwood J, Willis AE, Perham RN. Multiple display of foreign peptide son a filamentous bacteriophage:Peptides from Plasmodium falciparum circum sporozoite protein as antigens[J].MolBiol.1991; 220(4):821-827.
    [10]Scott JK, Simth GP, Searching for peptide ligands with an epitope library, Science 1990; 249(4967):386
    [11]Benharl. Biotechnological applications of phage and cell display[J] BiotechAdv.2001.19(1):1,33
    [12]LIH, ZHUXH. Application of the phage display random peptide library Immunological Journal 2000.16(5):387-390. Chinese
    [13]Okazaki, K., Nakayama, Y., Shibao, K., Hirata, K., Sako, T., Nagata, N., Kuroda, Y, and Itoh, H. Establishment of a human colon cancer
    cell line (PMF-kol4) displaying highly metastatic activity. Int.J.Oncol.,17: 39-45,2000.
    [14]Zabel M, Portnoy S, Franz MR, et al. Electrocardiolographic index of dispersion of ventricular repolarization:an isolated heart validation study [J]. J Am Coll Cardiol,1995,25:7462752.
    [15]Parmley SF, Smith GP. Antibody-selectable filamentous fd phage.vectors: affinity purification of target genes. Gene 1988; 73:305-318
    [16]Paschke M. Phage display systems and their applications [J]. Appl Microbiol Biotechnol,2006,70(1):2.11.
    [17]Maruta F, Parker AL, Fisher KD, et al. Use of a phage display library to identify oligopeptides binding to the lumenal surface of polarized endothelium by exvivo perfusion of human umbilical veins. J Drug Target,2003,11 (1): 5359.
    [18]Hassan ME, Highsmith EW. Phage display technology:clinical applications and recent innovations[J]Clin Biochem,2002,35(6):425—445.
    [19]Maeshima Y, Manf redi M, Reimer C, et al. Identification of the anti-angiogenic site wit hin vascular basement membranederived tumstatin [J]. J Biol Chem,2001,276(18):152402 15248.
    [20]Floquet N, Pasco S, Ramont L, et al. The antitumor properties of t hea3 (Ⅳ)-(185-203) peptide from t he NCI domain of type Ⅳcollagen (tumstatin) are conformation2dependent [J]. J Biol Chem,2004,279(3):209122100.
    [21]Miyoshi T, Hirohata S, Ogawa H, et al. Tumor2specific expression of the RGD2 α3 (Ⅳ) NC1 domain suppresses endot helial tube formation and tumor growth in mice [J]. FASEB J,2006,20(11):190421906.
    [22]张克志,孙惠川,薛琼,等.7肽小分子LCI-X7抑制人肝细胞癌的实验研究[J].中国临床医学,2005,12(2):217.220.
    [23]Laakkonen P, Akerman M E, Biliran H, et al. Antitumor activity of a homing peptide that targets tumor lymphatics and tumor cells [J]. Proc Natl Acad Sci U S A,2004,101(25):9381—9386.
    [24]Maeshima Y, Sudhakar A, Lively J C, et al. Tumstatin, an endothelial cell-specific inhibitor of protein synt hesis[J].Science,2002,295(5552): 1402143.
    [25]Teodoro J G, Parker A E, Zhu X, et al. p532mediated inhibition of angiogenesis t hrough upregulation of a collagen prolyl hydroxylase[J].Science,2006,313(5789):9682971.
    [26]Floquet N, Pasco S, Ramont L, et al. The antitumor properties of thea3 (IV)2(185-203) peptide from the NCI domain of type Ⅳcollagen (tumstatin) are conformation-dependent [J]. J Biol Chem,2004,279(3):209122100.
    [27]Buckler DR, Park A, Viswanathan M, et al. Screening isolates from antibody phage-display libraries [J]. Drug Discov Today,2008,13(7-8):318-324.
    [28]Miyoshi T, Hirohata S, Ogawa H, et al. Tumor2specific expression of the RGD-a3 (Ⅳ) NCI domain suppresses endothelial tube formation and tumor growth in mice [J]. FASEB J,2006,20(11):190421906.
    [29]Ardelt PU, Wood CG, Chen L, et al.Trgeting urothelium:exvivoassay standardization and selection of internalizing ligands.J Urol 2003; 169:1535-1540.
    [30]Zhang J, Spring H, Sehwab M.Neuroblastoma tumor cell-binding peptides identified through random peptide phage display.Cancer Lett 2001:171:153-164.
    [31]Goodell, V. and Disis, M.L.Human tumor cell lysates as a Protein source for the detection of cancer antigen-specific humoral immunity J. Immunol.Mehtods,299: 129-138,2005.
    [32]Shimizu M, Saltoh Y Itoh H, et al.Immunohistochemical staining of Ha2ras oncogene product in normal, benign and malignant human pancreatic tissues.Human pathology.1990; 21(6):607.
    [33]Poul MA, Beeerril B, Nielsen UB, et al. Seleetion of tumor-specific internalizing human antibodies from phage libraries.J Mol Biol 2000; 301:1149-1161.
    [34]Jaye DL, Edens HA, Mazzueehelli L, et al.Novel G Protein-coupled responses in leukoeytes elieited by a chemotactic bacterio phage displaying a cell type-selective binding peptide.J Immunol2001:166:7250-7259.
    [35]Parkin DM, Bray F, Ferlay J, et al.Global cancer statisties,2002.CA Cancer J Clin 2005; 55:74-108.
    [36]Li LD, Zhang SW, Lu FZ, et al.Research on characteristics of mortality spectrum and type composition of malignant tumors in China.China J Oncol 1997; 19: 323-328.
    [37]Tang ZY, Ye SL, Liu YK, et al.Adeeade's studies on metastasis of hepatocellular carcinoma. J Cancer Res Clin Oncol 2004; 130:187-196.
    [38]Fidler IJ.The organ mieroenvironment and cancer metastasis.Differentiation 2002; 70:498-505.
    [39]Onn A, Herbst, RS.Angiogenesis, metastasis, and lung cancer:an overview. Methods Mol Med 2003; 74:329-348.
    [40]Bogenrieder T, Herlyn M.Axis of evil:molecular mechanisnas of cancer metastasis.Oneogene 2003:22:6524-6536.
    [41]Sun HC, Tang ZY, Li XM, et al. Micorvessel density of hepatocellular carcinoma:its relationship with prognosis. J Cancer Res Clin Oncol 1999; 125: 419-26
    [42]Sun HC, Tang ZY Preventive treatments for recurrence after curative resection of hepatocellular carcinoma-a literature review of randomized control trials.World J Gastroenterol 2003; 9:635-40.
    [43]Su JL, Lai KP, Chen CA, et al. A novel peptide specifically binding to interleukin-6 receptor (gp80) inhibits angiogenesis and tumor growth [J]. Cancer Res,2005,65(11):4827-4835.
    [44]Zhang JB, Herbert S, Manfred S, et al. Neuroblastoma tumor cell-binding peptides identified through random peptide phage display [J]. Cancer Lett, 2001,171(2):153-164.
    [45]Kupsch JM, Tidman NH, Kang NV, et al. Isolation of human tumor-specific antibodies by selection of an antibody phage library on melanoma cells [J]. Clin Can Res,1999,5:925-931.
    [46]Perea SE, Reyes O, Puchades Y, et al. Antitumor effect of a novel proapoptotic peptide that impairs the phosphorylation by the protein kinase 2 (casein kinase 2) [J]. Cancer Res,2004,64(19):7127-7129.
    [47]Essler M, Ruoslahti E. Molecular specialization of breast vasculature:abreast-homing phage-displayed peptide binds to aminopeptidase P in breast vasculatuer.Proc Natl Acad Sci USA 2002; 99:2252-7.
    [48]Arap W, Pasqualini R, Ruoslahti E.Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model.Science 1998; 279:377-80
    [49]Solomon B Generation of anti-beta-amyloid antibodies via phage display technology towards Alzheimer disease vaccination Vaccine.2005; 23(17-18): 2327-30
    [50]GU Y, ZHANG J, WANG YB, et al.Selection of a peptide mimic the neutralization epitope of hepatitis E virus with phage peptide display technology.2003.19(6)680-685 Chinese
    [51]Du Y, WANG HT.Epitope mapping of polyclonal antibodies to HCV core protein using a phage peptide library Chin J Microbiol Immunol, January 1999.119(1):4-8 Chinese
    [52]Yangde Zhang, Jiji Chen, Yanqiong Zhang, et al.Panning and Identification of a colon Tumor Binding Peptide from a Phage Display Peptide Library.J Biomol Screen.2007 Marl 1.
    [53]Kim IS, Lee SK, Park YM, Lee YB, Shin SC, Lee KC, Oh IJ. Physicochemical characterization of poly(L-lactic acid) and poly(D, L-lactide-co-glycolide) nanoparticles with polyethylenimine as gene delivery carrier. Int J Pharm 2005; 298:255-62.
    [54]Zhang Y, Chen J, Zhang Y, Pan Y, Zhao J, et al. A novel PEGylation of chitosan nanoparticle for gene delivery:synthesis, characterization and transfection efficiency. Biotechnol Appl Biocherrr. Biotechnol Appl Biochem. 2007 Apr; 46(Pt4):197-204.
    [55]李静,张富强,靳喜海等.纳米羟基磷灰石.氧化锆复合陶瓷体外细胞毒性研究.北京口腔医学,2004,12(4):191-194.
    [56]甘志锋.磁、生物双功能纳米颗粒的制备及其性能研究[D].华东师范大学,2006
    [57]Park IK, Kim TH, Park YH, Shin BA.Choi ES, Chowdhury EH, Akaike T, Cho CS.Galactosylated chitosan-graft-Poly(ethylene glycol) as hepatocyte-targeting DNA carrier.J Control Release 2001; 76:349-62.
    [58]Pillutla R C, Hsiao K C, Beasley J R, et al. Peptides identify the critical hot spot s involved in t he biological action of the insulin receptor [J]. J Biol Chem 2002; 277(25):22590-22594.
    [59]Hsiao K C, Brissette R E, Wang P, et al. Peptides identify multiple hot spots wit hin the ligand binding domain of the TNF receptor 2[J]. Proteome Sci, 2003; 1 (1):1-10.
    [60]Jutta H, Martin J L, Karl N K. Peptide G protein agonists from a phage display library. Biochem. Pharmacol.2003; 65:961-967.
    [61]Giordano R J, Anobom C D, CardAA-Vila M, et al. Structural basis for the interaction of a vascular endothelial growth factor mimic peptide motif and its corresponding receptors. Chem. Biol.2005; 10:1075-1083.
    [62]Wu Q, Moyana T, Xiang J. Cancer gene therapy by adenovirus-mediated gene transfer. Curr Gene Ther 2001; 1(1):101-122.
    [63]Rainov Nq Ren H. Clinical trials with retrovirus mediated gene therapy—what have we learned J Neurooncol.2003; 65(3):227-236.
    [64]Watanabe T. Adenovirus-mediated CTLA4Ig gene therapy in cardiac xenotransplantation. Hokkaido Igaku Zasshi.2004; 79(1):47-53.
    [65]Buning H, Nicklin SA, Perabo L, et al. AAV based gene transfer. Curr Opin Mol Ther.2003; 5(4):367-375.
    [66]Goins WF, Wolfe D, Krisky DM, et al. Delivery using herpes simplex virus: an overview. Methods Mol Biol.2004; 246:257-299.
    [67]Marti WR, Schutz A, Oertli D, et al. Recombinant vaccinia viruses as efficient vectors of biologically active, human B7 costimulation molecules. Langenbecks Arch Chir Suppl Kongressbd.1998; I15(Suppl Ⅰ):131-136.
    [68]Lai CM, Lai YK, Rakoczy PE. Adenovirus and adeno-associated virus vectors. DNACell Biol.2002; 21(12):895-913.
    [69]Fox JL. Gene therapy safety issues come to fore. Nat Biotechnol.1999; 17(12): 1153.
    [70]Merdan T, Kopecek J, Kissel T. Prospects for cationic polymers in gene and oligonucleotide therapy against cancer [J].Adv Drug Deliv Rev,2002,54(5): 715-758.
    [71]Wu X, Li Y, Crise B, Burgess SM. Transcription start regions in the human genome are favored targets for MLV integration:Science.2003;300(5626):
    1749-1751.
    [72]Sun X, Zhang HW, Zhang ZR. Transfection efficiency of pORF lacZ plasmid lipopolyplex to hepatocytes and hepatoma cells. World J Gastroenterol.2004; 10(4):531-534.
    [73]Kwoh DY, Coffn CC, Lollo CP, et al. Stabilization of poly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver. Biochim Biophys Acta.1999, 1444(2):171-190.
    [74]Sharma D, Chelvi T P, et al. Oncol Res,1996,8:282-286
    [75]Damage C, Michel C, et al. Diabetes 1,1988,37:246
    [76]GONG Lian-sheng, ZHANG Yang-de, ZHOU Shao-bo. The biodistribution of magnetic albumin nanoparticles containing adriamycin[J]. China J Modern Med,2001,11(3):8-11.
    [77]张阳德,李浩,李玉坤.半乳糖化白蛋白磁性阿霉素纳米粒体外伤杀肝癌细胞的试验研究[J].中华实验外科杂志,2004,21(9):1067-1069.
    [78]张阳德,席浩,翟登高.半乳糖化白蛋白磁性阿霉素纳米粒与阿霉素对大鼠毒性的比较[J].中华实验外科杂志,2004,21(10):1186-1188.
    [79]XIAO Bao-lai. Effect of targeted magnetic nanoparticles containing 5-Fu on expression of bcl-2/bax protein in transplanted liver cancer in nude mice[J]. China J Modern Med,2006,16(20):3041-3044.
    [80]WU Yuan. Preparation of polycarbonate magnetic microsphere containing MMC and its targeting therapeutic effect on hepatocellular carcinoma[J]. Acta Medicine Sinica,2001,14(1):1-3.
    [81]Golan R, Pietrasanta LI, Hsieh W, et al. DNA toroids:stages in condensation. Biochemistry.1999,38(42):14069-14076.
    [82]J unghans M, Kreuter J, Zimmer A. Antisense delivery using prtamine-oligonucleotide particles. Nucleic Acids Res.2000,28:145.
    [83]Ljubimova JY, Fujita M, Khazenzon NM, Lee BS, Wachsmann-Hogiu S, Farkas DL, Black KL, Holler E. Nanoconjugate based on polymalic acid for tumor targeting. Chem Biol Interact 2007.
    [84]Sergeeva A, Kolonin MG, Molldrem JJ, Pasqualini R, Arap W. Display technologies:application for the discovery of drug and gene delivery agents. Adv Drug Deliv Rev 2006; 58:1622-54
    [85]Barry, M.E., etal., Role of endogenouse endonucleases and tissue site in transfection and CpG-mediated immune activation after naked DNA injection.Hum Gene Ther,1999.10(15):P.2461-80.
    [1]Dulbecco R, et al. US Patent.1986; No.4593002.
    [2]Smith G P. Filamentous fusion phage novel expression vectors t hat display cloned antigens on t he virion surface [J]. Science.1985; 228 (4705): 1315-1317.
    [3]Smith GP, Scott JK. Libraries of peptides and proteins display on filamentous phage [J]. Methods Enrymol.1993; 217:228-257.
    [4]Greenwood J, Willis AE, Perham RN. Multiple display of foreign peptide son a filamentous bacteriophage:Peptides from Plasmodium falciparum circum sporozoite protein as antigens [J].MolBiol.1991; 220(4):821-827.
    [5]Smith GP, Petrenko VA. Phage display [J].Chem Rev,1997,97:391-410.
    [6]Winter G, Griffiths AD, Hawkns RE. Making antibodies by phage display technology [J]. Annu Rev Immunol,1994; (12):433-455.
    [7]Sidhu SS. Phage display in pharmaceutical biotechnology [J]. Curr Opin Biotechnol,2000; 11(6):610-616.
    [8]Kalie E, Jaitin DA, Abramovich R, et al; An IF Nalpha mutant optimized by phage display for IFNAR1 binding confers specif-ically enhanced antitumor activities [J]. J Biol Chem,2007; 274 (1-2):233-44.
    [9]Kalnina Z, Evaluation of T7 and lambda phage display systems for survey of autoantibody profiles in cancer patients [J]. J Immunol Methods.2008; 24(1): 1-10.
    [10]Huse WD, Sastry L, Iverson SA, et al. Generation of a large combinatorial library of the immunoglobulin repertoire in phage lambda [J]. Science,1989; 246(4935):1275-1281.
    [11]Maruyama IN, Maruyama HI, Brenner S, et al. Lambda for:a lambda phage vector for the expression of foreign proteins [J]. Proc Natl Acad SciUSA, 1994; 91:8273-8277.
    [12]Sternber GN, Hoess RH. Display of pep tides and proteins on the surface of bacteriophage lambda [J]. Proc Natl Acad Sci USA,1995; 92 (5): 1609-1613.
    [13]Yang F, Forrer P, Dauter Z, et al. Novel fold and cap sid-binding properties of the lambda-phage display platform protein [J]. Nat Struct Biol,2000; 7 (3):230-237.
    [14]Tanha J, Dubuc G, Naeang SA, et al. Selection by phage display of llama conventional V (H) fragments with heavy chain antibody V (H) H properties [J]. Immunol Methods,2002; 263(122):97-109.
    [15]Jung S, Amdt KM, Muller KM, et al. Selectively infective phage (SIP) technology:scope and limitations [J]. Immunol Methods,1999; 231(122): 93-104.
    [16]Houshmand H, Forman G, Magnusson G, et al. Use of bacteriophage T7 displayed peptides for determination of monoclonal antibody specificity and biosensor analysis of the binding reaction [J]. Anal Biochem,1999; 268 (2): 363-370.
    [17]Wu J, Tu C, Yu X, et al. Bacteriophage T4 nanoparticle capsid surface SOC and HOC bipartite display with enhanced classical swine fever virus immunogenicity:a powerful immunological approach. J Virol Methods.2007; 139(1):50-60.
    [18]Houshmand H, Forman G, Magnusson G, et al. Use of bacteriophage T7 disp layed pep tides for determination of monoclonal antibody specificity and biosensor analysis of the binding reaction [J]. Anal Biochem,1999; 268(2): 363-370.
    [19]王桂云,朱筱娟,王丽.噬菌体展示外源多肽的免疫原性研究[J].东北师大学报,2001;33(3):101-104.
    [20]Zhong Y W, Cheng J, Wang G, et al. Epitope mapping of hepatitis Cvirusnon-structure protein from a 7 peptide phage library by using immobilized specific monoclonal antibody [J]. Zhonghua Gan Zang Bing Za Zhi,2002; 10 (4):266-268.
    [21]Dennis M S, Eigenbiot C, Skelton N J, et al. Peptide exoxite inhibitors of factor Ⅶa as anticogulant s [J].Nature,2000; 404(6777):465-470.
    [22]Deng S, Xu Y, Liu R, et al. Mimic epitope of aflatoxin B1 screened by phage display technique [J]. Wei Sheng Yan Jiu,2007; 36(1):59-62.
    [23]李家大,王克夷.从噬菌体多肽文库中筛选α2葡萄糖苷酶的抑制剂[J].生物化学与生物物理学报,2001;33(5):513-518.
    [24]Desnues C. Biodiversity and biogeography of phages in modern stromatolites and thrombolites [J].Nature,2008; 148(1):1-9.
    [25]Weetman. Antigen presentation in the pathogenesis of autoimmune endocrine disease [J]. J Autoimmun,1995; 8(3):305-12.
    [26]施明,柯山,,陶永涛,等.利用噬菌体随机15肽库确定SLE相关多肽的研究[J].中华微生物学和免疫学杂志,2001;21(3):275-277.
    [27]Machold K P, Smolen J S. Adalimumab:a new TNF-alpha antibody for treatment of inflammatory joint disease [J]. Expert Opin Biol Ther,2003; 3 (2):351-360.
    [28]Taylor P C. Anti2TNFalpha therapy for rheumatoid arthritis:an update [J]. Intern Med,2003; 42(1):15-20.
    [29]Xu L, Jin B Q, Fan D M. Selection and identification of mimic epitopes for gastric cancer associated antigen MG72Ag [J].Cancer Ther,2003; 2 (3): 301-306.
    [30]Romanov V I, Durand D B, Pet renko V A. Phage display selection of peptides t hat affect prostate carcinoma cell s attachment and invasion [J]. Prostate,2001; 47(4):239-251.
    [31]Zhang Y, Chen J, Zhang Y, et al. Panning and Identification of a Colon Tumor Binding Peptide from a Phage Display Peptide Library [J]. J Biomol Screen,2007; 12(3):429-435.
    [32]Hof D, Cheung K, Roossien HE, et al. ANovel Subtractive Antibody Phage Display Method to Discover Disease Markers [J].Molecular&Cellular Proteomics,2006; 1 (2):155-169.
    [33]Suphioglu, C. Thunderstorm asthma due to grass pollen. Int Arch Allergy Immunol [J].1998; 116(4):253-260.
    [34]Hills R, Mazzarella R, Fok K, et al. Identification of an ADAMTS-4 Cleavage Motif using Phage Display Leads to the Development of Fluorogenic Peptide Substrates and Reveals Matri-lin-3 as a Novel Substrate [J]. J Biol Chem,2007; 3(2):119-129.
    [35]Ferrer M, Harrison S C. Peptide ligands to human immunodeficiency virus type1gp 120 identified from phage display libraries [J].Virology,1999; 73 (22):5795-5820.
    [36]Delano W L, Ultsch M H, de Vos AM, et al. Convergent solutions to binding at a protein-protein interface [J]. Science,2000; 287 (10): 1279-1283.
    [37]Takagi T, Arisawa T, Yamamoto K, et al. Identification of ligands binding specifically to inflammatory intestinal mucosa using phage display [J]. Clin Exp Pharmacol Physiol,2007; 34(4):286-289.
    [38]Pillutla R C, Hsiao K C, Beasley J R, et al. Peptides identify the critical hot spot s involved in t he biological action of t he insulin receptor [J]. J Biol Chem,2002; 277 (25):22590-22594.
    [39]Hsiao K C, Brissette R E, Wang P, et al. Peptides identify multiple hot spots wit hin the ligand binding domain of the TNF receptor 2 [J]. Proteome Sci,2003; 1 (1):1-10.
    [40]Jutta H, Martin J L, Karl N K. Peptide G protein agonists from a phage display library. Biochem. Pharmacol.2003; 65:961-967.
    [41]Giordano R J, Anobom C D, CardAA-Vila M, et al. Structural basis for the interaction of a vascular endothelial growth factor mimic peptide motif and its corresponding receptors. Chem. Biol.2005; 10:1075-1083.
    [42]张旭,彭健,王顺伟,等.噬菌体随机肽库对肝癌细胞特异性结合短肽的筛选及鉴定.第四军医大学学报[J],2008;29(17):1544-1547
    [43]Poul MA, Becerril B, Nielsen UB, et al. Selection of tumor specific internalizing human antibodies from the phage libraries [J], J Mol Biol, 2000; 301:1149-1161
    [44]Liu H, Rajasekaran AK, Moy P, et al. Constitutive and antibody-induced internalization of prostate-specific membrane antigen [J]. Cancer Res,1998; 58:4055-4060
    [45]Robinson P, Stuber D, Deryckere F, et al. Identification using phage display of peptides promoting targeting and internalization into HPV-transformed cell lines[J]. J Mol Recognit.2005; 18:175-182
    [46]Blanka Rihova. Receptor-mediated targeted drug or toxin delivery [J].Advanced Drug Delivery Review.1998; 29:273-289
    [47]Timar J, McIntosh DP, Henry R, et al. The effect of ricin B chain on the intracellular trafficking of an A chain immunotoxin, [J]. Br J Cancer.1991; 64(4):655-662.
    [48]Kwa HB, Wesseling J, Verhoeven AH, et al. Immunoscintigraphy of small-cell lung cancer xenografts with anti-neural cell adhesion molecule monoclonal antibody:improvement of tumour uptake by internalization [J]. Br J Cancer.1996; 73:439-446.
    [49]Tsaltas q Ford CH, Gallant M. Demonstration of monoclonal anticarcinoembryonic antigen (CEA) antibody internalization by electron microscopy, western blotting and radioimmunoassay [J]. Anticancer Res.1992; 12(6B):2133-2142.
    [50]Pietersz GA, Wenjun L, Krauer K, et al. Comparison of the biological properties of two anti-mucin-1 antibodies prepared for imaging and therapy [J]. Cancer Immunol lmmunother.1997; 44:323-328.
    [51]Abou-Jawde R, Choueiri T, Alemany C, et al.An Overview of Targeted Treatments in Cancer [J]. Clin Ther.2003; 25(8):2121-2137.
    [52]Sapra P, Stein R, Pickett J, et al. Anti-CD74 antibody-doxorubicin conjugate, MMU-110, in a human multiple myeloma xenograft nd in monkeys [J]. Clin Cancer Res.2005; 11(14):5257-5264.
    [53]Li Z, Zhao R, Wu X, et al. Identification and characterization of a novel peptide ligand of epidermal growth factor receptor or targeted delivery of therapeutics [J]. FASEB J.2005; (14):1978-1985.
    [54]Gao C, Mao S, Ronca F, et al. De novo identification of tumor-specific internalizing human antibody-receptor pairs by phage-display methods [J]. J Immunol Methods.2003; 274:185-197.
    [55]OndaM, Wang QC, Guo HF, et al.In vitro and in vivo cytotoxic activities of recombinant immunotoxin 8H9(Fv)-PE38 againest breast cancer, osteosarcoma, and neuroblastoma [J]. Cancer Res.2004; 64(4):1419-1424.
    [56]易学文,吴霞.免疫脂质体的研究进展[J].四川理工学院学报(自然科学版).2004;17(3):133-136.
    [57]Nielsen UB, Kirpotin DB, Pickering EM, et aLTherapeutic efficacy of anti-ErbB2 immunoliposomes targeted by a phage antibody selected for cellular endocytosis [J]. Biochim BiophysActa.2002; 1591(1-3):109-118.
    [58]Goren D, Horowitz AT, Zalipsky S, et al.Targeting of stealth liposomes to erbB-2 (Her/2) receptor:in vitro and in vivo studies [J]. Br J Cancer.1996; 74(11):1749-1756.
    [59]Park JW, Hong K, Kirpotin DB, et al. Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery [J]. Clin Cancer Res, 2002; 8(4):1172-1181.
    [60]高雪松,洪宝发,周建光.单克隆抗体在前列腺癌诊断及治疗中的应用[J].中国临床康复,2005,9(26):216-218.
    [61]Parry R, Schneider D, Hudson D, et al. Identification of a novel prostate tumor target, mindin/RG-1, for antibody-based radiotherapy of prostate cancer [J]. Cancer Res.2005; 65(18):8397-8405.
    [62]Lee K H, Jung K, Song S H. et al. Radiolabeled RGD uptake and alphavintegrin expression is enhanced in ischemic murine hindlimbs. J Nucl Med,2005;,46(3):472-478.
    [63]Oyama T, Sykes KF, Samli KN, etal. Isolation of lung tumor specific peptides from arandom Peptide library:generation of diagnos tie andeellar get in greagenis. Cancer Lett.2003; 202:219-230.
    [64]Kennel, Stephen J, Lankford, et al. Phage display selection of scFv to murine endothelial cell membranes. Hybrid Hybridomics.2004; 23(4):205-211.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700