用户名: 密码: 验证码:
马立克氏病毒感染鸡羽髓及皮肤蛋白质组学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
马立克氏病毒(Marek's disease virus,MDV)属疱疹病毒科,α疱疹病毒亚科,它是鸡的一种高度传染性肿瘤疾病——马立克氏病(MD)的病原,该病以外周神经以及性腺、虹膜、各种内脏器官、肌肉和皮肤的单核性细胞浸润和肿瘤形成为特征。MDV致病机理非常复杂,病毒感染与肿瘤产生相互影响。MD是兽医学、基础科学及比较医学研究的良好材料。MDV致瘤机理是MDV的研究中最令人感兴趣的,且MD是动物癌症中第一个能用疫苗来预防的疾病,它已成为人类癌症的一个理想的研究模型。此外,MDV是严格的细胞结合毒,唯一可以获得感染性的、脱离细胞的带囊膜病毒的组织是羽毛囊上皮细胞(Feather follicle epithelium, FFE),游离的有囊膜的病毒在FFE形成后,通过皮肤或羽屑释放到环境中,成为感染其他鸡的传染源。但病毒在皮肤羽囊上皮细胞中如何组装成完全病毒,病毒蛋白与宿主蛋白如何相互作用,目前仍知之甚少。本研究对感染MDV鸡皮肤和羽髓进行了蛋白组学分析,通过质谱鉴定了病毒感染后表达差异显著的蛋白和新出现的蛋白,并对这些蛋白进行了生物信息学分析。本文首次从蛋白水平上报导了鸡皮肤和羽髓对MDV感染的宿主应答,可望在分子水平为研究MDV游离病毒形成和病毒致病机理提供新的资料。
     1.雏鸡感染马立克氏病毒的临床观察与病理鉴定
     56只一日龄SPF雏鸡腹腔注射感染马立克氏病毒(MDV)超强毒株RB1B(RB1B-CEF 0.2mL,1000PFU),对照组40只鸡注射同等体积DMEM培养基。从感染后7天起(7dpi),每隔一周每组取4只鸡扑杀,采血分离血清、采集羽毛、皮肤及内脏等,冻存于-70℃。试验结果发现SPF鸡感染两周后开始出现可见临床症状如消瘦、毛色苍乱等,用PCR可以从羽毛扩增出病毒基因pp38;3周后有劈叉、瘫痪等现象,剖检可见脾、肾等内脏肿大,法氏囊萎缩;4-5周后症状更加明显,并陆续有鸡死亡,剖检可见多数鸡内脏产生肿瘤,病理切片显示皮肤及羽毛有淋巴细胞浸润,琼脂扩散实验证实感染鸡血清中产生了MDV抗体,羽毛中含MDV抗原。这些结果说明SPF鸡已成功感染MDV,并发展成马立克氏病(MD),为进一步开展羽囊和皮肤蛋白质组学研究提供了条件。
     2.鸡羽髓蛋白二维电泳方法的建立
     禽类的羽髓是多种病毒复制、包装以及释放的部位。其取样十分方便,是研究病毒复制、基因表达及宿主应答等的良好样本。本研究从SPF鸡羽根挤出羽髓,并提取其蛋白进行二维电泳(two-dimensional electrophoresis,2-DE),对不同裂解液、IPG胶条pH值范围、一向等电聚焦(IEF)条件、二向SDS-聚丙烯酰胺凝胶电泳(SDS-PAGE)凝胶浓度、蛋白上样量、染色方法等进行优化。结果表明以400μg羽髓蛋白样品,用17cm, pH 5-8 IPG胶条进行2-DE,第一向IEF聚焦条件为8000V,60000伏特小时,第二向SDS-PAGE凝胶浓度为11%,胶体考染法染色时可获得图谱最佳。2-DE图谱经PDQuest8.0.1分析,可检测到700个以上蛋白点,不同鸡只来源样本间的匹配率大于92%。本研究建立了鸡羽髓蛋白重复性较好、分辨率较高的二维电泳方法,该方法的建立为利用蛋白质组学方法研究禽类病毒的致病机理及病毒与宿主的相互作用等提供了技术基础。
     3.马立克氏病毒感染鸡的羽髓差异蛋白质组学研究
     羽毛是细胞游离马立克病毒释放的部位,是感染其他鸡的传染源,同时也是检测马立克氏病毒非常方便的材料,但感染马立克氏病毒鸡羽髓中宿主基因表达的变化及对病毒感染的应答仍不清楚。本研究用SPF鸡人工感染马立克氏病毒超强毒RB1B株,感染后21天采集鸡羽毛,按第二章所述方法提取羽髓蛋白,以17cm,pH5-8的IPG胶条进行二维电泳,以未感染病毒的SPF鸡羽髓蛋白为对照,使用PDQuest软件对二维电泳图谱分析,寻找表达差异蛋白。结果攻毒组和对照组之间表达差异大于两倍的蛋白点有41个,其中攻毒组表达上调的蛋白点25个,下调的蛋白点7个,新出现的蛋白点有9个。选取差异较大的25个斑点进行质谱鉴定,共成功鉴定了21个斑点,对应于20个蛋白。分别是:载脂蛋白AI(apolipoproteinAI)、免疫球蛋白λ链(Immunoglobulin lambda chain)、肌动蛋白胞浆5型(Actin, cytoplasmic type 5)、调宁蛋白-1(Calponin-1)、14-3-3 sigma(两个斑点均为该蛋白)、ATP合酶α亚基(ATP synthase alpha subunit)、S100钙结合蛋白A11(S100calcium binding protein A 11)、卵转铁蛋白前体(Ovotransferrin precursor)、磷酸丙糖异构酶1(triosephosphate isomerase 1, TPI1)、D样异质性胞核核糖核蛋白(RCJMB04_291737 kDa protein)、癌蛋白18(STMN1 13 kDa protein)、蛋白酶体激活因子(PSMC6 46 kDa protein)、真核生物翻译起始因子5A (Eukaryotic translation initiation factor 5A-1)、电子传递黄素蛋白α链(ETFA 34 kDa protein)、硫氧还蛋白(TXN Thioredoxin)、丙酮酸激酶M2 (PKM2 58 kDa protein)、超氧化物歧化酶2(Superoxidedismutase, SOD2)、蛋白质酪氨酸磷酸酶(ACP1 Low molecular weight phosphotyrosine protein phosphatase)等。功能分析表明这些蛋白涉及到物质代谢、细胞骨架成分、细胞增殖相关及免疫相关等,差异最明显的蛋白是代谢相关蛋白(40%)和细胞增殖相关蛋白(25%)
     4.马立克氏病毒感染鸡皮肤蛋白质组学研究
     1日龄SPF雏鸡人工接种马立克氏病毒超强毒RB1B株,感染后28天取皮肤,二维电泳裂解液提取蛋白,以17cm, pH5-8的IPG胶条进行二维电泳,以未感染病毒的SPF鸡皮肤蛋白为对照,电泳图谱用PDQuest软件进行比对。结果共发现表达差异大于两倍的斑点23个,其中上调13个,下调3个,新出现7个。选取分辨清晰、差异显著的斑点20个进行质谱分析,共成功鉴定出16个斑点,对应于14个蛋白。其中三个上调斑点均鉴定为载脂蛋白AI(Apolipoprotein AI, Apo AI),经蛋白翻译后修饰软件预测,Apo AI有潜在的磷酸化和糖基化位点,因此三个斑点应为Apo AI的不同修饰状态。此外,β2微球蛋白(β2-microglobulin, BMG)、磷酸甘油酸激酶(Phosphoglycerate kinase, PGK1)等13个为新增或上调表达蛋白;转甲状腺素蛋白(TTR 15Kd protein)为下调表达蛋白。经功能分析,这些蛋白分别属于免疫相关蛋白,调节蛋白,细胞骨架蛋白,代谢相关蛋白及转运蛋白等。为验证蛋白质组学中发现的不同蛋白表达差异,本研究在mRNA水平对部分差异蛋白进行了分析。以β-actin为内参,通过半定量RT-PCR测定了差异表达蛋白Apo AI及β2微球蛋白的mRNA水平,并通过Western blot测定了Apo AI的蛋白水平。结果证明攻毒组与对照组之间Apo AI及β2微球蛋白的mRNA水平、Apo AI蛋白水平均有显著性差异,该结果与2-DE一致,进一步证明,本研究的蛋白组学结果正确。本研究结果也提示马立克病毒感染后使皮肤产生炎症并有淋巴细胞浸润,可能正是因为这些蛋白的改变,使得细胞的代谢紊乱,细胞周期异常,导致皮肤病变及肿瘤细胞大量繁殖。本研究结果为进一步了解病毒的致病机理、传播、诊断及预防提供了基础资料。
Marek's disease (MD) is a prevalent, contagious lymphoma in chickens caused by a herpesvirus called Marek's disease virus (MDV), usually characterized by mononuclear cellular infiltrates in peripheral nerves, various other organs and tissues including iris and skin. MD is the first virus-induced tumor disease, which could be prevented by vaccine. MD has become a good nature model for understanding oncogenism of human cancer.
     MDV is a highly cell-associated a-herpes virus that replicates in both genetically resistant and susceptible chickens. The enveloped, cell-free virus is shed by the skin and feather debris only, which is the source of infection for other chickens via the respiratory route. However, little is known about the gene networks and host-virus interaction involved the production and release of virus particles. In this study we obtained two-dimensional gel electrophoresis (2-DE) profile of chicken skin and feather pulp total soluble proteins and identified some differently expressed proteins between MDV infected and specific pathogen free (SPF) chicken by matrixassociated laser dissociation/ionization time of flightmass spectrometry (MALDI-TOF-MS). The different level proteins or new proteins were analyzed with bio-informatics. This is the first proteomics analysis of host responses to MDV infection in chicken skin and feather pulp. Our results will provide some new data for investigating production of cell-free virus and pathogenesis of MDV.
     1. SPF chickens infected with MDV and pathological observation
     SPF Chickens (n=56) were inoculated intra-abdominally with 1000 plaque-forming unit (PFU) of RB1B at 1 day old. Chickens (n=40) injected with DMEM were served as negative controls. Four chickens from each group were killed every 7 days post inoculation (dpi). The samples such as serum, feather, skin, and viscera were collected and frozen at -70℃. Clinical symptoms including weakness, anorexia, depression gradually was observed about 14dpi. Pp38 gene of the virus was also amplified by polymerase chain reaction (PCR) from feather of infected group at the same time. Paralysis was found in some of chickens infected group after 3 weeks infection. In addition, enlargement of liver, spleen and kidney were observed after dissection but atrophy for bursa of Fabricius and thymus. Gross lesions and death occur after four to five weeks post infection. The visceral tumors in liver, spleen and kidney were found. The pathological section of skin and feather were revealed intense infiltration of macrophages and lymphocytes. Agar gel precipition (AGP) tests showed that infected chickens produced MDV antibodies in serum and antigen in feather. All the results indicate that the infected chickens have been developed MD. The animal experiment provides abundant materials for further studies on proteome of feather pulp and skin of chickens infected with MDV.
     2. Establishment of the Two-Dimensional Electrophoresis for Feather Pulp of SPF Chickens
     The feather follicle and feather pulp of birds are important sites of replication and release of some avian virus. The feather provides a convenient living tissue for studying the virus replication, release, virus genes expression, virus-host interaction, and so on. In the study, the total proteins were extracted from the feather pulp of SPF chicken, and separated by two-dimensional electrophoresis. The 2-DE maps were optimized with different factors such as lysis buffer, pH range of immobilized pH gradient (IPG) gel strip, IEF, stain, etc. Finally, the best procedure for 2-DE profile of chicken feather pulp proteome with high reproducibility and resolution was developed. The results could be better when loading 400μg proteins with buffer I (8M urea,2%chaps,50mMDTT, 0.2%bio-lyte 3/10,0.001%bromphenol blue, 1mM PMSF) to 17cm, pH5-8 IPG strip, focusing on 60000 volt hrs, staining with commassie brilliant blue G-250. Analysis with PDQuest 8.0.1, more than 700 resoluble polypeptide spots were detected on each image, and the repeatability of samples from different chickens is higher than 92%. The method provides a basis for further application of feather pulp to investigating pathogenesis of MDV.
     3. Proteomics analysis of feather pulp from chickens infected with Marek's disease virus
     Feather follicle epithelium (FFE) and feather are sites which produce and release enveloped infectious Marek's disease virus. However, little is known about the gene networks and host-virus interaction during the production and release of virus particles. The present study aimed to obtain 2-DE profile of total soluble proteins of chicken feather infected with MDV and find differential expression of proteins between MDV infected and uninfected specific pathogen free (SPF) chickens.
     Feather pulp was extracted from feather tips collected from chickens infected with MDV and the control. The 2-DE maps of soluble proteins were obtained as described in section 2, and analyzed with PDQuest 8.0.1. The results showed that 41 spots, which expression level changed above two fold, were detected.25 of these spots were up-regulated,7 spots down-regulated,9 spots newly induced expression in group infected with MDV.25 spots changed significantly were further analyzed by MALDI-TOF-MS.21 spots, corresponding to 20 proteins, were successfully identified. These differently expressed proteins are apolipoprotein AI, Immunoglobulin lambda chain, Actin, cytoplasmic type 5,Calponin-1,14-3-3 sigma (two spots are the same protein), ATP synthase alpha subunit, S100 calcium binding protein A 11, Ovotransferrin precursor, triosephosphate isomerase 1(TPI1), RCJMB04_291737 kDa protein, STMN1 13 kDa protein, PSMC6 46 kDa protein, Eukaryotic translation initiation factor 5A-1, ETFA 34 kDa protein, TXN Thioredoxin, PKM2 58 kDa protein, Superoxidedismutase (SOD2), ACPI Low molecular weight phosphotyrosine protein phosphatase. Bioinformatics study indicates these differential proteins are mainly associated with metabolism (40%), cell proliferation (25%), immuno-related(15%) and cytoskeleton(10%).
     4. Proteomics analysis of chicken skins infected with Marek's disease virus
     Total proteins were extracted from skin of chickens infected with RB1B at 28th days post infection (dpi) and analyzed by two-dimensional electrophoresis (2-DE) with 17cm,pH5-8 IPG strips. Twenty three protein spots changed above two fold were found, in which 16 spots corresponding to 14 unique proteins were successfully identified by further MS. Among of the identified proteins, three newly induced in infected group wereβ2-microglobulin, Heat shock protein 25 and Creatine kinase M-type.10 up-regulated include, Apolipoprotein A-I (apoA-I), putative uncharacterized protein, Serum albumin, Myosin light chainl (cardiac muscle), Myosin light chain 1 (skeletal muscle isoform),β-enolase, Triosephosphate isomerase (TPI1), Phosphoglycerate kinase (PGK1), Adipocyte fatty acid binding protein and similar to retinoid binding proteins (RBP7).1 down-regulated was transthyretin (TTR) 15kD protein. Based on bioinformatics analysis, the differently expressed proteins could be functionally classified into 5 groups as following:immune-related proteins, cell regulatory proteins, skeleton proteins, metabolism-related proteins and transport proteins. In order to verify the proteomics results, the mRNA level of ApoA I beta-2-microglobulin andβ-actin as internal control were detected by semi-quantitative RT-PCR. The protein level of ApoA I was detected by western blot. The results of mRNA and western blot were consistent to those of 2-DE. These results indicate that expression of these proteins may relate to the disorder of cell metabolism and proliferation, and finally induce transformation of lymphocytes. Our study provides a base for further understand of pathogenesis, diagnosis, and prevention of MDV.
引文
[1]Saif Y M禽病学.北京:中国农业出版社,第11版,2005.
    [2]Cebrian J, Kaschka-Dierich C, Berthelot N. et al. Inverted repeat nucleotide sequences in the genomes of Marek disease virus and the herpesvirus of the turkey. Proc. Natl Acad. Sci. USA.1982, 79(2):555-558.
    [3]Silva RF, Lee LF, Kutish GF. The genomic structure of Marek's disease virus. Curr Top Microbiol Immunol.2001,255:143-158.
    [4]Tulman ER, Afonso C L, Lu Z,Zsak L.et al. The genome of a very virulent Marek's disease virus. J. Virol.2000,74(17):7980-7988.
    [5]Lee LF,Ping W,Dexin S, et al. The complete unique long sequence and the overall genomic organization of the GA strain of Marek's disease virus. Proc. Natl Acad. Sci. USA 2000,97 (11):6091-6096.
    [6]Witter RL. Increased virulence of Marek's disease virus field isolates.J. Avian Diseases,1997,41 (1):149-163.
    [7]Calnek BW. Pathogenesis of Marek's disease. In Marek's Disease (ed. Hirai, K.) 2001,25-55.
    [8]Schat KA, Schinazi RF, Calnek BW. Cell specific antiviral activity of 1-(2-fluoro-2-deoxy-□-Darabinofuranosyl)-5-iodocytosine (FIAC) against Marek's disease herpesvirus and turkey herpesvirus. Antiviral Res.1984,4:259-270.
    [9]Baigent SJ,Davison TF. Development and composition of lymphoid lesions in the spleens of Marek's disease virus-infected chickens:association with virus spread and the pathogenesis of Marek's disease. Avian Pathol.1999,28(3):287-300.
    [10]Jarosinski KW, Tischer BK, Trapp S,et al.Marek's disease virus:lytic replication, oncogenesis and control. Expert Rev Vaccines.2006,5(6):761-72.
    [11]Witter RL,SolomonL JJ, Champion R,Nazerian K. Long term studies of marek's disease infection in individual chicken.Avian Dis 1971.15:346-365.
    [12]Baigent SJ, Ross LJ, Davison TF. Differential susceptibility to Marek's disease is associated with differences in number, but not phenotype or location, of pp38+ lymphocytes. J. Gen. Virol. 1998,79(Pt11):2795-2802.
    [13]Calnek BW, Schat KA, Ross LJ, et al. Further characterization of Marek's disease virus infected lymphocytes. Ⅱ. In vitro infection. Int. J. Cancer.1984,33(3):399-406.
    [14]Schat KA, Chen CL, Shek WR,et al. Surface antigens on Marek's disease lymphoblastoid tumor cell lines. J. Natl Cancer Inst.1982,69(3):715-720.
    [15]Lee LF, Powell PC, Rennie M,et al.1981.Nature of genetic resistance to Marek's disease in chickens.J Natl Cancer Inst 66:789-796.
    [16]Schat KA, Chen CL, Calnek BW,et al. Transformation of T-lymphocyte subsets by Marek's disease herpesvirus. J. Virol.1991,65:1408-1413.
    [17]Lee SI, Ohashi K, Morimural T,et al. Re-isolation of Marek's disease virus from T cell subsets of vaccinated and non-vaccinated chickens.Arch.virol.1999,144(1):45-54.
    [18]Calnek BW,Adldinger HK, Kahn DE.Feather follicle epithelium:a sourse of enveloped and infectious cell-free herpesvirus from Marek's disease. Avian Dis.1970,19:473-482.
    [19]Churchill AE, Chubb RC, Baxendale W. The attenuation, with loss of oncogenicity, of the herpes-type virus of Marek's disease (strain HPRS-16) on passage in cell culture. J Gen Virol 1969;4(4):557-564.
    [20]Churchill AE, Payne LN, Chubb RC. Immunization against Marek's disease using a live attenuated virus. Nature 1969;221 (February 22 (5182)):744-747.
    [21]Okazaki W, Purchase HG, Burmester BR. Protection against Marek's disease by vaccination with a herpesvirus of turkeys. Avian Dis 1970;14(May (2)):413-429.
    [22]Witter RL, Nazerian K, Purchase HG, Burgoyne GH. Isolation from turkeys of a cell-associated herpesvirus antigenically related to Marek's disease virus. Am J Vet Res 1970,31:525-538.
    [23]Schat KA, Calnek BW, Fabricant J. Characterization of two highly oncogenic strains of Marek's disease virus. Avian Pathol 1982; 11:593-605.
    [24]Witter RL, Silva RF, Lee LF. New serotype 2 and attenuated serotype 1 Marek's disease vaccine viruses:selected biological and molecular characteristics. Avian Dis 1987;31(4):829-840.
    [25]Witter RL. Safety and comparative efficacy of the CVI988/Rispens vaccine strain. In: Proceedings of the 4th international symposium on Marek's disease,19th World Poultry Congress.1992:315-319.
    [26]Witter RL. Increased virulence of Marek's disease virus field isolates. Avian Dis 1997;41(1):149-163.
    [27]Sung HW.Recent increase of Marek's disease in Korea related to the virulence increase of the virus. Avian Dis.2002,46(3):517-24.
    [28]左天荣,赵子轶,韦平,韦信贤,李娅,磨美兰一株具有急性致瘤特性的马立克氏病病毒的分离与鉴定病毒学报,2007,23(3):218-223.
    [29]陈欣虹,秦爱建,钱锟等.两株马立克病病毒的分离及相关致病基因序列的比较.中国兽医科学.2009,39(7):570-574.
    [30]刘红梅,秦爱建,叶建强等.重组马立克病病毒CVI988/Rispens的构建.扬州大学学报(农业与生命科学版).2005,26(4):1-4.
    [31]Lucy FL, Blanca L, Robert F,et al. Recombinant Marek's disease virus (MDV) lacking the Meq oncogene confers protection against challenge with a very virulent plus strain of MDV. Reddy Vaccine.2008,26(15):1887-1892.
    [32]Lee LF, Kreager KS, Arango J, et al. Comparative evaluation of vaccine efficacy of recombinant Marek's disease virus vaccine lacking Meq oncogene in commercial chickens.Vaccine. 2010,28(5):1294-1299.
    [33]Nazerian K, Lee LF, Yanagida N,et al. Protection against Marek's disease by a fowlpox virus recombinant expressing the glycoproteln B of Marek's disease virus. J Virol,1992.66:1405-1213.
    [34]Baigent SJ,Petherbridge LJ,Smith LP, et al. Herpesvirus of turkey reconstituted from bacterial artificial chromosome clones induces protectionagainst Marek's disease. J Gen Virol. 2006,87(Pt 4):769-776.
    [35]Petherbridge L, Howes K, Baigent SJ,et al. Replication-Competent Bacterial Artificial Chromosomes of Marek's Disease Virus:Novel Tools for Generation of Molecularly Defined Herpesvirus Vaccines J. Virol.2003,77(16):.8712-8718.
    [36]Tischer BK, Schumacher D, Beer M, et al. DNA vaccine containing an infectious Marek's disease virus genome can confer protection against tumorigenic Marek's disease in chickens. Journal of General Virology 2002,83,2367-2376.
    [1]Calnek BW. Pathogenesis of Marek's disease virus infection. Curr Top Microbiollmmunol 2001,255:25-55.
    [2]Baigent SJ, Ross LJ, Davison TF. Differential susceptibility to Marek's disease is associated with di.erences in number, but not in phenotype or location, of pp38+ lymphocytes. J Gen Virol. 1998,79(11):2795-802.
    [3]Lee SI, Ohashi K, Morimura T, et,al. Re-isolation of Marek's disease virus from T cell subsets of vaccinated and non-vaccinated chickens. Arch Virol 1999;144(1):45-54.
    [4]Ikuta K, Nishi Y, Kato S, Hirai K. Immunoprecipitation of Marek's disease virus-specific polypeptides with chicken antibodies purified by affinity chromatography. Virology. 1981,114(1):277-281.
    [5]Liu HC, Soderblom EJ, Goshe MB. A mass spectrometry-based proteomic approach to study Marek's Disease Virus gene expression J Virol Methods.2006,135(1):66-75.
    [6]Cebrian J, Kaschka-Dierich C, Berthelot N,et al. Inverted repeat nucleotide sequences in the genomes of Marek disease virus and the herpesvirus of the turkey. Proc. Natl Acad. Sci. USA 1982,79(2):555-558.
    [7]Cui ZZ., Ding Y, Lee LF, Marek's disease virus gene clones encoding virus-specific phosphorylated polypeptides and serological characterization of fusion proteins. Virus Genes.1990,3(4):309-322.
    [8]Pandiri AK, Cortes AL, Lee LF, et al.Marek's disease virus infection in the eye:chronological study of the lesions, virus replication, and vaccine-induced protection. Avian Dis.2008, 52(4):572-580.
    [9]Nakajima K, Ikuta K, Naito M,et al.Analysis of Marek's disease virus serotype 1-specific phosphorylated polypeptides in virus-infected cells and Marek's disease lymphoblastoid cells. J. Gen. Virol.1987,68,1379-1389.
    [10]Gimeno I M, Witter RL, Hunt HD, et al. The pp38 Gene of Marek's Disease Virus (MDV) Is Necessary for Cytolytic Infection of B Cells and Maintenance of the Transformed State but Not for Cytolytic Infection of the Feather Follicle Epithelium and Horizontal Spread of MDV. J. Virol.2005,79(7):4545-4549.
    [11]Parcells MS,Lin SF,Dienglewicz RI, et al. Marek's disease virus (MDV) encodes an interleukin-8 homolog (vIL-8):charcterization of the vIL-8 protein and vIL-8 deletion mutant MDV. Journal of Virology,2001.75(11):5159-73.
    [12]Schat KA,Xing Z. Specific and nonspecific immuneresponses to Marek's disease virus. Dev Comp Immunol.2000,24(2-3):201-21.
    [13]Parcells MS,Lin SF,Dienglewicz RI, et al. Marek's disease virus (MDV) encodes an interleukin-8 homolog (vIL-8):charcterization of the vIL-8 protein and vIL-8 deletion mutant MDVJ. Journal of Virology.2001,75(11):5159-73.
    [14]Cui X, Lee LF, Reed WM,et,al. Marek's disease virus-encoded vIL-8 gene is involved in early cytolytic infection but dispensable for establishment of latency. J. Virol.2004,78(9):4753-4760.
    [15]Cortes PL, Cardona CJ.Pathogenesis of a Marek's disease virus mutant lacking vIL-8 in resistant and susceptible chickens. Avian Dis.2004,48(1):50-60.
    [16]Kamil JP, Tischer BK, Trapp S, et al. vLIP, a viral lipase homologue, is a virulence factor of Marek's disease virus. J. Virol.2005,79(11):6984-6996.
    [17]Kanamori A, Ikuta K, Ueda S,et al.Methylation of Marek's Disease Virus DNA in Chicken T-lymphoblastoid Cell Lines. J Gen Virol.1987,68(Pt 5):1485-1490
    [18]Schat KA,Buckmaste, A,Ross, L.J. Partial transcription map of Marek's disease herpesvirus in lytically infected cells and lymphoblastoid cell lines. International Journal of Cancer, 1989,44(1):101-109.
    [19]Heidari M, Huebner M, Kireev D, et,al.Transcriptional profiling of Marek's disease virus genes during cytolytic and latent infection Virus Genes.2008,36(2):383-392
    [20]Sugaya K, Bradley G, Nonoyama M,et al.Latent transcripts of Marek's disease virus are clustered in the short and long repeat regions. J. Virol.1990,64(12):5773-5782
    [21]Volpini LM, Calnek BW, Sekellick MJ,et al. Stages of Marek's disease virus latency defined by variable sensitivity to interferon modulation of viral antigen expression. Vet Microbiol 1995;47(1-2):99-109.
    [22]Abujoub AA, Coussens PM. Evidence that Marek's disease virus exists in a latent state in a sustainable fibroblast cell line.Virology.1997,229(2):309-321.
    [23]Parcells MS, Arumugaswami V, Prigge JT, et al.Marek's disease virus reactivation from latency:changes in gene expression at the origin of replication. Poultry Science,2003,82(6):893-898.
    [24]Jones D, Lee L, Liu J L, et al.Marek disease virus encodes a basic-leucine zipper gene resembling the fos/jun oncogenes that is highly expressed in lymphoblastoid tumors. Proc. Natl Acad. Sci. USA.1992,89(9):4042-4046.
    [25]Brown AC, Smith LP, Kgosana L,et al.Homodimerization of the Meq viral oncoprotein is necessary for induction of T-cell lymphoma by Marek's disease virus. J Virol. 2009,83(21):11142-11151.
    [26]Levy AM, Izumiya Y, Brunovskis P, et al. Characterization of the chromosomal binding sites and dimerization partners of the viral oncoprotein Meq in Marek's disease virustransformed T cells. J. Virol.2003,77(23):12841-12851.
    [27]Brown AC, Baigent SJ, Smith LP, et al. Interaction of MEQ protein and C-terminal-binding protein is critical for induction of lymphomas by Marek's disease virus. Proc Natl Acad Sci U S A. 2006,103(6):1687-1692.
    [28]Meimaridou E, Gooljar SB,Chapple JP. From hatching to dispatching:the multiple cellular roles of the Hsp70 molecular chaperone machinery. J Mol Endocrinol.2009,42(1-2):1-9.
    [29]Garrido C, Brunet M, Didelot C, et,al. Heat shock proteins 27 and 70:anti-apoptotic proteins with tumorigenic properties. Cell Cycle.2006,5(22):2592-2601.
    [30]Dudeja V, Mujumdar N, Phillips P,et al. Heat shock protein 70 inhibits apoptosis in cancer cells through simultaneous and independent mechanisms. Gastroenterology. 2009,136(5):1772-1182.
    [31]Young P, Anderton E, Paschos K, et al.Epstein-Barr virus nuclear antigen (EBNA) 3A induces the expression of and interacts with a subset of chaperones and co-chaperones. J Gen Virol. 2008,89(4):866-877.
    [32]Zhang SM, Sun DC, Lou S, et al. HBx protein of hepatitis B virus (HBV) can form complex with mitochondrial HSP60 and HSP70. Arch Virol.2005 150(8):1579-1590.
    [33]Zhao Y, Kurian D, Xu H, et al. Interaction of Marek's disease virus oncoprotein Meq with heat-shock protein 70 in lymphoid tumour cells. J Gen Virol.2009,90(9):2201-2208.
    [34]Rocchi P,So A, Kojima S, et al. Heat shock protein 27 increase after androgen ablation and plays a cytoprotective role in hormone-refractory prostate cancer. Cancer Res.2004,64(18): 6595-6602.
    [35]Srisomsap C, Subhasianont P, Otto A, et al. Detection of cathepsin B up-regulation in neoplantic thyroid tissues by proteomic analysis. Proteomics.2002,2(6):706-712.
    [36]卢占军,感染马立克氏病病毒SPF鸡法氏囊蛋白质组学研究(D)2009,扬州大学.
    [37]陈守义李军涛鸡马立克氏病肿瘤组织端粒酶活性的测定.中国兽医科技1999,29(12):13-15.
    [38]陈守义 谌旭红 鸡马立克氏病肿瘤组织细胞端粒长度的测定.中国兽医学报. 2000,20(3):225-227.
    [39]Lounis ADA,Soubieux D,Klapper W,et,al. Induction of Telomerase Activity in Avian Lymphoblastoid Cell Line Transformed by Marek's Disease Virus, MDCC-MSB1 Vet Pathol.2004,41(4):405-407.
    [40]Delecluse HJ, Schuller S, Hammerschmidt W. Latent Marek's disease virus can be activated from its chromosomally integrated state in herpesvirus transformed lymphoma cells. The EMBO Journal vol.1993,12 (8):3277-3286.
    [41]Delecluse HJ, Hammerschmidt W. Status of Marek's disease virus in established lymphoma cell lines:herpesvirus integration is common. J Virol.1993,67(1):82-92.
    [42]Fragnet L, Blasco MA, Klapper W, et al. The RNA subunit of telomerase is encoded by Marek's disease virus. J Virol.2003,77(10):5985-5996.
    [43]Fragnet L, Kut E, Rasschaert D. Comparative Functional Study of the Viral Telomerase RNA Based on Natural Mutations. J. Biol. Chem.2005,280(25):23502-23515.
    [44]Trapp S, Parcells MS, Kamil JP, et al. A virus-encoded telomerase RNA promotes malignant T cell lymphomagenesis. J Exp Med.2006,203(5):1307-1317.
    [45]Artandi SE. Telomerase flies the coop:the telomerase RNA component as a viral-encoded oncogene. J Exp Med.2006,203(5):1143-1145.
    [46]Burnside J, Bernberg E, Anderson A,et al. Marek's disease virus encodes MicroRNAs that map to meq and the latency-associated transcript. J Virol.2006 80(17):8778-8786.
    [47]Yao Y, Zhao Y, Xu H, et al.MicroRNA profile of Marek's disease virus-transformed T-cell line MSB-1:predominance of virus-encoded microRNAs. J Virol.2008,82(8):4007-4015.
    [48]Zhao Y, Yao Y, Xu H, et,al A functional MicroRNA-155 ortholog encoded by the oncogenic Marek's disease virus. J Virol.2009,83(1):489-492.
    [49]Levy AM, Davidson I, Burgess SC et al. Major histocompatibility complex class I is downregulated in Marek's disease virus infected chicken embryo fibroblasts and corrected by chicken interferon. Comp Immunol Microbiol Infect Dis.2003,26(3):189-198.
    [50]Hunt HD, Lupiani B, Miller MM, et,al. Marek's Disease Virus Down-Regulates Surface Expression of MHC (B Complex) Class I (BF) Glycoproteins during Active but not Latent Infection of Chicken Cells.Virology.2001,282(1):198-205.
    [51]Burgess SC, Davison TF. Identification of the Neoplastically Transformed Cells in Marek's Disease Herpesvirus-Induced Lymphomas:Recognition by the Monoclonal Antibody AV37 J Virol. 2002,76(4):7276-7292.
    [52]Niikura M, Kim T,. Hunt HD,et al. Marek's disease virus up-regulates major histocompatibility complex class II cell surface expression in infected cells.Virology.2007,359(1):212-219.
    [53]Kaiser P, Underwood G, Davison F.Differential Cytokine Responses following Marek's Disease Virus Infection of Chickens Differing in Resistance to Marek's Disease. Journal of virology, Jan.2003,77(1):762-768.
    [54]Burgess SC, Basaran BH, Davison T F. Resistance to Marek's Disease Herpesvirus-induced Lymphoma is Multiphasic and Dependent on Host Genotype. Vet Pathol.2001,38(2):129-142.
    [55]Dalgaard T, Boving MK, Handberg K, et,al. MHC expression on spleen lymphocyte subsets in genetically resistant and susceptible chickens infected with Marek's disease virus. Viral Immunol. 2009,22(5):321-327.
    [56]Thanthrige-Don N, Parvizi P, Sarson AJ, et al. Proteomic analysis of host responses to Marek's disease virus infection in spleens of genetically resistant and susceptible chickens. Dev Comp Immunol.2010,34(7):699-704.
    [1]D.C.利布莱尔.蛋白质组学导论.科学出版社,2005.
    [2]钱小红贺福初.蛋白质组学:理论与方法.科学出版社,2003.
    [3]Fend F, Raffeld M, Laser capture microdissection in pathology J Clin Pathol. 2000,53(9):666-672.
    [4]Esposito G, Complementary techniques:laser capture microdissection--increasing specificity of gene expression profiling of cancer specimens. Adv Exp Med Biol.2007,593:54-65.
    [5]Saphire AC,Gallay PA,Bark SJ, Proteomic analysis of human immunodeficiency virus using liquid chromatography/tandem mass spectrometry effectively distinguishes specific incorporated host proteins. J Proteome Res.2006,5(3):530-538.
    [6]Rasheed S, Yan JS, Hussain A,et,al.Proteomic characterization of HIV-modulated membrane receptors, kinases and signaling proteins involved in novel angiogenic pathways. J Transl Med. 2009,;7:75-98.
    [7]Ricardo-Dukelow M, Kadiu I, Rozek W,et al, HIV-1 infected monocyte-derived macrophages affect the human brain microvascular endothelial cell proteome:New insights into blood-brain barrier dysfunction for HIV-1-associated dementia. J Neuroimmunol.2007,185(1-2):37-46.
    [8]Gelman BB, Nguyen TP. Synaptic Proteins Linked to HIV-1 Infection and Immunoproteasome Induction:Proteomic Analysis of Human Synaptosomes. J Neuroimmune Pharmacol.2010, 5(1):92-102.
    [9]Lupberger J, Hildt E. Hepatitis B virus-induced oncogenesis. World J Gastroenterol.2007, 13(1):74-81.
    [10]Cui F, Wang Y,Wang J, et,al.The up-regulation of proteasome subunits and lysosomal proteases in hepatocellular carcinomas of the HBx gene knockin transgenic mice.Proteomics. 2006,6(2):498-504.
    [11]Li N, Long Y, Fan X, et,al.Proteomic analysis of differentially expressed proteins in hepatitis B virus-related hepatocellular carcinoma tissues. J Exp Clin Cancer Res.2009,28(1):122-131.
    [12]Xie J, Techritz S, Haebel S,et al,A two-dimensional electrophoretic map of human mitochondrial proteins from immortalized lymphoblastoid cell lines:a prerequisite to study mitochondrial disorders in patients. Proteomics.2005,5(11):2981-2999.
    [13]Fontaine-Rodriguez EC, Taylor TJ, Olesky M, et,al. Proteomics of herpes simplex virus infected cell protein 27:association with translation initiation factors. Virology. 2004,330(2):487-492.
    [14]Moerdyk-Schauwecker M, Hwang SI, Grdzelishvili VZ. Analysis of virion associated host proteins in vesicular stomatitis virus using a proteomics approach. Virol J.2009,6:166-181.
    [15]Peng XQ, Wang F, Geng X, et al.Current advances in tumor proteomics and candidate biomarkers for hepatic cancer.Expert Rev Proteomics.2009,6(5):551-561.
    [16]Liu M, Chen CF, Chen HS,et,al. Differential expression of proteomics models of colorectal cancer, colorectal benign disease and healthy controls. Proteome Science.2010,8:16.
    [17]Selicharova I, Sanda M, MLadkova J, et,al.2-DE analysis of breast cancer cell lines 1833 and 4175 with distinct metastatic organ-specific potentials:comparison with parental cell line MDA-MB-231.Oncol Rep.2008,19(5):1237-1244.
    [18]谢庆祥,林吓聪,张闽峰STAT21在膀胱癌组织中的表达及其临床意义肿瘤防治研究.2005,32(7):404-405.
    [19]Katayama M, Nakano H, Ishiuchi A, et,al. Protein pattern difference in the colon cancer cell lines examined by two-dimensional differential in-gel electrophoresis and mass spectrometry. Surg Today.2006,36(12):1085-1093.
    [20]Teck Keong Seow, Shao-En Ong, Rosa C. M. Y. Liang,et,al. Two-dimensional electrophoresis map of the human hepatocellular carcinoma cell line, HCC-M, and identification of the separated proteins by mass spectrometry.Electrophoresis,2000,21 (9):1787-1813.
    [21]Larkin SE, Zeidan B, Taylor MG, et,al Proteomics in prostate cancer biomarker discovery.Expert Rev Proteomics.2010,7(1):93-102.
    [22]Str Mberg S, Agnarsd Ttir MT, Magnusson K,et,al.. Selective expression of Syntaxin-7 protein in benign melanocytes and malignant melanoma. J Proteome Res.2009 Jan 28. Epub ahead of print
    [23]Wu L, Peng CW, Hou JX, et,al. Coronin-1C is a novel biomarker for hepatocellular carcinoma invasive progression identified by proteomics analysis and clinical validation. J Exp Clin Cancer Res.2010,29(1):17.
    [24]Ghosh R, Gu G, Tillman E, et,al.Increased expression and differential phosphorylation of stathmin may promote prostate cancer progression. Prostate.2007,67(10):1038-1052.
    [25]Chen SH, Wang YW, Hsu JL,et,al.Nucleophosmin in the pathogenesis of arsenic-related bladder carcinogenesis revealed by quantitative proteomics. Toxicol Appl Pharmacol. 2010,242(2):126-135.
    [26]Kuramitsu Y, Miyamoto H, Tanaka T,et,al. Proteomic differential display analysis identified upregulated astrocytic phosphoprotein PEA-15 in human malignant pleural mesothelioma cell lines. Proteomics.2009,9(22):5078-89.
    [1]Fabricant CG, Fabricant J. Atherosclerosis induced by infection with Marek's disease herpesvirus in chickens. Am Heart J 1999,138(5 Pt 2):S465-8
    [2]Islam AFMF, Wong CW, Walden-Brown SW, et,al. Immunosuppressive effects of Marek's disease virus (MDV) and herpesvirus of turkeys (HVT) in broiler chickens and the protective effect of HVT vaccination against MDV challenge. Avian Pathology.2002,31 (5):449-461.
    [3]Kurt J. Handberg, O L. Nielsen& Poul H. J(?)rgensen.The use of serotype 1-and serotype 3-specific polymerase chain reaction for the detection of Marek's disease virus in chickens. Avian Pathology.2001,30(3):243-249.
    [4]Schat KA. Isolation of Marek's disease virus:revisited. Avian Pathol.2005,34(2):91-95.
    [5]褚秀玲,苏建青,付本懂,王鲁,伊鹏霏,王春元,申海青,韦旭斌.马立克氏病毒感染鸡胚成纤维细胞模型的建立.中兽医学杂志,2009,4:6-9.
    [6]CHEN HongJun, SONG CuiPing, QIN AiJian(?)& ZHANG ChenFei.Expression and intercellular trafficking of the VP22 protein of CVI988/Rispens vaccine strain of Marek's disease virus.Science in China Series C:Life Sciences.2007,50(1):|75-79.
    [7]Buranathai C, Rodriguez J, Grose C.Transformation of primary chick embryo fibroblasts by Marek's disease virus. Virology.1997,239(1):20-35.
    [8]Cho KO, Endoh D, Kimura T,et al. Sequential skin lesions in chickens experimentally infected with mareks disease virus. Avian Pathology.1996,25(2):325-343.
    [9]张训海 陈溥言 蔡宝祥.MDV感染鸡羽毛根病毒抗原和DNA的动态检测.南京农业大学学报1997,20(4):75-78.
    [10]Malkinson M, Davidson I, strenger C, et al.Kinetics of the appearance of Marek's disease virus DNA and antigens in the feathers of chickens. Avian Pathology.1989,18(4):735-744.
    [11]Krol K.,Samorek-Salamonowicz E.,Kozdrun W.; Wozniakowski, G.Comparison of different methods for the detection of Marek's disease virus.Medycyna Weterynaryjna.2009,65(2).
    [12]Calnek BW,Harris RW,Buscaglia C,et al.Relationship between the immunosuppressive potential and the pathotype of Marek's disease virus isolates.1998,42(1):124-132.
    [1]Pass DA. Normal anatomy of the avian skin and feathers. Semin. Avian Exot. Pet Med.1995.4, 152-160.
    [2]Sung HW, Reddy SM, Fadly AM.High virus titer in feather pulp of chickens infected with subgroup J avian leukosis virus. Avian Dis.2002,46(2):281-286.
    [3]Cho KO, Park NY, Endoh D, et al.Cytology of feather pulp lesions from Marek's disease (MD) virus-infected chickens and its application for diagnosis and prediction of MD. J. Vet. Med. Sci. 1998,60(7) 843-847.
    [4]Yamamoto Y, Nakamura K, Okamatsu M, et al.Avian Influenza Virus (H5N1) Replication in Feathers of Domestic Waterfowl. Emerging Infectious Diseases.2008,14(1):149-151.
    [5]Garrido M F, Spencer J L, Chambers JR. Feather pulp as a source of antibody to avian viruses. Avian Pathology.1992,21(2):333-336
    [6]Abdul-Careem MF, Hunter BD, Sarson AJ, Parvizi P, Haghighi HR, Read L, Heidari M, Sharif SHost responses are induced in feathers of chickens infected with Marek's disease virus. Virology. 2008,370(2):323-332.
    [7]Abdul-Careem MF, Hunter DB, Shanmuganathan S, et al.Cellular and cytokine responses in feathers of chickens vaccinated against Marek's disease. Vet Immunol Immunopathol. 2008,126(3-4):362-366.
    [8]Candiano G, Bruschi M, Musante L, Santucci Let al.Blue silver:a very sensitive colloidal Coomassie G-250 staining for proteome analysis. Electrophoresis.2004,25(9):1327-1333.
    [9]Shaw MM,Riederer BM, Sample preparation for two-dimensional gel Electrophoresis.Proteomics 2003,3 (8):1408-1417.
    [10]卢占军,秦爱建,陈欣虹等.雏鸡法氏囊蛋白质组学双向电泳技术的建立及其初步分析.畜牧兽医学报.2009,40(6):944-951.
    [11]沈明泉,严品华,高必成.羽毛角蛋白电泳谱型的分析.上海农学院学报.1994,12(3):177-180.
    [12]钱小红,贺福初主编蛋白质组学:理论与方法.北京,科学出版社,2003:70.
    [1]Davidson I, Borenshtain R. Novel applications of feather tip extracts from MDV-infected chickens; diagnosis of commercial broilers, whole genome separation by PFGE and synchronic mucosal infection. FEMS Immunol. Med. Microbiol.2003,38(3):199-203.
    [2]Davidson I, Malkinson M, Strenger C,et al. An improved ELISA method, using a streptavidin-biotin complex, for detecting Marek's disease virus antigens in feather-tips of infected. chickens.J. Virol. Meth.1986,14(3-4):237-241.
    [3]Malkinson M, Davidson I, Strenger C, et al.Kinetics of the appearance of Marek's disease virus DNA and antigens in the feathers of chickens. Avian Pathol 1989,18(4):735-744.
    [4]Abdul-Careem MF, Hunter BD, Nagy E, et al.Development of a real-time PCR assay using SYBR green chemistry for monitoring Marek's disease virus genome load in feather tips.J. Virol. Methods.2006,133(1):34-40.
    [5]Baigent SJ, Smith LP, Currie RJ, et al. Replication kinetics of Marek's disease vaccine virus in feathers and lymphoid tissues using PCR and virus isolation. J. Gen. Virol.2005,86(Pt11):2989-2998.
    [6]Baigent SJ, Petherbridge LJ, Howes K, et al.Absolute quantitation of Marek's disease virus genome copy number in chicken feather and lymphocyte samples using real-time PCR. Journal of Virological Methods.2005,123 (1)53-64.
    [7]Handberg KJ, Nielsen OL, J(?)rgensen PH.The use of serotype 1-and serotype 3-specific polymerase chain reaction for the detection of Marek's disease virus in chickens. Avian Pathology.2001,30(3):243-249.
    [8]Abdul-Careem MF, Hunter BD, Parvizi P, et al.Cytokine gene expression patterns associated with immunization against Marek's disease in chickens. Vaccine 2007;25(3):424-32.
    [9]Lee SI, Ohashi K, Morimura T, et,al. Reisolation of Marek's disease virus from T cell subsets of vaccinated and nonvaccinated chickens. Arch. Virol.1999,144(1):45-54.
    [10]Kaiser P, Underwood G, Davison F. Differential cytokine responses following Marek's disease virus infection of chickens differing in resistance to Marek's disease. J. Virol.2003,77(1):762-768.
    [11]Yunis R, Jarosinskia KW, Schat KA. Association between rate of viral genome replication and virulence of Marek's disease herpesvirus strains. Virology.2004,328 (1) 142-150.
    [12]Abdul-Careem MF, Hunter BD, Lee LF, et al.Host responses in the bursa of Fabricius of chickens infected with virulent Marek's disease virus. Virology.2008,379(2):256-265.
    [13]Abdul-Careem MF, Zhou H, Sharif S. Transcriptional analysis of host responses to Marek's disease viral infection Viral Immunol.2006,19(4):747-58.
    [14]Garcia-Camacho L,Schat KA, Brooks R, et al. Early cell-mediated immune responses to Marek's disease virus in two chicken lines with defined major histocompatibility complex antigens. Veterinary immunology and immunopathology.2003.95(34):145-153.
    [15]Abdul-Careem MF, Hunter BD, Sarson AJ, et al.Host responses are induced in feathers of chickens infected with Marek's disease virus. Virology.2008,370(2):323-332.
    [16]Abdul-Careem MF, Hunter DB, Shanmuganathan S, et al.Cellular and cytokine responses in feathers of chickens vaccinated against Marek's disease. Vet Immunol Immunopathol. 2008,126(3-4):362-366.
    [17]Abdul-Careem MF,Read LR,Parvizi P,et al.Marek's disease virus-induced expression of cytokine genes in feathers of genetically defined chickens. Developmental and comparative immunology.2009.33(4):618:623.
    [18]Baigent SJ, Smith LP, Nair VK, et al.Vaccinal control of Marek's disease:current challenges, and future strategies to maximize protection. Vet Immunol Immunopathol.2006,112(1-2):78-86.
    [19]Islam A, Walkden-Brown SW. Quantitative profiling of the shedding rate of the three Marek's disease virus (MDV) serotypes reveals that challenge with virulent MDV markedly increases shedding of vaccinal viruses. J Gen Virol.2007;88(8):2121-2128.
    [20]Islam A, Cheetham BF, Mahony TJ, et al.Absolute quantitation of Marek's disease virus and Herpesvirus of turkeys in chicken lymphocyte, feather tip and dust samples using real-time PCR.Journal of Virological Methods.2006,132 (1/2):127-134.
    [21]Jarosinski KW, Margulis NG, Kamil JP, et al. Horizontal transmission of Marek's disease virus requires US2, the UL13 protein kinase, and gC. J Virol.2007,81(19):10575-10587.
    [22]Liu HC, Soderblom EJ, Goshe MB. A mass spectrometry-based proteomic approach to study Marek's Disease Virus gene expression. Journal of Virological Methods.2006,135 (1):66-75.
    [23]Ramaroson MF, Ruby J, Goshe MB, Liu HC. Changes in the Gallus gallus Proteome Induced by Marek's Disease Virus.J Proteome Res.2008,7(10):4346-4358.
    [24]Thanthrige-Don N, Abdul-Careem MF, Burgess SC, et al.Analyses of the spleen proteome of chickens infected with Marek's disease virus Virology.2009,390 (2):356-367.
    [25]Srinivas RV, Birkedal B, Owens RJ,et al.Antiviral effects of apolipoprotein A-I and its synthetic amphipathic peptide analogs. Virology.1990,176(1):48-57.
    [26]Srinivas RV, Venkatachalapathi YV, Rui Z, et al.Inhibition of virus-induced cell fusion by apolipoprotein A-I and its amphipathic peptide analogs. J Cell Biochem.1991,45(2):224-237.
    [27]Owens BJ, Anantharamaiah GM, Kahlon JB, et al. Apolipoprotein A-I and its amphipathic helix peptide analogues inhibit human immunodeficiency virus-induced syncytium formation. J Clin Invest.1990,86(4):1142-1150.
    [28]Shi ST, Polyak SJ, Tu H,et al. Hepatitis C Virus NS5A Colocalizes with the Core Protein on Lipid Droplets and Interacts with Apolipoproteins. Virology.2002,292(2):198-210.
    [29]Rajavashisth TB, Dawson PA, Williams DL, et al. Structure, evolution,and regulation of chicken apolipoprotein A-I. J. Biol. Chem.1987 262,7058-7065.
    [30]Karaca G, Anobile J, Downs D,et al.Herpesvirus of turkeys:microarray analysis of host gene responses to infection. Virology.2004,318(1):102-111.
    [31]Huang TC, Chang HY, Hsu CH, et al. Targeting therapy for breast carcinoma by ATP synthase inhibitor aurovertin B. Journal of Proteome Research..2008,7(4):1433-1444.
    [32]Arakaki N, Nagao T, Niki R, et al. Possible Role of Cell Surface H+-ATP Synthase in the Extracellular ATP Synthesis and Proliferation of Human Umbilical Vein Endothelial Cells. Molecular Cancer Research..2003,1(13):931-939.
    [33]Chi SL, Pizzo SV.Angiostatin Is Directly Cytotoxic to Tumor Cells at Low Extracellular pH:A Mechanism Dependent on Cell Surface-Associated ATP Synthase. Cancer Res.2006; 66(2): 875-882.
    [34]Komi Y, Ohno O, Suzuki Y, et al.Inhibition of Tumor Angiogenesis by-Targeting Endothelial Surface ATP Synthase with Sangivamycin. Japanese Journal of Clinical Oncology.2007, 37(11):867-873.
    [35]韩波,李凡,毛晓韵等.线粒体DNA转录表达与胃癌发生关系研究.中国肿瘤临 床.2006,33(21):1205-1209.
    [36]Yamamoto A, Horai S, Yuasa Y. Increased level of mitochondrial gene expression in polyps of familial polyposis coli patient s. Cancer.1999,159(3):1100-1106.
    [37]Parrella P, Xiao Y, Fliss M, et al. Detection of mitochondrial DNA mutations in primary breast cancer and fine-needle aspirates. Cancer Res.2001,61 (20):7623-7626.
    [38]Labiche RA, Demars M, Nicolson GL. Transcript s of t he mitochondrial gene ND5 are overexpressed in highly metastatic murine large cell lymp homa cells. In Vivo.1992,6(4):317-324.
    [39]Kim JE, Koo KH, Kim YH, et al.Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model. Experimental and Molecular Medicine.2008,40 (6):709-720.
    [40]Lichtenfels R, Kellner R, Atkins D, et al.Identification of metabolic enzymes in renal cell carcinoma utilizing proteomex analyses. Biochim Biophys Acta.2003,1646 (1-2):21-31.
    [41]Chen G, Gharib TG, Huang CC, et al.Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors. Clin Cancer Res. 2002,8(7):2298-2305.
    [42]Gatenby RA, Gillies IU. Why do cancers have high aerobic glycolysis? Nat Rev Cancer.2004, 4(11):891-899.
    [43]Mazurek.S, Boschek CB, Hugo F, et al. Pyruvate kinase type M2 and its role in tumor growth and spreading. Semin Cancer Biol.2005,15(4):300-308.
    [44]Ito Y, Miyoshi E, Uda E, et al.14-3-3 sigma possibly plays a constitutive role in papillary carcinoma, but not in follicular tumor of the thyroid. Cancer Lett.2003,28;200(2):161-166.
    [45]Mhawech P, Greloz V, AssalyM, et al.Immunohistochemical expression of 14-3-3 sigma protein in human urological and gynecological tumors using a multi-tumor microarray analysis. Pathology International.2005,55 (2):77-82.
    [46]Yi B, Tan SX, Tang CE, et al. Inactivation of 14-3-3 sigma by promoter methylation correlates with metastasis in nasopharyngeal carcinoma J Cell Biochem.2009,106(5):858-866.
    [47]Toyota M, Suzuki H, Yamashita T, et al.Cancer epigenomics:implications of DNA methylation in personalized cancer therapy. Cancer Sci.2009,100(5):787-791.
    [48]Pulukuri SM, Estes N, Rao JS.14-3-3 sigma promotes cell survival in human prostate cancer cells. Cellular and Molecular Biology 15:Signaling and Prostate Cancer. Proc Amer Assoc Cancer Res.2005,46.
    [49]Kanamori A, Ikuta K, Ueda S, et al. Methylation of Marek's Disease Virus DNA in Chicken T-lymphoblastoid Cell Lines. J Gen Virol.1987,68(Pt5):1485-1490.
    [50]Moubayed N, Weichenthal M, Harder J,et al. Psoriasin (S100A7) is signicantly up-regulated in human epithelial skin tumours. J Cancer Res Clin Oncol.2007,133(4):253-261.
    [51]Kanamori T, Takakura K, Mandai M, et al. Increased expression of calcium-binding protein S100 in human uterine smooth muscle tumours. Mol Hum Reprod.2004 10(10):735-742.
    [52]Rehman I, Azzouzi AR, Cross SS, et al. Dysregulated expression of S100A11 (Calgizzarin) in prostate cancer and precursor lesions. Human pathology.2004,35 (11):1385-1391.
    [53]Wang G, Wang X, Wang S, et al. Colorectal cancer progression correlates with upregulation of S100A11 expression in tumor tissues. Int J Colorectal Dis.2008,23 (7):675-682.
    [54]Ralhan R, Desouza LV, Matta A, et al. Discovery and verification of head-and-neck cancer biomarkers by differential protein. expression analysis using iTRAQ labeling, multidimensional liquid chromatography, and tandem mass spectrometry. Mol Cell Proteomics.2008 7(6):1162-1173.
    [55]Cross SS, Hamdy FC, Deloulme JC. et al. Expression of S100 proteins in normal human tissues and common cancers using tissue microarrays:S100A6, S100A8, S100A9 and S100A11 are all overexpressed in common cancers. Histopathology 2005,46(3):256-269.
    [56]Xu A, Jao DL, Chen KY. Identification of mRNA that binds to eukaryotic initiation factor 5A by affinity co2purification and dif ferential display. Biochem J,2004,384 (Pt 3):585-590.
    [57]Luchessi AD, Cambiaghi TD, Alves AS, et al. Insights on eukaryotic translation initiation factor 5A (e IF5A) in the brain and aging. Brain Res.2008,1228:6-13.
    [58]Chen G, Gharib TG,Thomas DG, et al. Proteomic analysis of eIF-5A in lung adenocarcinomas. Proteomics.2003,3(4):496-504.
    [59]Cracchiolo BM, Heller DS, Clement PM, et al. Eukaryotic initiation factor 5A-1 (eIF5A-1) as a diagnostic marker for aberrant proliferation in intraepithelial neoplasia of the vulva. Gynecologic Oncology.2004,94 (1):217-222.
    [60]Xie D, Ma N, PanZ,et al. Overexpression of EIF-5A2 is associated with metastasis of human colorectal carcinoma. Human Pathology.2008,39(1):80-86.
    [61]Tang DJ, Dong SS, Ma NF,et,al.Overexpression of eukaryotic initiation factor 5A2 enhances cell motility and promotes tumor metastasis in hepatocellular carcinoma. Hepatology.2010 51(4):1255-1263.
    [62]Goldberg A L.Protein degradation and protection against misfolded or damaged p roteins.Nature.2003,426 (6968):8952-8991.
    [1]Calnek BW. Pathogenesis of Marek's disease virus infection Curr Top Microbiol Immunol, 2001,255,:25-55.
    [2]Cho KO, Endoh D,Kimura T,et al. Significance of Marek's disease virus serotype 1-specific phosphorylated proteins in Marek's disease skin lesions. Avian Pathology.1997,26(4):707-720.
    [3]Cho KO,Mubarak M,Kimura T,et al. Sequential skin lesions in chickens experimentally infected with mareks disease virus. Avian Pathology.1996,25(2):325-343.
    [4]方梅,刘国财.鸡马立克氏病皮肤病变的病理观察.中国兽医科技2000,30(12):25-26.
    [5]Heidaril M, Fitzgerald SD, Zhang HM, et,al.Marek's Disease Virus-Induced Skin Leukosis in Scaleless Chickens:Tumor Development in the Absence of Feather Follicles. Avian Diseases. 2007,51(3):713-718.
    [6]卢占军.感染马立克氏病病毒SPF鸡法氏囊蛋白质组学研究(D)2009,扬州大学.
    [7]Uysal KT, Scheja L, Wiesbrock SM, et al. Endocrinology. Improved glucose and lipid metabolism in genetically obese mice lacking aP2.Endocrinology.2000,141(9):3388-3396.
    [8]Makowski L, Boord JB, Maeda K, et al. Lack of macrophage fatty-acid-binding protein aP2 protects mice deficient in apolipoproteinE against atherosclerosis. Nat Med.2001,7(6):699-705.
    [9]Kazemi MR, McDonald CM, Shigenaga JK, et al.Adipocyte Fatty Acid Binding Protein Expression and Lipid Accumulation Are Increased During Activation of Murine Macrophages by Toll-Like Receptor Agonists. Arteriosclerosis, Thrombosis, and Vascular Biology. 2005,25(6):1220-1224.
    [10]Fabricant C, abricant JF. Atherosclerosis induced by infection with Marek's disease herpesvirus in chickens. American Heart Journal,1995,138(5):465-468.
    [11]Patra(?)cu IV, Stefan S. Marek's disease. XVII. Studies on virus induced-atherosclerosis. Virology.1987,38(4):245-250.
    [12]Ayala I,Perez BG, Domenech G,et al. Use of the Chicken as an Experimental Animal Model in Atherosclerosis. Avian and Poultry Biology Reviews.2005,16(3):151-159.
    [13]Jungraithmayr TC, Reschke M, Grebe SO, et al. Assessment of cytomegalovirus infections using neopterin and a new immunoblot. Clin Chim Acta,2001,310:63-69.
    [14]Yegane S, Revanli M, Taneli F, The Role of BETA2 Microglobulin levels in monitoring chronic hepatitis B. Tohoku J Exp Med,2004,203(1):53-57.
    [15]Fuchs D, Norkrans G, Wejstal R, et al. Changes of serum neopterin, beta 2-microglobulin and interferon-gamma in patients with chronic hepatitis C treated with interferon-alpha 2b. Eur J Med, 19921:196-200.
    [16]Okumura A, Takemoto K, Ozaki T, Serum beta 2-microglobulin and neopterin levels in children with febrile illness:their relation to influenza and febrile seizures. Journal of Pediatric Neurology,2003,1(1):35-38.
    [17]Hansen TH, Bouvier M. MHC class I antigen presentation:learning from viral evasion strategies. Nat Rev Immunol.2009 Jul;9(7):503-513.
    [18]Zhou F.Molecular mechanisms of viral immune evasion proteins to inhibit MHC class I antigen processing and presentation. Int Rev Immunol.2009;28(5):376-393.
    [19]Senkevich TG, Moss B, Domain structure, intracellular trafficking, and beta2-microglobulin binding of a major histocompatibility complex class I homolog encoded by molluscum contagiosum virus. Virology,1998 250(2):397-407.
    [20]Rahman MM, Jeng D, Singh R, et al. Interaction of human TNF and β2-microglobulin with Tanapox virus-encoded TNF inhibitor, TPV-2L. Virology 2009,386:462-468.
    [21]Levy AM, Davidson I, Burgess SC et al. Major histocompatibility complex class I is downregulated in Marek's disease virus infected chicken embryo fibroblasts and corrected by chicken interferon. Comp Immunol Microbiol Infect Dis.2003,26(3):189-198.
    [22]Hunt HD, Lupiani B, Miller MM, et al. Marek's Disease Virus Down-Regulates Surface Expression of MHC (B Complex) Class I (BF) Glycoproteins during Active but not Latent Infection of Chicken Cells. Virology.2001,282(1):198-205.
    [23]Morgan RW, Sofer L, Anderson AS, et,al. Induction of host gene expression following infection of chicken embryo fibroblasts with oncogenic Marek's disease virus. J. Virol. 2001,75(1):533-539.
    [24]Burgess SC, Davison TF. Identification of the Neoplastically Transformed Cells in Marek's Disease Herpesvirus-Induced Lymphomas:Recognition by the Monoclonal Antibody AV37. J. Virol. 2002,76(14):7276-7292.
    [25]Abdul-Careem MF, Hunter BD, Sarson AJ, et al. Host responses are induced in feathers of chickens infected with Marek's disease virus. Virology.2008,370(2):323-332.
    [26]Maizels ET, Peters CA, Kline M, et al. Heat-shock protein-25/27 phosphorylation by the isoform of protein kinase C. Biochem. J.1998,332(Pt3):703-712.
    [27]Lee HJ, LeeYJ, Kwon HC,et al.Radioprotective Effect of Heat Shock Protein 25 on Submandibular Glands of Rats. Cell Injury, Repair, Aging and Apoptosis. The American Journal of Pathology.2006,169 (5):1601-1611.
    [28]Parhar K, Baer KA, Parker K, et al.Short-chain fatty acid mediated phosphorylation of heat shock protein 25:effects on camptothecin-induced apoptosis. Am J Physiol Gastrointest Liver Physiol.2006,291(2):G178-G188.
    [29]Kim JE, Koo KH, Kim YH et al. Identification of potential lung cancer biomarkers using an in vitro carcinogenesis model. Experimental and molecular medicine,2008,40(6):709-720.
    [30]Lichtenfels R, Kellner R, Atkins D, et al.Identification of metabolic enzymes in renal cell carcinoma utilizing PROTEOMEX analyses. Biochim Biophys Acta,2003,1646 (1-2):21-31.
    [31]Chen G, Gharib TG, Huang CC, et al.Proteomic analysis of lung adenocarcinoma: identification of a highly expressed set of proteins in tumors.Clin Cancer Res.2002,8(7):2298-305.
    [32]Daskalow K, Pfander D, Weichert W, et al. Distinct temporospatial expression patterns of glycolysis-related proteins in human hepatocellular carcinoma..Histochem Cell Biol.2009 132(1):21-31.
    [33]Royds JA, Variend S, Timperley WR, et,al. An investigation of beta enolase as a histological marker of rhabdomyosarcoma. J Clin Pathol.1984,37(8):905-910.
    [34]Royds JA, Variend S, Timperley WR, et,al.Comparison of beta enolase and myoglobin as histological markers of rhabdomyosarcoma. J Clin Pathol.1985,38(11):1258-1260.
    [35]Altenberg B, Greulich KO. Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics,2004,84(6):1014-1020.
    [36]Gatenby RA, Gillies RJ. Glycolysis in cancer:A potential target for therapy. The International Journal of Biochemistry& Cell Biology 2007,39 (7-8):1358-1366.
    [37]Schlattner U,Forstner M,Eder M, et al.Functional aspects of the X-ray structure of mitochondrial creatine kinase:A molecular physiology approach. Molecular& Cellular Biochemistry.1998,184(1-2):125-140.
    [38]Dai W, Vinnakota S, Qian X,et al.Molecular characterization of the human CRT-1 creatine transporter expressed in Xenopus oocytes. Archives of Biochemistry and Biophysics. 1999,361(1):75-84.
    [39]Lenz H, Schmidt M, Welge V, et al.The Creatine Kinase System in Human Skin:Protective Effects of Creatine Against Oxidative and UV Damage In Vitro and In Vivo. J Invest Dermatol 2005,124(2):443-452.
    [40]Takaoka Y, Tashiro F, Yi S, et al. Comparison of amyloid deposition in two lines of transgenic mouse that model familial amyloidotic polyneuropathy type Ⅰ. Transgenic Res.1997,6(4):261-269.
    [41]Liu L, Liu J, Dai S, et,al.Reduced transthyretin expression in sera of lung cancer. Cancer Science,2007,98 (10):1617-1624.
    [42]Liu L, Sun S, Liu J,et,al.A New Serum Biomarker for Lung cance-transthyretin. Chinese Journal of Lung Cancer,2009,12(4):300-305.
    [43]Fentz AK, Sporl M, Spangenberg J, et,al. Detection of colorectal adenoma and cancer based on transthyretin and C3a-desArg serum levels. proteomics clin 2007,1 (6):536-544.
    [44]顾建人.人原发性肝癌中的转甲状腺素蛋白(Transthyretin)基因,中国科学B辑:化学1991,21(4):403-403.
    [45]Thanthrige-Don N, Abdul-Careem M F, Shack LA,et,al.Analyses of the spleen proteome of chickens infected with Marek's disease virus.Virology.2009,390(2):356-367.
    [46]Pawlak G, Helfinan DM, Cytoskeletal changes in cell transformation and tumorigenesis, Curr. Opin. Genet.2001,11(1):41-47.
    [47]Iwazaki R, Watanabe S, Otaka K,et al. The role of the cytoskeleton in migration and proliferation of a cultured human gastric cancer cell line using a new metastasis model.Cancer Letters,1997,119 (2):191-199.
    [48]Korb T, Schluter K, Enns A, et al. Integrity of actin fibers and microtubules influences metastatic tumor cell adhesion.Experimental.Cell Research,2004,299 (1):236-247.
    [49]Vale R.D.,Milligan R.A. The way things move:Looking under the hood of molecular motor proteins. Science.2000,288(5463):88-95.
    [50]Komatsu S, Ikebe M. ZIP kinase is responsible for the phosphorylation of myosin II andnecessary for cell motility in mammalian fibroblasts.Journal of Cell Biology.2004,165(2):243-254.
    [51]Piec I, Listrat A, Alliot J, et,al. Differential proteome analysis of aging in rat skeletal muscle. The FASEB Journal.2005; 19:1143-1145.
    [52]Caforio AL,Tona F,Bottaro S,et,al. Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy Autoimmunity.2008.41(.1):35-45.
    [53]杨永刚,田田,郭丹等。细胞骨架蛋白肌球蛋白轻链与癌蛋白TRE17相互作用的鉴定南通大学学报医学版Journal of Nantong University Medical Sciences.2008,28 (2):82-84.
    [54]Cureton DK, Massol RH, Saffarian S, et al. Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog.2009,5(4):1-15.
    [55]Ohman T, Rintahaka J, Kalkkinen N, et al. Actin and RIG-I/MAVS signaling components translocate to mitochondria upon influenza A virus infection of human primary macrophages J Immunol.2009,182(9):5682-5692.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700