用户名: 密码: 验证码:
深海采矿扬矿管道工作特性的流固耦合分析与综合评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以我国深海采矿1000m海试系统为研究对象,采用理论分析、数值计算与试验研究相结合的方法,综合考虑管道系统承受的各种复杂载荷(如重力、浮力、海流、海浪、内部流作用等)以及集矿机、采矿船运动的影响,开展扬矿管道工作特性(包括运动、力学性能及输送等)的流固耦合分析与综合评价研究,探讨集矿机与采矿船行走工况、浮力块布置方式、流体输送参数、材料性能等优选方案,为深海采矿管道系统的设计与研发提供重要依据。
     本文取得的主要研究成果如下:
     (1)基于深海采矿扬矿硬管受力简化模型,采用Matlab语言自行编制了二维无网格局部Petrov-Galerkin法程序,计算并分析了硬管在海流阻力作用下的偏移特性。结果表明:硬管最大偏移量发生在靠近中间仓一端,最大拉应力发生在靠近采矿船一端;硬管最大偏移量随逆流拖航速度的增加而增加,随顺流拖航速度的增加而先减后增。
     (2)采用三维非线性有限元法,通过MSC.MARC/MENTAT软件建立了布放过程中扬矿软管初始空间构形的静态分析模型,计算并分析了软管初始空间构形特性及其多种因素(如浮力块布置方案、海水阻力、支座形式、软管弹性模量等)的影响规律。结果表明:浮力块布置方案直接影响着软管拱顶高度和软管能否全部漂浮于海水中。海水阻力和软管弹性模量对软管初始空间构形影响较小。为确保软管安全及输送效率,建议浮力布置范围限定在L/2-3L/4(均布)、L/3-2L/3(单个浮力块集中作用)或L/4-3L/4(两个浮力块集中作用);浮力块浮力的取值范围为0.9G≤F≤1.5G(G为软管净浮重);建议选用对称支座形式(两端固支或铰支)。
     (3)基于流固耦合理论,通过MSC.MARC/MENTAT软件建立了软管与内部流三维流固耦合有限元模型,计算并分析了复杂深海环境下扬矿软管运动与力学特性、输送及其多种因素(如内部流提升速度、屈服应力与粘性系数、软管弹性模量、集矿机行走工况等)的影响规律。为保证深海开采的连续稳定和开采效率,建议内部流提升速度控制在合适的范围内(如2.5-4m/s);采取适当延长集矿机内矿物破碎和脱泥时间、降低矿物粒径及内部流浓度、减少泥沙含量等措施;内部流浓度控制在合适范围内(如10%-25%);尽可能采用弹性模量适中的软管材料;当集矿机圆形行走和方形行走时,选取集矿机转弯或位移变号时的软管应力作为软管接头强度设计参数;集矿机行走速度应控制在0.2-0.4m/s。
     (4)针对传统主成分分析法存在的不能反映待评价方案与最优方案相似程度的问题,提出了一种基于指标优化原则进行数据矩阵标准化的改进主成分分析法,应用于深海采矿软管工作特性的综合评价,并与模糊层次法评价结果进行对比。结果表明:两种方法评价结果基本一致,即具有S形和马鞍形空间构形的软管工作特性评价值较高,可作为软管设计的优选方案。改进的主成分分析方法不依赖于主观因素,能够获得真实可靠的评价结果,特别适用于深海采矿系统多指标工作特性优劣的综合评价。
     (5)基于相似理论,自行设计了软管空间构形与输送的试验装置,开展了在不同浮力块布置方案下的软管空间构形、在不同的软管初始空间构形下的软管输送的试验研究,获得了软管空间构形的优选方案(如S形、马鞍形等),实测结果与有限元计算结果、综合评价结果吻合较好。
     (6)综合考虑内部内部流、外部海流与海浪以及集矿机、采矿船运动状态,通过MSC.MARC/MENTAT软件建立了深海采矿扬矿管道整体联动的三维流固耦合有限元模型,计算并分析了管道系统的运动、力学特性及其多种因素(如拖航速度、海浪周期、中间仓结核质量等)的影响规律。为提高采矿系统的安全可靠性和开采效率,建议拖航速度和结核质量控制在合适的范围内(分别为0.3-0.5m/s、2000-4000kg),且尽量避免在海浪振动周期太小时逆流拖航作业。
Working characteristics of pipelines in a 1000m deep-ocean mining system was studied theoretically, numerically and experimentally, including space configuration, mechanical properties and transportation performance. Optimal layout of buoyancy blocks imposed on the flexible hose and walking path of the mining machine was proposed based on comprehensive evaluation of working characteristics of the lifting pipeline, which can provide a scientific basis for the design of the deep-ocean mining system.
     Main research results are as follows:
     (1) Based on simplified mechanical model of the lifting pipe in deep-ocean mining system, a new program of meshless local Petrov-Galerkin method in Matlab language was designed to calculate offset characteristic of the lifting pipe subjected to current resistance. Numerical results show that the maximum offset of the lifting pipe occurs near the end of buffer and the maximum tensile stress of the lifting pipe occurs near the end of the mining ship. The maximum offset of the lifting pipe increases with the increase of the towing speed in countercurrent flow. It decreases first and then increases as the towing speed increase in concurrent flow.
     (2) Three-dimensional nonlinear finite element model of the initial space configurations of the flexible hose was established to analyze effects of the layout of buoyancy blocks, current resistance, bearing form and elastic modulus on the characteristics of initial space configuration of the flexible hose in launching process. Numerical results show that the layout of buoyancy blocks greatly influence the height of space configuration and complete floating of the flexible hose in deep ocean. In order to ensure safety and transportation efficiency of the flexible hose, the buoyancy block should be imposed in the range of L/2-3L/4 for uniform distribution, L/3-2L/3 for concentrated distribution of single buoyancy block and L/4-3L/4 for concentrated distribution of double buoyancy blocks. The total buoyancy force of the buoyancy block must be restricted within into the range of 0.9G≦F≦1.5G (where G is net buoyancy force). Fixed or hinged constraints should be added at the two ends of the flexible hose. Current resistance and bearing form have little effect on the characteristics of initial space configuration of the flexible hose.
     (3) Based on fluid-solid coupling theory, three-dimensional nonlinear finite element model of fluid-solid coupling was established to investigate space configuration, mechanical properties and transportation performance of the flexible hose as well as influencing factors, including lifting velocity, yielding stress and viscosity coefficient of the mineral fluid, elastic modulus of the flexible hose and walking path and velocity of the mining machine. In order to improve stability and efficiency of the mining operation, the lifting velocity of the mineral fluid must be limited to a suitable ranges (e.g.2.5-4 m/s). Effective measures should be taken such as extension of the time of mineral crushing and desliming and decrease of the particle size, mineral concentration and sediment content). Concentration of the mineral fluid must be limited within 10%-25%. Suitable materials of moderate elastic modulus should be used for the flexible hose. Maximum stress of the flexible hose occurs when the mining machine turns in circle walking-path or changes the sign of walking displacement in square walking-path, which is key parameter for strength design of joints. Walking velocity of the mining machine must be controlled within 0.2-0.4m/s.
     (4) In view of difficult reflection of the similarity between the evaluated scheme and the optimal solution in traditional principal component analysis, an improved method of principal component analysis based on index optimization principle of data matrix standardization is proposed for comprehensive evaluation of working characteristics of the flexible hose, which was compared with the method of fuzzy hierarchy analysis. Similar evaluation results are obtained by using the two methods, i.e., space configurations of S-shape and saddle shape have higher evaluation indices and can be used for optimal design of the flexible hose. The improved method of principal component analysis independent of subjective factors can give real and reliable evaluation results, which is especially suitable for comprehensive evaluation of multiple-index working characteristics of the deep-ocean mining system.
     (5) Based on similarity theory, a test device for space configuration and transportation performance of the flexible hose is designed to experimentally study effects of the distribution of buoyancy blocks and buoyancy force on the initial space configuration of the flexible hose and effects of different initial space configurations on the transportation performance of the flexible hose for the first time. Test results of optimal space configurations are in good agreement with the numerical results of comprehensive evaluation.
     (6) By comprehensive consideration of the interaction of inner mineral fluid, external current and wave and the motion of mining machine and mining ship, three-dimensional nonlinear finite element model of fluid-solid coupling was established to analyze dynamical responses of the deep-ocean mining system influenced by towing velocity of the mining ship and the mining machine, wave period and nodule mass stored in the buffer. Numerical results show that for safety and efficiency of the mining operation, the velocity of the mining machine and the nodule mass should be limited within appropriate ranges (about 0.3-0.5m/s and 2000-4000kg) and the countercurrent mining operation must be avoided in the case of smaller wave period.
引文
[1]简曲.大洋多金属结核资源开发的回顾与展望[J].中国矿业,1996,5(6):14-18.
    [2]谢水龙.深海水力提升式采矿系统的研究[J].中国矿业,1995,4(4):27-35.
    [3]Bath A R,Preussag A G.Deep Sea Mining Technology:Recent Developments and Future Projects[C].Offshore Technology Conference.Houston Texas US.OTC 5998.1989:333-340.
    [4]Everett J,Lecourt J,Darrell W.Williams.Deep Ocean Mining.New Application for Oil Field and Marine Equipment[J].OTC 1412,1971.
    [5]Chung J S.Deep-ocean Mining Issues and Ocean Mining working Group(OMG)[C].Proc.3rd Ocean Mining Symp.Goa,ISOP,1999:14-17.
    [6]王刚.深海采矿作业过程扬矿管线系统空间构形与动态特性研究[D].中南大学,机电工程学院,长沙,2008.
    [7]阳宁,夏建新.国际海底资源开发技术及其发展趋势[J].矿冶工程,2000,20(1):1-4.
    [8]李艳.基于三维离散元管线模型的深海采矿1000m海试系统整体联动动力学研究[D].中南大学,机电工程学院,长沙,2008.
    [9]中国大洋协会办公室,国家资源信息中心.关于先驱投资者申请矿区的登记[M].北京:海洋出版社,1998.
    [10]丁六怀,高宇清,简曲,王明和.中国大洋多金属结核集矿技术研究综述[J].矿业研究与开发,2003,23(4):5-7.
    [11]Masuda Y, Cruickshank M J, Mero J L. Continuous bucket line dredging at 1200ft[C].Offshore Technology Conference (Housten, Texas),1971:94-99.
    [12]邹伟生,黄家桢.大洋锰结核深海开采扬矿技术[J].矿冶工程,2006,26(3):1-5.
    [13]Graham, Trotman. Analysis of Exploration and Mining Technology for Manganese Nodules [M]. London, Published in co-operation with the United Nations,1984.
    [14]Chung J S. Deep-ocean Mining Technology:Learning Curve I[C]. Proceedings of 5th Ocean Mining Symposium,Tsukuba, Japan,2003:1-6.
    [15]Bath A R. Deep Sea mining technology:Developments and Future Projects[C].Proceedings of 21st Annual Offshore Technology Conference, OTC,Houstion,1998:333-340.
    [16]简曲.21世纪的大洋采矿[J].矿山机械,2000,4:8-11.
    [17]徐海良,何清华.深海采矿系统研究[J].中国矿业,2004,13(7):43-46.
    [18]陈新明.中国深海采矿技术的发展[J].矿业研究与开发,2006,(S1):40-48.
    [19]“十五”采矿海试系统总师组.大洋多金属结核中试采矿系统1000m海试验总体系统技术设计[R].北京:中国大洋协会研究报告,2004.
    [20]唐达生.扬矿硬管及管接头的研制[R].长沙:长沙矿冶研究院研究报告,2004.
    [21]徐亦元.中间舱的研制[R].马鞍山:马鞍山矿山研究院研究报告,2004.
    [22]金星.1000m海试软管研制及应用[R].长沙:长沙矿山研究院研究报告,2004.
    [23]益其乐,王燮仁.水面系统新船方案设计[R].无锡:中国船舶科学研究中心,2000.
    [24]Hapel K H. Festigkeitsberechnung am langen Drilling-Riser zur Erdolexploration[J].Stahlbau,1976,45(6):161-170.
    [25]Hapel K H, Kohl M. Methoden zur statischen Berechnung der Biegespannungen in langen Drilling-Risern[J].Meerestechnik.1979,10(4):125-136.
    [26]Kohne M.Analyse des dynamischen Verhaltens elastischer Forderrohre zur Mineralgewinnung aus grossen Meerestiefen[J].Inter Ocean 1976,11:181-195.
    [27]Felippa C A, Chung J S. Nonlinear Static Analysis Ocean Mining Pipe-Part I: Modeling and Formulation[J].ASME Journal of Energy Resources Technology.1981,103:11-15.
    [28]Chung J S,Felippa C A. Nonlinear Static Analysis Ocean Mining Pipe-Part II: Numerical Studies.. ASME Journal of Energy Resources Technology.1981,103:16-25.
    [29]Chung J S,Whitney A K,Loden W A.Nonlinear Transient Motion of Deep Ocean Mining Pipe[J].Journal of Energy Resources Technology,1981,103(3):2-10.
    [30]Chung J S,Whitney A K.Dynamic Vertical Stretching Oscillation of an 18000-ft Ocean Mining Pipe[C].Proc Offshore Technology Conference.Houston,Texas,Paper No.OTC 4092,1981:42-50.
    [31]Whitney A K,Chung J S,Yu B K.Vibration of long marine pipes due to vortex shedding[J].ASME.Journal of Energy Resources Technology,1981,103:231-237.
    [32]Chung J S,Whitney A K.Axial Stretching Oscillation of an 18000ft Vertical Pipe in the Ocean[J].ASME. Journal of Energy Resources Technology, 1983,105:195-200.
    [33]Chung J S, Cheng B R, Huttelmaier H P. Three-Dimensional Coupled Responses of Deep-Ocean Pipe:Part Ⅱ. Excitation at Pipe Top and External Torsion[J].Int J Offshore and Polar Eng, ISOPE,1994,4(4):331-339.
    [34]Cheng B R,Chung J S,Zheng Z C.Effects of flexible joints on the 3-D nonlinear coupled responses of a long vertical pipe[C].Proc Fifth Int Offshore Polar Eng Conf, the Hague,1995,236-243.
    [35]Chung J S,Cheng B R.Eigenvalues for a long vertical deep-ocean pipe with elastic joints[C].Proc Flow-Induced Vibrations Symp,ASME,Honolulu,1995,153-160.
    [36]Chung J S,Cheng B R.Effects of elastic joints on 3-D nonlinear responses of a deep-ocean pipe modeling and boundary conditions [J].Int J Offshore& Polar Eng,1996,6(3):203-211.
    [37]肖林京.深海采矿扬矿管运动学和动力学特性研究[D].北京:北京科技大学机电工程学院,2000.
    [38]肖林京,张文明.深海采矿扬矿管非线性动态特性研究[J].煤炭学报.2002,7(4):417-421.
    [39]肖林京,曾庆良.深海采矿场矿管非线性偏移特性研究[J].机械工程学报.2002,38(8):94-99.
    [40]冯雅丽,张文明,俞洁.深海采矿扬矿管横向运动特性[J].有色金属.2002,54(3):120-123
    [41]冯雅丽,徐妍,冯福璋,张文明.1km铰接式扬矿子系统横向运动仿真与实验研究[J].中国矿业大学学报.2007,36(2):246-250.
    [42]冯雅丽,李浩然.5000m扬矿管纵向振动研究[J].有色金属.1999,51(4):13-18.
    [43]冯雅丽,张云仙,李浩然.5000m扬矿管的纵向振动[J].金属矿山,1999.(4):13-15.
    [44]申焱华,张文明,石博强.深海采矿扬矿硬管弹性体建模分析[J].].北京科技大学学报.2002,24(4):391-394.
    [45]申焱华,张文明.基于Galerkin法的阶梯式扬矿管偏移分析[J].金属矿山.2002,4:30-32.
    [46]徐妍,张文明,冯雅丽.多段铰接式扬矿硬管系统建模与动力学分析[J].中南大学学报(自然科学版).2008,39(3):560-565.
    [47]Mustoe G G, Hettelmaier H P,Chung J S.Assessment of dynamic coupled bending-axial effects for two-dimensional deep-ocean pipes by the discrete element method[J].International Joumal of Offshore and Polar Engineering,1992,2(4):289-296.
    [48]Mustoe G G W,Hettelmaier H P,Chung J S.Dynamic coupled bending-axial analysis of two-dimensional deep-ocean pipes by the discrete element method[C].Proc Second Int Offshore Polar Eng Conf,1992:504-511.
    [49]Huttelmaier H E, Chung J S,Mustoe G G,Zheng Zhao-Chang,Cheng Bao-rong.Eigenvalues of a long vertical pipe by DEM,FEM and exact solution[C].Proceedings of the Third International Offshore and Polar Engineering.1993:311-314.
    [50]郭术义,陈举华.流固耦合应用研究进展[J].济南大学学报(自然科学版).2004,18(2):123-126.
    [51]Housner G W. Bending Vibrations of a Pipe Line Containing Flowing Fluid[J].ASME Journal of Applied Mechanics,1952,19:205-208
    [52]Handelman G H. A Note on the Transverse Vibration of a Tube Containing Flowing Fluid[J].Quarterly of Applied Mathematics,1955,13:326-329
    [53]Herrmann G. Bungay R W. On the Stability of Elastic Systems Subjected to Nonconservative Forces[J].Appl. Mech.,1964,31:435-440
    [54]王世忠,王茹.三维管道固液耦合振动分析[J].哈尔滨工业大学学报.1992,22(4):43-49.
    [55]王世忠,刘玉兰,黄文虎.输送流体管道固-液耦合动力学研究[J].应用数学与力学.1998,29(11):987-993.
    [56]王世忠,于石声,赵阳.流体输送管道的固-液耦合特性[J].哈尔滨工业大学学报.2002,34(2):241-244.
    [57]蒋录珍.动荷载作用下地下管道破坏的数值模拟[D].河北:河北理工大学,2006.
    [58]张骞,张世富,张起欣,朱金鹏.海上漂浮式输油管线内部流体流速引起管线变形的研究[J].管道技术与设备,2007(4):1-2.
    [59]杨章锋.内流对海底悬跨管线管壁应力影响的数值研究[D].大连理工大学,2008.
    [60]张建海,陈大鹏.考虑固体域几何非线性的固液耦合系统瞬态有限元分析[J].计算结构力学及其应用.1995,12(4):453-460.
    [61]Zienkiewicz O C. Bettess P. Fluid-structure dynamics interaction and wave forces,An introduction to numerical treatment[J].Int. J.Numer.Meth.1978,13: 1-16.
    [62]Liu W K. Gvildys J. Fluid-structure interaction of tanks with an eccentric core barrel[J].Comput. Meth.Appl. Mech.Engrg.1986,58:51-77.
    [63]王永辉.流体与结构相耦合系统的有限元法研究[D].清华大学工程力学系,1990.
    [64]Shantaram D,Owen D R J, Zienkiewicz O C. Dynamic transient behavior of two and three dimensional structures in cluding plasticity,large deformation effects and fluid interaction. Earthqu. Eng. Struct. Dyn.1976,4:561-578.
    [65]Bathe K J. Hahn W F. On transient analysis of fluid-structure systems.Comput & Struct.1979,10:383-391.
    [66]Olson L G. Bathe K J.A study of displacement based fluid FE for calculating frequencies of fluid and fluid-structure systems[J].Nucl. Engrg Des. 1983,76:137-151.
    [67]Bathe K J. Hahn W. On transient analysis of fluid-structure systems[J]. Comput.& Struct.,1979,10:383-391.
    [68]Barton D C. Parker J V. Finite element analysis of the seismic response of anchored and unanchored liquid storage tanks [J].Earthq. Engrg. Str. Dyn.1987, 15:299-322
    [69]Hamdi M A. Ouuset Y. A displacement method for the analysis vibrations of vibrations of coupled fluid-structure systems [J].Int. J. Num. Meth. Engrg.1978, 13:139-150.
    [70]Brown P A, Soltanahmadi A, Chandwani R. Application of the Finite Difference Technique to the Analysis of Flexible Riser Systems[C]. IVIL-COMP 89 Civil and Structural Engineering Conference. City University, London.1989.
    [71]Ablow C M, Schechter C.Numerical simulation of undersea cable dynamics[J]. Ocean Engineering,1983,10:443-457.
    [72]Burgess J J. Modeling of Undersea Cable Installation with a Finite Difference Method[C]. Proceeding of First International Offshore and Polar Engineering Conference, Edinburg, UK,1991,11:222-227.
    [73]Chatjigeorgiou I K, Mavrakos S A. Assessment of Bottom-cable Interaction Effects on Mooring Line Dynamics[C].17th International Conference on Offshore Mechanics and Arctic Engineering, Lisbon, OMAE98-0355,1998.
    [74]Owen D G, Qin K. Model Tests and Analysis of Flexible Riser Systems[C].Proceedings of the 5th International Conference on Offshore Mechanics and Arctic Engineering, Tokyo 1986.
    [75]Vogel H, Natvig B J. Dynamics of flexible hose riser systems[J]. Journal of Offshore Mechanics and Arctic Engineering,1987.109(3):244-248.
    [76]McNamara J F, Hibbit H D. Numerical Analysis of Flexible Pipes and Risers in Offshore Applications[C]. Proceedings of the First Offshore Mechanics and Arctic Engineering, Speciality Symposium on Offshore and Arctic Frontiers, New Orleans 1986.
    [77]Webster R L.Non-linear Static and Dynamic Response of Underwater Cable Structures Using Finite Element Method[C].5th Offshore Technology Conference, OTC-2322,1975.
    [78]Nakajima T, Motora S, Fujino M. On the dynamic analysis of multi-component mooring lines[C].14th Offshore Technology Conference, OTC-4309,1982, 105-121.
    [79]Van Den Boom H J J, Dekker J N, Elsacker A W V. Dynamic Aspects of Offshore Riser and Mooring Concepts[C].19th Offshore Technology Conference, OTC-5531,1987,3:405-416.
    [80]Ghadimi R. a simple and efficient algorithm for the static and dynamic analysis of flexible marine risers[J]. Computers & Structures,1988,29(4):541-555.
    [81]Chen J J,Wang D J. Non-linear dynamic analysis of flexible marine risers[J]. China Ocean Engineering,1991,5 (4):.373-384.
    [82]Giese K. Ein Beitrag zur Untersuchung des nictlinearen statischen und dynamischen verhaltens flexibler leitungen im Meer[D].Dissertation RWTH Aachen, Aachen,1989.
    [83]Huang T, Chucheepsakul S. Large displacement analysis of a marine riser[J]. OMAE, Houston, TX,1985.
    [84]Huang T, Rivero C E. On the functional in a marine riser analysis[J].OMAE, Tokyo, Japan,1986.
    [85]Bernitsas M M, Kokarakis J E, Imron A. Large deformation three-dimensional static analysis of deep water marine risers[J].Appl. Ocean Res.1985,7 (4):178-187.
    [86]Nordgren R P. On computation of the motion of elastic rods[J]. J. Appl. Mech. Trans. ASME,1974,777-780
    [87]Nordgren R P. Dynamic analysis of marine risers with vortex excitation[J]. J. Energy Resour. Technol. Trans. ASME,1982,104:14-17.
    [88]Owen D G, Qin K. Model tests and analysis of flexible riser systems[C].OMAE, Tokyo, Japan,1986.
    [89]Owen D G, Qin J J. Nonlinear dynamics of flexible risers by the finite element method[C]. OMAE, Houston, TX,1987.
    [90]郭小刚,金星,张俊彦.支座位移非线性迭代法确定软管平衡形态[J].力学季刊,2000,21(3):357-364.
    [91]郭小刚,张立人,金星,肖曙曦.深海采矿流-固耦合软管系统的非线性动力学模型[J].工程力学.2000,17(3):93-104.
    [92]郭小刚.深海采矿软管空间运动形态动力分析[D].暨南大学,2008.
    [93]简曲,何永森,王明和,李宝元,纪峥.大洋采矿输送软管动力特性的数值研究[J].海洋工程.2001,19(1):59-64.
    [94]刘华新,孔凡凯.U.L.法在海底集矿机输运软管大变形分析中的应用[J].工程力学,2001,(增刊):681-686.
    [95]崔凯.深海采矿系统中输运软管的受力分析及形态仿真[D].大连:大连理工大学工程力学系,1999.
    [96]孔凡凯.海底集矿机输运软管的大变形分析[D].大连理工大学.2000.
    [97]徐海良.单泵与储料罐组合的深海采矿软管输送系统研究[D].长沙:中南大学.2004.
    [98]徐海良,何清华.深海采矿输送软管几何非线性静力分析[J].机械设计与研究2005,21(3)71-74.
    [99]徐海良,龙国键,梁武.深海采矿矿石输送软管的力学实验分析[J]-矿业研究与开发2006,26(1):47-49.
    [100]王刚,刘少军,李力.深海采矿扬矿系统水下构形与动力学特性数值仿真[J].计算机仿真.2005,22(10):295-298.
    [101]王刚,刘少军,李力.深海采矿长管线系统布放过程的数值仿真[J].中南大学学报(自然科学版).2004,35(6):978-982.
    [102]Grebe H. Allgemeines mathematisches Modell fur strangverbindungen zwischen mobilen Tiefseegeraten und ihren Mutterstationen[D].Universitat Aachen,1997.
    [103]Hong S. Choi J S. Kim H W. Effects of Internal Flow on Dynamics of Underwater Flexible Pipes[C].Proc 5th ISOPE Ocean Mining Symposium, Tsukuba, Japan,2003,91-98.
    [104]Hong S. Kim H.W. Coupled Dynamic Analysis of Underwater Tracked Vehicle and Long Flexible Pipe[C].Proc 6th ISOPE Ocean Mining Symposium, Changsha,China,2005,132-140.
    [105]Mathisen K M and Bergan P G. Nonlinear static analysis of flexible risers[C].OMAE, Tokyo, Japan,1986.
    [106]O'Brien P J and McNamara J F. Analysis of flexible riser systems subject to three dimensional sea state loading[C]. BOSS 88, Trondheim, Norway,1988.
    [107]钱宁.万兆惠.泥沙运动力学[M].科学出版社,1983.
    [108]NEWITT D M,et al. Hydraulic conveying of solids in horizontal pipes[J].Trans Instn. Chen Engrs.,1995,33:93-113.
    [109]白晓宁,胡寿根,张道方等。固体物料管道水力输送的研究进展与应用[J].水动力学研究与进展,2001,16(3):303-311.
    [110]N. Huber, M. Sommerfeld. Modelling and numerical calculation of dilute-phase pneumatic conveying in pipe systems[J].Powder Technology,1998,99(1):Pages 90-101
    [111]Th Frank, K P Schade, D Petrak. Numerical simulation and experimental investigation of a gas-solid two-phase flow in a horizontal channel[J].International Journal of Multiphase Flow,1993,19(1):187-198
    [112]M. Eesa, M. Barigou.CFD investigation of the pipe transport of coarse solids in laminar power law fluids[J].Chemical Engineering Science.2009,64:322-333
    [113]Hu, H.H., Patankar, N.A., Zhu, M.Y., Direct numerical simulations of fluid-solid systems using the arbitrary Lagrangian-Eulerian technique [J]. Journal of Computational Physics,2001,169:427-462.
    [114]申焱华,毛纪陵,凌胜.垂直管道固液两相流的最小提升水流速度[J].北京科技大学学报.1999,21(6):519-522
    [115]申焱华,毛纪陵,凌胜.海洋采矿倾斜扬矿管提升工艺参数模拟[J].有色金属(矿山部分),2000,1:15-17
    [116]赵国景,夏建新,黄家桢.锰结核动态管道水力提升.矿冶工程,2000,20:18-20.
    [117]夏建新,倪晋仁,黄家桢.锰结核在垂直管路输送过程中的压力损失[J].泥沙研究,2002(2):23-28.
    [118]韩凝,夏建新.深海采矿水力提升管路系统紧急泄料过程参数分析[J].金属矿山,2008,10:35-38
    [119]李蘅.深海采矿水力提升系统粗颗粒运动规律模拟研究[D].清华大学水利水电工程系,2003.
    [120]田龙.粗颗粒垂直管道水力提升压力损失规律实验研究[D].北京:清华大学水利水电工程系,2006.
    [121]姜龙.粗颗粒垂直管水力提升速度与浓度的实验研究[D].清华大学水利水电工程系,2005.
    [122]李鹏程.粗颗粒垂直管水力提升规律研究[D].清华大学水利水电工程系,2007.
    [123]朱泗芳,徐海良.深海采矿输送系统参数分析[J].机械设计.2005,22(5):28-31.
    [124]Charles, C. Views on Future Nodule Technologies Based on
    IFREMER-GEMONOD Studies[J]. Materials and Society.1990,14:299-326.
    [125]Soreide, F. Deep Ocean Mining Reconsidered a Study of the Manganese Nodule Deposits in Cook Island[C]. Proc 4th ISOPE Ocean Mining Symp, Szczecin.2001:88-93.
    [126]Yamazaki, T. Park, S-H.Economic Validation Analyses of Japan's Nodule, Crust, and Kuroko-type SMS Mining in 2004[C]. Proc 6th ISOPE Ocean Mining Symp, Changsha.2005:65-70.
    [127]Ozturgut, E. Deep Ocean Mining of Manganese Nodules in the North Pacific: Pre-mining Environmental Conditions and Anticipated Mining Effects[C], NOAA Technical Memo ERL MESA-33,1978.
    [128]王春生,周怀阳.深海采矿对海洋生态系统影响的评价:Ⅱ底层生态系统[J].海洋环境科学.2001,20(2):32-36.
    [129]谢龙水.深海多金属结核采集方法的技术评价[J].湖南有色金属.1994,10(6):326-333.
    [130]谢龙水.深海多金属结核采集方法的经济评价[J].湖南有色金属.1995,11(3):5-9.
    [131]Saaty T L. The Analytic Hierarchy Process[M].New York:McGraw-Hill,1980.
    [132]Saaty T L, Ozdemir M. Negative priorities in the analytic hierarchy process[J].Mathematical and Computer Modelling.2003,37(9-10):1063-1075
    [133]Vargas L. An overview of analytic hierarchy process:Its applications[J].European Journal of Operational Research.1990,48 (1):2-8.
    [134]R. Ramanathan, L.S. Ganesh, Using AHP for resource allocation problems[J]. European Journal of Operational Research.1995,80 (2):410-417.
    [135]A.M. Reza, A.W. Lalib, A design strategy for reconfig-urable manufacturing systems (RMSs) using analytic hierarchical process (AHP):A case study [J].International Journal of Production Research.2003,41 (10):2273-2299.
    [136]M. Modarres, et al.. Application of network theory and AHP in urban transportation to minimize earthquake [J].Journal of Operational Research Society.2002,53 (12):1308-1316.
    [137]T.J Crowe, et al..Multi-attribute analysis of ISO 9000 registration using AHP[J]. International Journal of Quality & Reliability Management.1998,15 (2):205-222.
    [138]Buckley J J. Fuzzy hierarchy analysis[J].Fuzzy Sets and Systems.1985,17:233-247.
    [139]Van Laarhoven P J M, Pedrycz W. A fuzzy extension of Saaty's priority theory [J].Fuzzy Sets andSystems.1983,(11):229-241.
    [140]Boender C G E,J.G.de Graan,F.A.Lootsma. Multi-criteria decision analysis with fuzzy pair-wise comparisons[J].Fuzzy Sets and Systems.1989,(29):133-143.
    [141]Gogus O, Boucher T O.A consistency test for rational weights in multi-criterion decision analysiswith fuzzy pairwise comparisons[J]. Fuzzy Sets and Systems.1997,(86):129-138.
    [142]Csutora R, Buckley J J.Fuzzy hierarchical analysis:the Lambda-Max method[J].Fuzzy Sets and Systems.2001,120:181-195.
    [143]徐泽水.一种改进的模糊一致性判断矩阵构造方法[J].应用数学与计算数学学报.1997,11(2):62-67.
    [144]徐泽水.模糊互补判断矩阵排序的最小方差法[J].系统工程理论与实践.2001,21(10):93-96.
    [145]徐泽水.互补判断矩阵的两种排序方法-权的最小平方法及特征向量法[J].系统工程理论与实践.2002,(7):71-75.
    [146]张吉军.模糊层次分析法(FAHP) [J].模糊系统与数学.2000,14(2):80-88.
    [147]吕跃进.基于模糊一致矩阵的模糊层次分析法的排序[J].模糊系统与数学.2002,16(2):79-85.
    [148]Jolliffe IT. Principal Component Analysis[M]. Springer Verlag.1986.
    [149]张鹏.基于主成分分析的综合评价研究[D].南京理工大学,2004.
    [150]Svante Wold, Kim Esbensen, Paul Geladi.Principal component analysis[J].Chemometrics and Intelligent Laboratory Systems.1987,2(1-3):37-52
    [151]Glen W G, Dunn Ⅲ W J, Scott D R. Principal components analysis and partial least squares regression[J].Tetrahedron Computer Methodology.1989,2(6): 349-376
    [152]Andrzej Mackiewicz, Waldemar Ratajczak. Principal components analysis (PCA)[J].Computers & Geosciences.1993,19(3):303-342
    [153]Yabuuchi Y, Watada J, Nakamori Y. Fuzzy principal component analysis for fuzzy data[C]. Proceedings of the Sixth IEEE International Conference on Fuzzy Systems, Barcelona.1997,2:1127-1132.
    [154]Jianguo Sun. A note on principal component analysis for multi-dimensional data[J].Statistics & probability Letter,2000,46:69-73
    [155]Irie B,Miyake S.Capabilities Of three-layered perceptron[C]. Proceedings of the IEEE Inter Coof on NeuralNetworks.1988,1:641-648.
    [156]John I. Marden Some robust estimates of principal components[J]. Statistics&probability Letter.1999,(43):349-359.
    [157]陈述云,张崇莆.对多指标综合评价的主成分分析方法的改进[J].统计研究,1995,(1):35-39.
    [158]阎慈琳.关于用主成分分析做综合评价的若干问题[[J].数理统计与管理,1998,3:22-25.
    [159]叶双峰.关于主成分分析做综合评价的改进[J].数理统计与管理.2001,2:52-61
    [160]李艳双,曾珍香,张闽,于树江.主成分分析法在多指标综合评价方法中的应用[J].河北工业大学学报.1999,28(1):94-97.
    [161]李靖华,郭耀煌.主成分分析用于多指标评价的方法研究-主成分评价[J].管理工程学报.2002,16(1):39-43.
    [162]张浩,冯林.主成分分析法在高校科技创新能力评价中的应用[J].武汉理工大学学报(信息与管理工程版).2004,24(6):157-161.
    [163]Atluri S N.Zhu T. A new meshless local Petrov-Galerkin(MLPG) approach in computational mechanics [J].Comput. Mech.1998,22:117-127.
    [164]刘桂荣,顾元通.无网格法理论及程序设计[M].济南,山东大学出版社,2007.
    [165]张雄,刘岩.无网格法[M].北京清华大学出版社.2004.
    [166]Atluri S N. Zhu T. A new meshless local Petrov-Galerkin(MLPG) approach in computational mechanics[J]. Comput. Mech.1998,22:117-127.
    [167]张雄,胡炜,潘小飞等.加权最小二乘无网格法[J].力学学报.2003,35(4):425-431.
    [168]Lucy L B. A numerical approach to the testing of the fission hypothesis[J].The Astron J.1977,8(12):1013-1024.
    [169]Gingold R A. Monaghan J J. Smoothed particle hydrodynamics:theory and applications to non-spherical stars[J].Mon.Not.Roy. Astrou. Soc.1977,18:375-389.
    [170]张锁春.光滑质点流体动力学(SPH)方法(综述)[J].计算物理.1996,13(4):385-396.
    [171]Johnson G R.Beissel S R. Normalized smoothing functions for SPH impact computations[J]. Int. J. Num. Mech. Engng.1996,39:2725-2741.
    [172]Chen J K. Beraun J E. Jih C J. An improvement for tensile instability in smoothed particle hydrodynamics[J]. Comput.Mech.1999,23:279-287.
    [173]Swegle J W. Attaway S W. On the feasibility of using smoothed particle hydrodynamics for underwater explosion calculations[J]. J. Comput.
    Phys.1982,46:429-453.
    [174]Johnson G R. Beissel S R. Normalized smoothing functions for SPH impact computations[J].Int. J. Num. Mech.Engng.1996,39:2725-2741.
    [175]Liu W K.Jun S.Zhang Y F.Reproducing kernel particle methods[J].Int.J.Numer. Meth.Fluids.1995,20:1081-1106
    [176]Liu W K.Jun S.Li S F. Reproducing kernel particle methods for structural dynamics[J].Int.J.Numer.Methods. Engrg.1995,38:1655-1679
    [177]Chen J S. Pan C. Wu C T. Reproducing kernel particle methods for large deformation analysis of nonlinear structure.Computer Methods in Applied Mechanics and Engineering.1996,139:195-227.
    [178]Liu W K.Jun S.Multi-resolution reproducing kernel particle method for computational fluid dynamics[J].Int.J.Numer.Meth.Fluids.1997,24:1391-1415.
    [179]Shodja H M. Mura T. Liu W K. Multiresolution analysis of a micromechanical model computational methods in micromechanics[J].in:S.Ghosh, M. Ostoja-starzewski(Eds.), AMD 212/MD 62 ASME.1995,:33-54.
    [180]Liu W K. Hao S. Multiple scale meshfree methods for damage fracture and localization[J].Comput.Mater.Sci.,1999,16:197-205.
    [181]Belytschko T. Lu Y Y. Gu L. Element-free Galerkin methods[J].Int.J.Numer.Mech.Engng.1994,37:229-256.
    [182]刘更.刘天祥.谢琴.无网格法及其应用[M].西安,西北工业大学出版社,2005.
    [183]Belytschko T. Tabbara M.Dynamic fracture using element-free Galerkin methods[J].Int.J.Num.Mech.Engng.1996,39-923-938.
    [184]Belytschko T. Organ D.Gerlach C. Element-free Galerkin methods for dynamic fracture in concrete[J].Comput. Methods Apply. Mech. Engng.2000,187:385-399.
    [185]娄路亮.曾攀.方刚.无网格方法及其在体积成形中的应用[J].2001,8(3):1-5.
    [186]介玉新.刘岩.基于蒙特卡罗积分的无网格伽辽金法及其在渗流分析中的应用[J].岩土工程学报.2007,29(12):1794-1799
    [187]李裕春.时党勇.赵远.ANSYS 11.0/LS-DYNA基础理论与工程实践[M].北京:中国水利水电出版社.2008.
    [188]Atluri S N. Zhu T.The meshless local Petrov-Galerkin(MLPG) approach for solving problems in elasto-statics[J]. Comput. Mech,25;169-179.
    [189]龙述尧.弹性力学问题的局部Petrov-Galerkin方法[J].力学学报.2001,33(4):508-518.
    [190]龙述尧.用无网格局部Petrov-Galerkin法分析弹性地基上的梁[J].湖南大学 学报(自然科学版),2001,28(5):11-15.
    [191]龙述尧.用无网格局部Petrov-Galerkin法分析非线性地基梁[J].力学季刊.2002,23(4):547-551
    [192]Xiong Yuanbo,Long Shuyao,Liu Kaiyuan.A Meshless Local Petrov-Galerkin method for the Elasto-Plasticity problem[C].International Conference On Computational Methods(ICCM2004),2004,12,Singapore.
    [193]Xiong Yuanbo,Long Shuyao,Hu Dean.A Meshless Local Petrov-Galerkin Method for Geometrically Nonlinear Problem.International Conference On Computational Methods(ICCM2004),2004,12,Singapore.
    [194]张希,姚振汉.MLPG法在塑性大变形和应变局部化问题中的应用[J].清华大学学报(自然科学版).2007,47(5):718-721
    [195]张希.无网格局部彼得洛夫伽辽金法在大变形问题中的应用[D].北京:清华大学.航天航空学院.2006.
    [196]陈建桥,丁亮.功能梯度材料瞬态热传导问题的MLPG方法[J].华中科技大学学报(自然科学版).2007,35(4):119-121.
    [197]Barry W. A Wachspress Meshless Local Petrov-Galerkin method[J]. Engineering Analysis with Boundary Elements.2004,28:509-523.
    [198]凌道盛.非线性有限元及程序[M].浙江大学出版社,2005.
    [199]殷有泉.非线性有限元基础[M].北京大学出版社,2007.
    [200]邓合霞.海洋立管在非线性波浪载荷下的极值响应研究[D].哈尔滨:哈尔滨工程大学,2006.
    [201]王秋萍,张道宏,李萍.主成分分析法与层次分析法排序公式的研究[J].西安理工大学学报.2005,21(4):437-440.
    [202]龚声武,蔡明悦,李夕兵.AHP-FCE法在采矿方法优选中的应用[J].采矿与安全工程学报.2009,26(1):41-49.
    [203]沈观林.复合材料力学[M].北京:清华大学出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700