用户名: 密码: 验证码:
保加利亚乳酸杆菌工业生产菌株2038的基因组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
保加利亚乳酸杆菌是用于奶酪和酸奶生产的重要乳酸细菌,但除两个模式菌株外,还没有报道工业菌株完成测序。本文论述了乳品工业生产用菌株—保加利亚乳酸杆菌2038株的全基因组测序。
     基因组序列分析显示了保加利亚乳酸杆菌适合工业应用的一些生理特征以及对牛奶环境的适应性进化,如丰富的蛋白水解系统、高效利用乳糖产生乳酸、产生极低的风味物质、耐酸而不耐氧、与嗜热链球菌共同生长具有相互促进生长作用以及退化的氨基酸合成能力等。
     同时与模式菌株进行的比较基因组学分析,发现了保加利亚乳酸杆菌2038株所特有的294个基因,通过功能分析发现这些特异基因在生理功能上赋予了2038株独特的适用于酸奶生产的优点,如合成赖氨酸、产独特的胞外多糖、应急性产生甲酸、把天冬氨酸转化为丙酮酸、特异的限制修饰系统、更强大的错配修复系统以及更强的蛋白分解能力等。
     通过基因进化和系统发育关系分析,发现保加利亚乳酸杆菌2038株在进化关系上比两株模式菌株更接近它们的共同祖先。人工选择带来的负选择压力和自身的错配修复系统,可能阻止了2038株基因组的退化,从而确保其自身的优良性状不发生变异,保持适于酸奶生产。
Lactobacillus delbrueckii subsp. bulgaricus is an important species of Lactic Acid Bacteria (LAB) used for cheese and yogurt fermentation. There was no genomic sequence for any industrial strains of Lb. bulgaricus available besides that of two academic strains. The genome of Lb. bulgaricus 2038 that has been employed for manufacturing yogurt since 1989 by Meiji Dairies Corporation, was completely sequenced and annotated.
     Lb. bulgaricus 2038 displays properties common for Lb. bulgaricus strains but favorable or essential for industrial applications, including abundant proteolytic system, high efficient lactate production, low flavor compounds production, acid stress tolerance, protocooperation with Streptococcus thermophilus, and degenerated amino acid biosynthetic capacity. Comparative genomic analysis against the two academic strains also identified 294 genes as Lb. bulgaricus 2038 specific, endowing this strain with specific features for yogurt production, such as extra-capabilities in lysine biosynthesis, EPS production, salvage formate production, aspartate-related intermediate metabolism, two complete typeⅡRM systems and more power proteolytic capacity over the academic strains.
     Analysis of gene evolution as well as phylogenetic analysis illustrated that gene loss was a common phenomenon in evolution of Lb. bulgaricus strains. Genetically, Lb. bulgaricus 2038 seems closer to the common ancestor than the other two academic strains. A strict maintenance process of Lb. bulgaricus 2038 for industrial purposes apparently slowed down the genome decay and sustained a gene network that ensures the optimal suitability for industrial production of yogurt.
引文
1. Bolotin, A., et al., The complete genome sequence of the lactic acid bacterium Lactococcus lactis ssp. lactis IL1403. Genome Res,2001.11(5):p.731-53.
    2. Axelsson, L., Lactic acid bacteria:classification and physiology.2nd ed. Lactic Acid Bacteria: Microbiology and Functional Aspects, ed. S.S.a.A.V.W. In.1998, New York.: Marcel Dekker, Inc.1-72.
    3. Mercenier, A., S. Pavan, and B. Pot, Probiotics as biotherapeutic agents: present knowledge and future prospects. Curr Pharm Des,2003.9(2):p.175-91.
    4. Perdigon, G, et al., Interaction of lactic acid bacteria with the gut immune system. Eur J Clin Nutr,2002.56 Suppl 4:p. S21-6.
    5. Bolotin, A., et al., Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat Biotechnol,2004.22(12):p.1554-8.
    6. Suzuki, I., et al., Growth of Lactobacillus bulgaricus in milk.1. Cell Elongation And the Role of Formic Acid in Boiled Milk. J Dairy Sci,1986.69(4):p.311-20.
    7. Schell, M.A., et al., The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A,2002.99(22):p.14422-7.
    8. Kleerebezem, M., et al., Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci U S A,2003.100(4):p.1990-5.
    9. Pridmore, R.D., et al., The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci U S A,2004.101(8):p.2512-7.
    10. Altermann, E., et al., Complete genome sequence of the probiotic lactic acid bacterium Lactobacillus acidophilus NCFM. Proc Natl Acad Sci U S A,2005.102(11):p.3906-12.
    11. Makarova, K., et al., Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci U S A,2006.103(42):p.15611-6.
    12. Chaillou, S., et al., The complete genome sequence of the meat-borne lactic acid bacterium Lactobacillus sakei 23K. Nat Biotechnol,2005.23(12):p.1527-33.
    13. Claesson, M.J., et al., Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci U S A,2006.103(17):p.6718-23.
    14. Morita, H., et al., Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res,2008. 15(3):p.151-61.
    15. Callanan, M., et al., Genome sequence of Lactobacillus helveticus, an organism distinguished by selective gene loss and insertion sequence element expansion. J Bacteriol, 2008.190(2):p.727-35.
    16. Wegmann, U., et al., Complete genome sequence of the prototype lactic acid bacterium Lactococcus lactis subsp. cremoris MG1363. J Bacteriol,2007.189(8):p.3256-70.
    17. van de Guchte, M., et al., The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc Natl Acad Sci U S A,2006.103(24): p.9274-9.
    18. Sanger, F., S. Nicklen, and A.R. Coulson, DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A,1977.74(12):p.5463-7.
    19. Sanger, F., et al., Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing. J Mol Biol,1980.143(2):p.161-78.
    20. Sanger, F., et al., Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol,1982. 162(4):p.729-73.
    21. Messing, J., R. Crea, and P.H. Seeburg, A system for shotgun DNA sequencing. Nucleic Acids Res,1981.9(2):p.309-21.
    22. Mullis, K., et al., Specific enzymatic amplification of DNA in vitro:the polymerase chain reaction. Cold Spring Harb Symp Quant Biol,1986.51 Pt 1:p.263-73.
    23. Zhang, H., et al., Double stranded DNA sequencing as a choice for DNA sequencing. Nucleic Acids Res,1988.16(3):p.1220.
    24. Smith, L.M., et al., Fluorescence detection in automated DNA sequence analysis. Nature, 1986.321(6071):p.674-9.
    25. Bentley, S.D., et al., Complete genome sequence of the model actinomycete Streptomyces coelicolorA3(2). Nature,2002.417(6885):p.141-7.
    26. Fraser, C.M., et al., The value of complete microbial genome sequencing (you get what you pay for). J Bacteriol,2002.184(23):p.6403-5; discusion 6405.
    27. Schmutz, J., et al., Quality assessment of the human genome sequence. Nature,2004. 429(6990):p.365-8.
    28. Kunst, F., et al., The complete genome sequence of the gram-positive bacterium Bacillus subtilis. Nature,1997.390(6657):p.249-56.
    29. Frangeul, L., et al., Cloning and assembly strategies in microbial genome projects. Microbiology,1999.145 (Pt 10):p.2625-34.
    30. Tettelin, H., et al., Optimized multiplex PCR: efficiently closing a whole-genome shotgun sequencing project. Genomics,1999.62(3):p.500-7.
    31. Gordon, D., C. Abajian, and P. Green, Consed:a graphical tool for sequence finishing. Genome Res,1998.8(3):p.195-202.
    32. Medini, D., et al., The microbial pan-genome. Curr Opin Genet Dev,2005.15(6):p. 589-94.
    33. Lefebure, T. and M.J. Stanhope, Evolution of the core and pan-genome of Streptococcus: positive selection, recombination, and genome composition. Genome Biol,2007.8(5):p. R71.
    34. Siezen, R.J., et al., Genome data mining of lactic acid bacteria: the impact of bioinformatics. Curr Opin Biotechnol,2004.15(2):p.105-15.
    35. Kurland, C.G and H. Dong, Bacterial growth inhibition by overproduction of protein. Mol Microbiol,1996.21(1):p.1-4.
    36. Farwell, M.A., M.W. Roberts, and J.C. Rabinowitz, The effect of ribosomal protein S1 from Escherichia coli and Micrococcus luteus on protein synthesis in vitro by E. coli and Bacillus subtilis. Mol Microbiol,1992.6(22):p.3375-83.
    37. van Hijum, S.A., et al., Projector 2:contig mapping for efficient gap-closure of prokaryotic genome sequence assemblies. Nucleic Acids Res,2005.33(Web Server issue):p. W560-6.
    38. Delcher, A.L., et al., Improved microbial gene identification with GLIMMER. Nucleic Acids Res,1999.27(23):p.4636-41.
    39. Lukashin, A.V. and M. Borodovsky, GeneMark.hmm:new solutions for gene finding. Nucleic Acids Res,1998.26(4):p.1107-15.
    40. Tatusov, R.L., et al., The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res,2000.28(1):p.33-6.
    41. Bateman, A., et al., The Pfam protein families database. Nucleic Acids Res,2004. 32(Database issue):p. D138-41.
    42. Bendtsen, J.D., et al., Improved prediction of signal peptides: SignalP 3.0. J Mol Biol,2004. 340(4):p.783-95.
    43. Arai, M., et al., ConPred Ⅱ:a consensus prediction method for obtaining transmembrane topology models with high reliability. Nucleic Acids Res,2004.32(Web Server issue):p. W390-3.
    44. Juncker, A.S., et al., Prediction of lipoprotein signal peptides in Gram-negative bacteria. Protein Sci,2003.12(8):p.1652-62.
    45. Gardy, J.L., et al., PSORT-B:Improving protein subcellular localization prediction for Gram-negative bacteria. Nucleic Acids Res,2003.31(13):p.3613-7.
    46. Lowe, T.M. and S.R. Eddy, tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res,1997.25(5):p.955-64.
    47. Kanehisa, M., et al., The KEGG resource for deciphering the genome. Nucleic Acids Res, 2004.32(Database issue):p. D277-80.
    48. Riley, M., Systems for categorizing functions of gene products. Curr Opin Struct Biol, 1998.8(3):p.388-92.
    49. Karlin, S., et al., Characterizations of highly expressed genes of four fast-growing bacteria. J Bacteriol,2001.183(17):p.5025-40.
    50. Ghai, R., T. Hain, and T. Chakraborty, GenomeViz: visualizing microbial genomes. BMC Bioinformatics,2004.5:p.198.
    51. Messer, W., The bacterial replication initiator DnaA. DnaA and oriC, the bacterial mode to initiate DNA replication. FEMS Microbiol Rev,2002.26(4):p.355-74.
    52. Mackiewicz, P., et al., Where does bacterial replication start? Rules for predicting the oriC region. Nucleic Acids Res,2004.32(13):p.3781-91.
    53. Depardieu, F., P.E. Reynolds, and P. Courvalin, VanD-type vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob Agents Chemother,2003.47(1):p.7-18.
    54. Germond, J.E., et al., Evolution of the bacterial species Lactobacillus delbrueckii: a partial genomic study with reflections on prokaryotic species concept. Mol Biol Evol,2003.20(1): p.93-104.
    55. Mahillon, J. and M. Chandler, Insertion sequences. Microbiol Mol Biol Rev,1998.62(3): p.725-74.
    56. Schneider, D. and R.E. Lenski, Dynamics of insertion sequence elements during experimental evolution of bacteria. Res Microbiol,2004.155(5):p.319-27.
    57. Ravin, V. and T. Alatossava, Three new insertion sequence elements ISLdl2, ISLdl3, and ISLdl4 in Lactobacillus delbrueckii: isolation, molecular characterization, and potential use for strain identification. Plasmid,2003.49(3):p.253-68.
    58. Postma, P.W., J.W. Lengeler, and G.R. Jacobson, Phosphoenolpyruvate:carbohydrate phosphotransferase systems of bacteria. Microbiol Rev,1993.57(3):p.543-94.
    59. Tynkkynen, S., et al., Genetic and biochemical characterization of the oligopeptide transport system of Lactococcus lactis. J Bacteriol,1993.175(23):p.7523-32.
    60. Peltoniemi, K., E. Vesanto, and A. Palva, Genetic characterization of an oligopeptide transport system from Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol,2002. 177(6):p.457-67.
    61. Kunji, E.R., et al., The proteolytic systems of lactic acid bacteria. Antonie Van Leeuwenhoek,1996.70(2-4):p.187-221.
    62. Gilbert, C., et al., A new cell surface proteinase:sequencing and analysis of the prtB gene from Lactobacillus delbruekii subsp. bulgaricus. J Bacteriol,1996.178(11):p.3059-65.
    63. Jacobs, M., et al., Bacillus subtilis PrsA is required in vivo as an extracytoplasmic chaperone for secretion of active enzymes synthesized either with or without pro-sequences. Mol Microbiol,1993.8(5):p.957-66.
    64. Hickey, M.W., A.J. Hillier, and G.R. Jago, Transport and Metabolism of Lactose, Glucose, and Galactose in Homofermentative Lactobacilli. Appl Environ Microbiol,1986.51(4):p. 825-831.
    65. Chervaux, C., S.D. Ehrlich, and E. Maguin, Physiological study of Lactobacillus delbrueckii subsp. bulgaricus strains in a novel chemically defined medium. Appl Environ Microbiol,2000.66(12):p.5306-11.
    66. Leong-Morgenthaler, P., M.C. Zwahlen, and H. Hottinger, Lactose metabolism in Lactobacillus bulgaricus: analysis of the primary structure and expression of the genes involved. J Bacteriol,1991.173(6):p.1951-7.
    67. Sharp, P.M. and W.H. Li, The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res,1987. 15(3):p.1281-95.
    68. Razeto, A., et al., Domain closure, substrate specificity and catalysis of D-lactate dehydrogenase from Lactobacillus bulgaricus. J Mol Biol,2002.318(1):p.109-19.
    69. Romero, M., et al., Pathways for glutamate biosynthesis in the yeast Kluyveromyces lactis. Microbiology,2000.146 (Pt 1):p.239-45.
    70. Gaucheron, F. and Y. Le Graet, Determination of ammonium in milk and dairy products by ion chromatography. J Chromatogr A,2000.893(1):p.133-42.
    71. Dickely, F., et al., Isolation of Lactococcus lactis nonsense suppressors and construction of a food-grade cloning vector. Mol Microbiol,1995.15(5):p.839-47.
    72. Lu, Q. and M. Inouye, Adenylate kinase complements nucleoside diphosphate kinase deficiency in nucleotide metabolism. Proc Natl Acad Sci U S A,1996.93(12):p.5720-5.
    73. Archibald, F.S. and I. Fridovich, Manganese, superoxide dismutase, and oxygen tolerance in some lactic acid bacteria. J Bacteriol,1981.146(3):p.928-36.
    74. Thibessard, A., et al., Identification of Streptococcus thermophilus CNRZ368 genes involved in defense against superoxide stress. Appl Environ Microbiol,2004.70(4):p. 2220-9.
    75. Bruno-Barcena, J.M., et al., Expression of a heterologous manganese superoxide dismutase gene in intestinal lactobacilli provides protection against hydrogen peroxide toxicity. Appl Environ Microbiol,2004.70(8):p.4702-10.
    76. Marty-Teysset, C., F. de la Torre, and J. Garel, Increased production of hydrogen peroxide by Lactobacillus delbrueckii subsp. bulgaricus upon aeration: involvement of an NADH oxidase in oxidative stress. Appl Environ Microbiol,2000.66(1):p.262-7.
    77. Rochat, T., et al., Production of a heterologous nonheme catalase by Lactobacillus casei: an efficient tool for removal of H2O2 and protection of Lactobacillus bulgaricus from oxidative stress in milk. Appl Environ Microbiol,2006.72(8):p.5143-9.
    78. Moskovitz, J., et al., Escherichia coli peptide methionine sulfoxide reductase gene: regulation of expression and role in protecting against oxidative damage. J Bacteriol,1995. 177(3):p.502-7.
    79. van de Guchte, M., et al., Stress responses in lactic acid bacteria. Antonie Van Leeuwenhoek,2002.82(1-4):p.187-216.
    80. Kullen, M.J. and T.R. Klaenhammer, Identification of the pH-inducible, proton-translocating FIFO-ATPase (atpBEFHAGDC) operon of Lactobacillus acidophilus by differential display: gene structure, cloning and characterization. Mol Microbiol,1999. 33(6):p.1152-61.
    81. Azcarate-Peril, MA., et al., Identification and inactivation of genetic loci involved with Lactobacillus acidophilus acid tolerance. Appl Environ Microbiol,2004.70(9):p.5315-22.
    82. Cotter, P.D. and C. Hill, Surviving the acid test:responses of gram-positive bacteria to low pH. Microbiol Mol Biol Rev,2003.67(3):p.429-53, table of contents.
    83. Lim, E.M., S.D. Ehrlich, and E. Maguin, Identification of stress-inducible proteins in Lactobacillus delbrueckii subsp. bulgaricus. Electrophoresis,2000.21(12):p.2557-61.
    84. Gouesbet, G., G Jan, and P. Boyaval, Two-dimensional electrophoresis study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Appl Environ Microbiol, 2002.68(3):p.1055-63.
    85. Silva, J., et al., Effect of the pH of growth on the survival of Lactobacillus delbrueckii subsp. bulgaricus to stress conditions during spray-drying. J Appl Microbiol,2005.98(3):p. 775-82.
    86. Frees, D. and H. Ingmer, ClpP participates in the degradation of misfolded protein in Lactococcus lactis. Mol Microbiol,1999.31(1):p.79-87.
    87. Derre, I., G Rapoport, and T. Msadek, CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in gram-positive bacteria. Mol Microbiol,1999.31(1):p.117-31.
    88. Serror, P., et al., csp-like genes of Lactobacillus delbrueckii ssp. bulgaricus and their response to cold shock. FEMS Microbiol Lett,2003.226(2):p.323-30.
    89. Okada, Y., et al., Cloning of rel from Listeria monocytogenes as an osmotolerance involvement gene. Appl Environ Microbiol,2002.68(4):p.1541-7.
    90. van Kranenburg, R., et al., Flavour formation from amino acids by lactic acid bacteria: predictions from genome sequence analysis. International Dairy Journal,2002.12(2-3):p. 111-121.
    91. Ardo, Y., Flavour formation by amino acid catabolism. Biotechnol Adv,2006.24(2):p. 238-42.
    92. Dias, B. and B. Weimer, Conversion of methionine to thiols by lactococci, lactobacilli, and brevibacteria. Appl Environ Microbiol,1998.64(9):p.3320-6.
    93. Tanous, C., et al., Glutamate dehydrogenase activity: a major criterion for the selection of flavour-producing lactic acid bacteria strains. Antonie Van Leeuwenhoek,2002.82(1-4):p. 271-8.
    94. Smit, G., B.A. Smit, and W.J. Engels, Flavour formation by lactic acid bacteria and biochemical flavour profiling of cheese products. FEMS Microbiol Rev,2005.29(3):p. 591-610.
    95. Hols, P., et al., New insights in the molecular biology and physiology of Streptococcus thermophilus revealed by comparative genomics. FEMS Microbiol Rev,2005.29(3):p. 435-63.
    96. Sybesma, W., et al., Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol,2003.69(8):p.4542-8.
    97. Ma, M. and J.W. Eaton, Multicellular oxidant defense in unicellular organisms. Proc Natl Acad Sci U S A,1992.89(17):p.7924-8.
    98. Yamamoto, Y., et al., Role of the dpr product in oxygen tolerance in Streptococcus mutans. J Bacteriol,2000.182(13):p.3740-7.
    99. Guo, F.B., H.Y. Ou, and C.T. Zhang, ZCURVE: a new system for recognizing protein-coding genes in bacterial and archaeal genomes. Nucleic Acids Res,2003.31(6):p. 1780-9.
    100. Inui, M., et al., Molecular and functional characterization of the Rhodopseudomonas palustris no. 7 phosphoenolpyruvate carboxykinase gene. J Bacteriol,1999.181(9):p. 2689-96.
    101. Tang, D.J., et al., Xanthomonas campestris pv. campestris possesses a single gluconeogenic pathway that is required for virulence. J Bacteriol, 2005.187(17):p.6231-7.
    102. Ritz, H., et al., Biosynthesis of riboflavin:studies on the mechanism of GTP cyclohydrolase Ⅱ. J Biol Chem,2001.276(25):p.22273-7.
    103. Broadbent, J.R., et al., Biochemistry, genetics, and applications of exopolysaccharide production in Streptococcus thermophilus: a review. J Dairy Sci,2003.86(2):p.407-23.
    104. Vaningelgem, F., et al., Biodiversity of exopolysaccharides produced by Streptococcus thermophilus strains is reflected in their production and their molecular and functional characteristics. Appl Environ Microbiol,2004.70(2):p.900-12.
    105. Petry, S., et al., Factors affecting exocellular polysaccharide production by Lactobacillus delbrueckii subsp. bulgaricus grown in a chemically defined medium. Appl Environ Microbiol,2000.66(8):p.3427-31.
    106. Lamothe, G.T., et al., Genetic and biochemical characterization of exopolysaccharide biosynthesis by Lactobacillus delbrueckii subsp. bulgaricus. Arch Microbiol,2002.178(3): p.218-28.
    107. Wilson, G.G., Organization of restriction-modification systems. Nucleic Acids Res,1991. 19(10):p.2539-66.
    108. Burrus, V., et al., Characterization of a novel type II restriction-modification system, Sth368I, encoded by the integrative element ICEStl of Streptococcus thermophilus CNRZ368. Appl Environ Microbiol,2001.67(4):p.1522-8.
    109. Modrich, P. and R. Lahue, Mismatch repair in replication fidelity, genetic recombination, and cancer biology. Annu Rev Biochem,1996.65:p.101-33.
    110. Schiraldi, C., et al., Exopolysaccharides production in Lactobacillus bulgaricus and Lactobacillus casei exploiting microfiltration. J Ind Microbiol Biotechnol,2006.33(5):p. 384-90.
    111. Stingele, E, et al., Introduction of the exopolysaccharide gene cluster from Streptococcus thermophilus Sfi6 into Lactococcus lactis MG1363:production and characterization of an altered polysaccharide. Mol Microbiol,1999.32(6):p.1287-95.
    112. Makino, S., et al., Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp. bulgaricus OLL1073R-1. J Dairy Sci,2006.89(8):p.2873-81.
    113. Murray, N.E., Type I restriction systems: sophisticated molecular machines (a legacy of Bertani and Weigle). Microbiol Mol Biol Rev,2000.64(2):p.412-34.
    114. Yang, Z., Likelihood ratio tests for detecting positive selection and application to primate lysozyme evolution. Mol Biol Evol,1998.15(5):p.568-73.
    115. Bielawski, J.P. and Z. Yang, A maximum likelihood method for detecting functional divergence at individual codon sites, with application to gene family evolution. J Mol Evol, 2004.59(1):p.121-32.
    116. Vandamme, P., et al., Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev,1996.60(2):p.407-38.
    117. Devereux, R. and GW. Mundfrom, A phylogenetic tree of 16S rRNA sequences from sulfate-reducing bacteria in a sandy marine sediment. Appl Environ Microbiol,1994.60(9): p.3437-9.
    118. Saitou, N. and M. Nei, The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol,1987.4(4):p.406-25.
    119. Ding, G., et al., Tree of life based on genome context networks. PLoS One,2008.3(10):p. e3357.
    120. Altschul, S.F., et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res,1997.25(17):p.3389-402.
    121. Lin, GN., et al., ComPhy:prokaryotic composite distance phylogenies inferred from whole-genome gene sets. BMC Bioinformatics,2009.10 Suppl 1:p. S5.
    122. Jiang, L.W., K.L. Lin, and C.L. Lu, OGtree:a tool for creating genome trees of prokaryotes based on overlapping genes. Nucleic Acids Res,2008.36(Web Server issue):p. W475-80.
    123. Merkl, R. and A. Wiezer, GO4genome: a prokaryotic phylogeny based on genome organization. J Mol Evol,2009.68(5):p.550-62.
    124. Dereeper, A., et al., Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res,2008.36(Web Server issue):p. W465-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700