用户名: 密码: 验证码:
青藏高原腹地晚白垩—古近纪高原隆升的沉积响应与油气后期保存
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文选择青藏高原腹地可可西里盆地、羌塘盆地和措勤盆地晚白垩—古近纪的陆相地层为研究对象,比较详细的开展了青藏高原腹地晚白垩—古近纪的地层学、岩石学、沉积相、物源区分析、磷灰石裂变径迹与油气后期保存的研究。论文的创新及重要研究成果如下:
     论文根据青海省和西藏地质局的划分方案、孢粉组合和ESR测年数据,结合1:25万区域地质调查和CNPC石油地质调查的最新成果,参考近年来在可可西里盆地和沱沱河盆地进行的古地磁测年数据,将风火山群时代划归始新世—早渐新世,时间为51.0~31.5Ma;根据地层层序、与第三系及下伏侏罗系、白垩系的不整合接触关系结合孢粉组合、ESR年龄值、火山岩定年数据及区域地层资料将羌塘盆地阿布山组、措勤盆地竟柱山组归属于晚白垩世。
     据沉积岩相特征及其组合,将风火山群沉积相划分为河流沉积体系、扇三角洲沉积体系、湖泊沉积体系和湖泊三角洲沉积体系;将阿布山组的沉积相划分为冲积扇沉积体系、河流相沉积体系、扇三角洲沉积体系和浅湖沉积体系;将竟柱山组的沉积相划分为冲积扇沉积体系、河流相沉积体系、扇三角洲沉积体系和浅湖沉积体系,局部见海侵碳酸盐岩沉积。
     风火山群物源区为近源的大陆块沉积岩区,古水流方向主要为北东向;双湖托纳木地区阿布山组物源为南部的构造隆起带,古水流方向主要为北东东向;措勤盆地达瓦错地区竟柱山组古水流方向先向南西后向北东流,表明物源方向发生了变化,应该与当时的构造活动和前陆盒地的演化有关。
     可可西里盆地古近纪沉积岩样品的磷灰石表观年龄均接近地层年龄,平均径迹长度为~12.8μm,表明沉积后未经历过完全退火作用;唐古拉山磷灰石裂变径迹结果表明古近纪开始的快速剥蚀在始新世-渐新世时期转换为低速剥蚀;羌塘盆地裂变径迹年龄数据表明盆地冷却主要集中在两个时间段,一是渐新世,一是白垩纪,这两次冷却事件说明盆地在此时经历了强烈的抬升和剥蚀。
     在上述研究的的基础上,提出羌塘盆地、措勤盆地主要构造反转开始的时间分别为早白垩世早期和早白垩世末期,结束的时间为晚白垩世早期,表明构造反转的时间早于高原腹地主要生油岩进入生油高峰和生油门限的时间,而高原腹地大型背斜构造主要形成于此构造反转作用下,成为最理想的匹配关系。晚白垩世开始青藏高原腹地处于整体隆升的背景下,有利于油气的保存。
This dissertation focuses on the terrestrial strata sequences during thelate Cretaceous- Paleogene period of the Hoh Xil, Qiangtang, and Cuoqin basin in theTibetan Plateau hinterland, where the research degree lags relatively behind, and thedetail studies on stratigraphy, lithology, sedimentary facies, source region analyis,apatite fission track dating and oil-gas reservation process has been carried out. Themain conclusions and progress are as follows:
     On the basis of former results of geology branch of Qinghai and Tibet province,the pollen proxies and the ESR dating, together with the areal geology investigationon 1:250 thousand scales and the latest geology investigation research of CNPC,consulting the recent geomagnetism dating results in Cenozoic Hoh Xil and TuoTuoriver basin, the epoch of terrestrial Fenghuoshan group belongs to the Eocene- earlyOligocene period and the age is about 51.0~31.5Ma; In according to the study onstrata sequence of Abushan series, the unconformity relation between the Abushanand underlayers, pollen proxies and the ESR dating in Qiangtang basin, the Abushanseries is set to the late Cretaceous stage; As for the Jingzhushan seires in the Cuoqinbasin, it belongs to the late Cretaceous stage.
     According to further study on the lithology, sedimentary tectonic features andspatial distribution character, Fenghuoshan group is defined as the Fluvial depositionsystem, fan delta deposition system, lacustrine deposition system and the lacustrinefan deposition system, Abushan series belongs to the combined deposition system ofalluvium fan, fluvial sediment, fan delta system and the shallow lake system, andJingzhushan series show large similarity with the Abushan series, which is justcharacteristic of carbonate deposition of ocean transgression process locally.
     The provenance for the Fenghuoshan group is mainly proximal continentalsedimentary rock regions and the paleocurrents were dominantly to northeastward.The conglomerate of Abushan series hails from the Central Uplifting Zone, theprovenance comes from the southernwest Central Uplifting Zone, which based on theclastic composition of sandstone for the Abushan series of Shuanghu Tuonamu region,and the paleocurrents were dominantly to northeastward. The paleocurrents of Jingzhushan series were begin to southwestward and afterward to northeastward,which shows the direction of palaeocurrent is transformed and related to the tectonicfunction and evolution for foreland basin.
     Within the Hoh Xil basin, seven out of nine sedimentary samples deposited in thePalaeogene yield apparent fission track ages are~47-~36Ma (Eocene), they areapproached to the stratigraphic timescale, whose mean track lengths are variable butcentred on~12.8μm, which shows the sedimentary samples didn't experience whollyannealing. The fission track results combined with stratigraphic constraints from theHoh Xil Basin suggest maximum palaeo-temperatures between~100℃and~120℃were experienced in the Oligocene by most of the sediments sampled in this study.Rapid denudation beginning in the Palaeogene followed by a change to slowerdenudation in the Eocene-Oligocene is suggested by the apatite fission track resultsfrom the Tanggula Mountains, and is consistent with reduced erosion in the Hoh Xilregion from the Miocene to Recent implied by the northeast advancing deformationfront model. The cooling of Qiangtang basin is focused on two timescales, they areOligocene and Cretaceous.
     Based on the above investigation, the dissertation studies the time and thefunction for the inverted structure of hinterland of the Tibet Plateau, which expressesthe time for inverted structure was early to the time for Oil-forming height peak andthe oil source rock, the large anticlines structure of Qiangtang basin are mainlyformed between late Jurassic and early cretaceous, therefore, the essential elementswere spatially well deployed, and temporally, petroleum-forming processes also hadgood relationship. After later cretaceous, the hinterland as a whole becameProto-Tibetan Plateau, benefit to the oil-gas reservation
引文
1. Acton G D. Apparent polar wander of India since of the Cretaceous with implications for regional tectonics and truepolar wander[A]. In: Radhakrishna Tand Piper J D A, eds. The India Subcontinent and Gondwana: A palaeomagnetic and RockMagnetic perspective. Memoir Geological Society of India, 1999, 44:910~937
    2. Alessandro Zanazzi, Matthew J. Kohn et al,. Large temperature drop across the Eocene-Oligocene transition in central North America[J]. Nature, 2007, 445:639~642
    3. Aileen M. Davis, Jonathan C. Aitchison, Badengzhu et al,. Conglomerates record the tectonic evolution of the Yarlung-Tsangpo suture zone in southern Tibet[J].Geological Society Special Publications, 2004, 226:235~246
    4. Andreas Mulch, C. Page Chamberlain. The rise and growth of Tibet[J]. Nature, 2006, 439(9): 670~671
    5. Brandon M T, Roden Tice M, Carver J I. Late Cenozoic exhumation of the Cascadia accretionary wedge in the Olympic Mountains, northwest Washington State [J]. GSA Bulletin, 1998,110 (8): 985~1009
    6. Buchanan P. G., Bishop D. J., Hood D. N. Development of salt-related structures in the Central North Sea: Results from section balancing[A]. Alsop G. I., Blundell D. J., Davisoni. Salt Tectonics. London: The Geological Society, 1996, 111~128
    7. Cande S C, Kent D V,. Revised calibration of the geomagnetic polarity time-scale for the Late Cretaceous and Cenozoic[J]. Journal of Geophysical Research, 1995, 100:6093~6095
    8. Cederbrom C, L arson S A, Tullborg E L, et al. Fission track thermochronology applied to Phanerozoic thermo tectonics events in central and southern Sweden [J]. Tectonophysics, 2000, 316:153~167
    9. Chung S., Lo C. Diachronous uplift of the Tibetan Plateau starting 40 Myr ago[J]. Nature, 1998, 394:769~773
    10. Colombo F. Normal and reverse unroofing sequences in syntectonic conglomerates as evidence of progressive basinward deformation [J]. Geology,1994,22 (3): 235~238
    11.Cowed W P,Kidd W S F. 潘耘等..拉萨至格尔木的构造[A].见:中英青藏高原综合地质考察队编.青藏高原地质演化[M].北京:科学出版社.1990,321~347
    12. David B. Rowley, Brian S. Currie. Palaeo-altimetry of the late Eocene to Miocene Lunpola basin, central Tibet[J]. Nature, 2006, 439(9): 677~681
    13. Decells P G, Robinson D M, Zandt G. Implications of shortening in the Himalayan fold-thrust belt for uolift of the Tibetan Plateau[J].Tectonics, 2002, 21(6): 1602
    14.Dewey J F,Shackleton R M,常承法,等.1990.青藏高原的构造演化[A].见:中英青藏高原综合地质考察队编.青藏高原地质演化[M].北京:科学出版社.1990,384~415
    15. Dewey J F., Shackleton R M. Chang Chengfa, Sun Yiyin. Tectonic evolution of the Tibetan Plateau[J]. Phil. Trans. R. Soc. London, A, 1988, 327:379~413
    16. Dickinson W R. Provenance and sediment dispersal in relation to palaeotectonic and paleogeography of sedimentary basins[A]. In: New Prspectives in Basin Analysis(ed. By K.L. Kleinspehn and C.Paota), Springer-verlay, New York, 1988, 3~25.
    17. Dickinson W R, Beard L S, Brakenridge G R,et al.. Provenance of North American Phanerozoic sandstones in relation to tectonic setting [J]. GSA Bulletin, 1983, 94:225~235
    18. Dickinson W R. Interpreting provenance relations from detritsl modes of sandstones [A]. In: Zuffa, G. G., ed., Provenance of Arenites [C]. Dordrecht, Reidel Publishing Co., 1985, 333~361
    19. Dickinson William R, Suczek Christopher A. Plate tectonics and sandstone compositions[J]. The American Association of Petroleum Geologists Bulletin, 1997, 63 (12): 2164~2182
    20. Dickinson WR, Suczek C A. Plate tectonics and sandstone compositions[J]. AAPG Bulletin, 1979, 63:2164~2182
    21. Ding Lin, Lai Qingzhou. New geological evidence of crustal thickening in the Gangdese block prior to the Indo-Asian collision[J]. Chinese Science Bulletin, 2003, 48(15): 1604~1610
    22. Ding Lin, Zhou Yong, Zhang Jingjiang, et al. Geologic relationships and geochronology of the Cenozoic volcanoes and interbedded weathered mantles of Yulinshan in Qiangtang, NorthTibet[J]. Chinese Science Bulletin, 2000, 45 (24), 2214~2220
    23. Dodson M H. Closure temperature in cooling geochronological and petrological systems[J]. Contrib. Mineral Petrol., 1973, 40: 259~274
    24. Duddy I R, Green P F, Laslett G M. Thermal annealing of fission tracks in apatite. 3. Variable temperature behaviour[J]. Chemical Geology, 1988, 73: 25~38
    25. Fleischer R L, Price P L, Walker R M. Ion explosion spike mechanism for formation of charged particle tracks in solides[J]. J. Appl. Phys. 1965, 36: 3645~3652
    26. Gallagher, K. Evolving temperature histories from apatite fission-track data[J]. Earth and Planetary Science Letters, 1995, 136(3-4): 421~435
    27. Garver J I, Brandon M T, Roden Tice M, et al. Exhumation history of orogenic highlands determined by detrital fission track thermochronology [A]. In: Ring U, Brandon M T, Willet t S, et al. Exhumation Processes: Normal Faulting, Ductile Flow and Erosion[C]. London: Geological Society of London Special Publication, 1999, 154: 283~304
    28. Garver J l, So loviev A V, BullenM E, et al. Towards a mo re complete record of magmatism and exhumation in continental arcs using detrital fission track thermoch ronometry [J].Physics and Chemistry of the Earth, (Part A ), 2000, 25 (6—7): 565~570
    29. George, A. D., Marshallsea, S. J., Wyrwoll, K. Het al,. Miocene cooling in the northern Qilian Shah, northeastern margin of the Tibetan Plateau, revealed by apatite fission-track and vitrinite-reflectance analysis[J]. Geology (Boulder), 2001, 29(10): 939~942
    30. Gleadow A J W, Duddy I R, Green P F, et al. Confined Fission Track Lengths in Apatite:A Diagnostic Tool for Thermal History Analysis[J]. Contributions to Mineralogy and Petrology, 1986, 94: 405~415
    31. Glennie KW, Boegner PL E. Sole Pit inversion techonics[A]. In: ltling L. V. Hobson G. D. Eds Petroleum Geology of the Continental Shell of Northwest Europe. London: institute of petroleum, 1984: 110~120
    32. Grunau H. R,. 郑朝阳译.从世界范围看盖层问题[J].石油地质与实验,1988,14:1~15
    33. Green, P. F., Duddy, I. R., Laslett, G. M., et al. Thermal annealing of fission tracks in apatite. 4, Quantitative modeling techniques and extension to geological timescales[J]. Chemical Geology (Isotope Geoscience Section), 1989, 79: 155~182
    34. Green P F, Duddy I R, Gieadow I J W, et al. Thermal annealing of fission tracks in apatite 1. A qualitative description[J]. Chemical Geology, 1986, 59: 237~253
    35. Guillaume D N, Wout Krijgsman et al,. Tibetan plateau aridification linked to global cooling at the Eocene-Oligocene transition[J]. Nature, 2007, 445: 635~638
    36. Harding T P. Seismic characteristics and identification of negative flower structures, positive flower structures, and positive structural inversion[J]. Bulletin of the American Association of Petroleum Geologists, 1985, 67: 582~600
    37. Harrison T. M., Copeland E, Kidd W.S.F et al,.Raising Tibet[J]. Science, 1992, 255: 1663~ 1670
    38. Hendrix Marc S. Evolution of Mesozoic sandstone compositions, southern Junggar, northern Tarim, and western Turpan basins,northwest China:A detrital record of the ancestral Tian Shah[J]. Journal of Sedimentary Research, 2000, 70 (3): 520~532
    39. Horton, B. K., Yin, A., Spurlin, M. S et al,. Paleocene-Eocene syncontractional sedimentation in narrow, lacustrine-dominated basins of east-central Tibet[J]. Geological Society of America Bulletin, 2002, 114(7): 771~786
    40. Jonathan C. Aitchison, Aileen M. Davis, Zhu Badeng et al,. New constraints on the India-Asia collision; the lower Miocene Gangrinboche Conglomerates, Yarlung Tsangpo suture zone, SE Tibet [J] (in 16th Himalaya-Karakoram-Tibet workshop). Journal of Asian Earth Sciences, 2002, 21 (3): 251~263
    41. Ingersoll R V. Tectonics of sedimentary basins[J]. Geological Society of America Bulletin, 1988, 100: 1714~1719
    42. Jolivet, M. et al., 2001. Mesozoic and Cenozoic tectonics of the northern edge of the Tibetan Plateau; fission-track constraints[J]. Tectonophysics, 343(1-2): 111~134
    43. Kaijun Zhang, Bangdong Xia, Guanmin Wang et al. Early Cretaceous stratigraphy, depositional environments, sandstone provenance, and tectonic setting of central Tibet, western China[J]. Geological Society of America, 2004, 116(9-10): 1202~1222
    44. Kapp P, Yin A, Manning C E et al. Blueschist-bearing metamorphic core complexes in the Qiangtang block reveal deep crustal structure of northern Tibet[J]. Geology, 2000, 28 (1): 19~22
    45. Laslett G M, Green P F, Duddy I R et al. Thermal annealing of fission tracks in apatite. 2. A quantitative analysis[J]. Chemical Geology ( Isotope Geoscience Section), 1987, 65: 1~13
    46. Letouzey J., Colletta B., Vially R., et al. Evolution of salt related structures in compressional settings[J]. Jackson M. P. A., Roberts D. G., Snelson S. Salt Tectonics: A Global Perspective. AAPG, 1995, 41~60
    47. Lewis, C.L.E., 1990. Thermal history of the Kunlun Batholith, North Tibet, and implications for uplift of the Tibetan Plateau[A]. In: S.A. Durrani and E.V. Benton (Editors), Proceedings of the 6th international fission track dating workshop. Nuclear Tracks and Radiation Measurements. Pergamon, Oxford, United Kingdom, 301~307
    48. Li, J., A general view of the uplift of the Qinghai-Xizang (Tibet) Plateau [M]. In: J. Li (Editor), Uplift of Qinghai-Xizang (Tibet) Plateau and global change. Lanzhou: Lanzou University Press, 1995, pp207
    49. Li Yalin, Wang Chengshan, Yi Haisheng et al. Characteristics of the Shuanghu graben and Cenozoic extension in northern Tibnt[J]. Science in China, 2001, 44(sup). 284~291
    50. Liu Z, Wang C. Facies analysis and depositional systems of Cenozoic sediments in the Hoh Xil basin, northern Tibet[J]. Sedimentary Geology, 2001b, 140: 251~270
    51. Liu Zhifei, Wang Chengshan, Yi Haisheng. Evolution and Mass accumulation of the Cenozoic Hob Xil basin, northern Tibet[J]. Journal of Sedimentary Research, 2001a, 71 (6): 973~986
    52. Liu Zhifei, Zhao Xixi, Wang Chengshan et al.. Magnetostratigraphy of Tertiary sediments from the Hoh Xil Basin: implications for the Cenozoic tectonic history of the Tibetan Plateau[J]. Geophysical doumal International, 2003, 154 (2): 233~252
    53. Metivier F, Gaudemer Y., Mass transfer between eastern Tien Shan and adjacent basins (central Asia): constraints on regional tectonics and topography[J]. Geophysical Journal International, 1997, 128: 1~17
    54. Meyer, B. et al., Crustal thickening in Gansu-Qinghai, lithospheric mantle subduction, and oblique, stike-slip controlled growth of the Tibet plateau[J]. Geophysical Journal International, 1998, 135: 1~47
    55. Miall A D. Principal of sedimentary basin analysis[M]. New York Berlin Heideberg Tokyo, Springer-Verlag, 2000, pp668
    56. Michael Steinmann, Dominik Hungerbuehler et al,.Neogene tectonic evolution and exhumation of the southern Ecuadorian Andes; a combined stratigraphy and fission-track approach[J]. Tectonophysics, 1999, 307(3-4): 255~276
    57. Molnar P, England P, Martinod J. Mantle dynamics, uplift of the Tibetan Plateau, and the lndian monsoon[J]. Rev. Geophysics, 1993, 31(4): 357~396
    58. Murphy M A, Yin A, Harrison T M, et al. Did the Indo - Asian collision alone create the Tibetan plateau [J]? Geology. 1997, 25: 719~722
    59. Najman, Y., Johnson, C., White, N.M., Oliver, G. Constraints on foreland basin and orogenic evolution from detrital mineral fission track analyses and sediment facies of the Himalayan foreland basin, NW India[J]. Basin Research, 2004, 16: 1~24
    60. Naser C W. Thermal history of sedimentary basins: fission track dating of subsurface rocks [J]. SEPM, 1979, 26: 109~112
    61. Pares, J. M. et al,. Neogene magnetostratigraphy in the Guide-Gonghe Basin (NE Tibet) and the tectonic uplift of the Tibetan Plateau[A]. Abstracts with Programs -Geological Society of America. Geological Society of America (GSA), Boulder, 2001, p42
    62. Peter M, Blisniuk, Bradley R, et al. Normal faulting in central Tibet since at least 13.5Ma ago[J]. Nature, 2001, 412 (9): 628~639
    63. Reading H G,主编.周明鉴,陈吕明等译.1986,沉积环境与相[M].北京,地质出版社, pp651
    64. Roger, F. et al. An Eocene magmatic belt across central Tibet: Mantle subduction triggered by the Indian Collision[J]? Terra Nova, 2000, 12: 102~108
    65. Rowan M. G., Jackson M. R A., Trudgill B. D. Salt-related fault families and fault welds in the Northern Gulf of Mexico[J]. AAPG Bulletin, 1999, 83(9): 1454~1484
    66. Ruddiman W F, Kutzbach J E. Plateau uplift and climate change[M].Scientific American, 1991, 264: 66~75
    67. Ruddiman W F. Early uplift in Tibet [J]? Nature,1998, 394: 723~725
    68. Ruiz G M H, Seward D, Winkler W. Detrital thermochronology--a new perspective on hinterland tectonics, an example from the Andean Amazon basin, Ecuador[J]. Basin Research, 2004, 16: 413~430
    69. Sinclair, H. D., Jaffey, N. Sedimentology of the Indus Group, Ladakh, northern India; implications for the timing of the initiation of the palaeo-lndus River[J]. Journal of the GeologicalSociety (London), 2001, 158, 151~162
    70. Soble E R, Dumitru T A. Thrusting and exhumation around the margines of the western Tarim basin during the India-Asia collision[J]. Journal of Geophysical Research, 1997, 102: 5043~5063
    71. Spurlin, M. et al., Two phases of Cenozoic deformation in east-central Tibet; thrusting followed by right-slip faulting[J]. Eos, Transactions, American Geophysical Union, 2000, 81(48, Suppl.): 1092
    72. Talbot C. J., Alavi M. The past of a future syntaxis across the Zagros[A]. Alsop G I, Blundell D. J, Davisoni. Salt Tectonics. London: The Geological Society, 1996, 89~109
    73. Tapponnier E, Molner P. Slip-line field theory and large-scale continental tectonics[J]. Nature, 1976, 264: 319
    74. Yapponnier R, Xu Z., Roger E, et al. Oblique stepwise rise and growth of the Tibetan Plateau[J]. Science. 2001, 294: 1671~1677
    75. Timothy J. Coughlin, Paul B. O'Sullivan,et al,. Apatite fission-track thermochronology of the Sierras Pampeanas, central western Argentina; implications for the mechanism of plateau uplift in the Andes[J]. Geology, 1998, 26: 999~1002
    76. Wagner G A. Fission—Track Dating[M]. Germany: Kluwer Academic Publisher, 1992
    77. Wagner GA, Reimer GM. Fission Track Tectonics: The Tectonic Interpretation of Fission Track Apatite Ages[J]. Earth Planet Sci Lett, 1972, 14: 263~268
    78. Wang Chengshan, Edmund Z. Chang and Zhang Shaonan. Potential Oil And Gas Bearing Basins on the Qinghai-Tibet Plateau of China[J]. International Geological Review, 1997, 39(10): 876~890
    79. Wang Chengshan, Liu Zhifei, Yi Haisheng et al. Tertiary crustal shortening and peneplanation in the Hoh Xil region: implications for the tectonic history of the northern Tibetan Plateau[J]. Journal of Asian Earth Sciences, 2002, 20 (3): 211~223
    80. Wang C-S, Li X, Liu Set al,.. Lastest marine-horizon and their deformations on the Tibeatan plateau. Implications for collision of cpntinents and plateau uplift[A]. In: The 14th Himalaya-Karakorum-Tibet Workshop, Abstracts. Kloster Ettal, Germany, 1999, 167~168
    81. Wang Chengshan, Li Xianghui, Hu Xiumian et al,. Latest marine horizon north of Qomolangma (Mt Everest): implications for closure of Tethys seaway and collision tectonics[J]. TerraNova, 2002, 14(2): 114~120
    82. Willems H, Zhou Z, Zhang Bingao et al,. Stratigraphy of the Upper Cretaceous and Lower Tertiary strata in the Tethyan Himalayas of Tibet (Tingri area, China) [J]. Geol. Rundsch, 1996, 85: 723~754
    83. Yi Haisheng, Wang Chengshan, Liu Shun et al,. Sedimentary record of plantation surface in Hoh Xil region of Northern Tibet plateau[J]. Acta Geologica Sinica, 2000, 74(4): 827~835
    84. Yin An, Harrison T M. Geological evolution of the Himalayan-Tibetan orogen[J]. Annu Rev. Earth Planet Sci. 2000, 28: 211~280
    85. Zhao Xixi., Liu Zhifei., Wang Chengshan., et al. New Magnetostratigraphic and sedimentologic results from tertiary sediments of the Hohxil Basin, northern Qinghai-Tibet plateau: Implications for the Cenozoic tectonic history of the Tibet plateau [J]. Earth Science Frontiers, 2000, 7 (supp.): 239~240
    86. Zhong Dalai, Ding Lin. Rising process of the Qinghai-Xizang Plateau and its mechanism[J]. Science in China(Series D), 1996, 39(4): 369~379
    87. Zhu Lidong, Wang Chengshan., Zheng Hongbo et al,. Tectonic and sedimentary evolution of basins in the northeast of Qinghai-Tibet Plateau and their implication for the northward growth of the Plateau[J]. PALAEO, 2006, 241: 49~60
    88.柏道远,贾宝华,王先辉.青藏高原隆升过程的磷灰石裂变径迹分析方法[J].沉积与特提斯地质,2004,24(1):35~40
    89.常宏,方小敏,安芷生等.索尔库里盆地中.上新世地层特征及其环境意义[J].海洋第四纪地质,2001,21(3):107~111
    90.蔡希源,王根海,迟元林等.中国油气区反转构造[M].北京:石油工业出版社,2001,50~90
    91.陈安定,万景林,郭彤楼.裂变径迹研究构造抬升应用实例[J].石油学报,2004,25 (4):29~32
    92.陈怀录,方小敏,李吉均等.临夏盆地新生代地层裂变径迹年龄测定[J].核技术,1996,10:10~16
    93.褚庆忠.含油气盆地反转构造研究综述[J].西安石油大学学报(自然科学版),2004,19(1):28~33
    94.戴金星.威远气田成藏期及气源[J].石油实验地质,2003,25(5):473~479
    95.邓万明.藏北东巧—怒江超基性岩的岩石成因[M].见:喜马拉雅地质(Ⅱ).北京:地质出版社,1984
    96.丁林,钟大赉,潘裕生等.东喜马拉雅构造结上新世以来快速抬升的裂变径迹证据[J].科学通报,1995,44 (16):1497~1500
    97.方德庆,云金表,李椿.北羌塘盆地中部雪山组时代讨论[J],地层学杂志,2002,26(1):68~72
    98.冯石.磷灰石裂变径迹的分析在石油勘探中的初步应用[J].华东石油学院学报,1986,(2):1~11
    99.冯增昭,王英华,刘焕杰等.中国沉积学[M].北京:石油工业出版社,1994,pp896
    100.符超峰,方小敏,宋友桂等.盆山沉积耦合原理在定量恢复造山带隆升剥蚀过程中的应用[J].海洋地质与第四纪地质,2005,25(1):105~112
    101.高锐,李廷栋,吴功建.青藏高原岩石圈演化与地球动力学过程——亚东—格尔木—额济纳旗地学断面的启示[J].地质论评,1998,44(4):389~395
    102.郭彤楼,金之钧,汤良杰等.从海相地层磷灰石的裂变径迹探讨楚雄盆地的热史及剥蚀史[J].现代地质,2004,18(1):110~115
    103.郭铁鹰,梁定益等.西藏阿里地质[M].武汉:中国地质大学出版社,1991,pp464
    104.韩湘涛等.藏北湖区班戈—带海相白垩系的划分[J].青藏高原地质文集(3).北京:地质出版社,1983,194~211
    105.何文渊,钱祥麟,张臣.区域型构造反转地区含油气性研究[J].地学前缘,1999,6(增刊):60
    106.黄继钧.羌塘盆地性质及构造演化[J].地质力学学报,2000,6(4):58~61
    107.黄继钧.藏北羌塘盆地构造特征及演化[J].中国区域地质,2001,20(2):178~186
    108.贾承造,魏国齐,李本亮.中国中西部燕山期构造特征及其油气地质意义[J].石油 天然气地质,2005,26(26):9~15
    109.金玮,王成善,李亚林.西藏双湖托纳木地区上侏罗统雪山组物源分析[J].大地构造与成矿学,2006,30(4):519~526
    110.康铁笙,王世成.地质热历史研究的裂变径迹法[M].北京:科学出版社,1991,pp112
    111.康玉柱.中国西北地区压性叠加盆地成油特征[J].石油实验地质,2004,26(2):153~160
    112.李才,利中铧,杨德明等.西藏羌塘地区几个地质构造问题[J].世界地质,1996,15(3):18~23
    113.李才,王天斌,杨德明.西藏羌塘盆地中央隆起区物质组成与构造演化[J].长春科技大学学报,2001,31(1):25~31
    114.李春昱.亚洲大地构造图及说明书[M].北京:地质出版社,1982
    115.李德威,庄育勋.青藏高原大陆动力学的科学问题[J].地质科技情报,2006,25(2):1~11
    116.李吉均,文世宣等.青藏高原隆起的时代、幅度和形式的探讨[M].中国科学,1979,6:608~616
    117.李继亮,肖文交,闫臻.盆山耦合与沉积作用[J].沉积学报,2003,21(1):52~60
    118.李璞.西藏东部地质的初步认识[J].科学通报,1955,(7):62~71
    119.李廷栋,肖序常等.略论青藏高原的地壳构造和地壳演化[J].大自然探讨,1985,4(12):61~66
    120.李廷栋.青藏高原地质科学研究的新进展[J].地质通报,2002,21(7):370~376
    121.李祥辉,王成善,胡修棉.西藏最新非碳酸盐海相沉积及其对新特提斯关闭的意义[J].地质学报,2001,75(3):314~321
    122.李祥辉,王成善,胡修棉等.朋曲组——西藏南部最高海相层位一个新的地层单元[J].地层学杂志,2000,24(3):236~242
    123.李祥辉,曾庆高,王成善.西藏南部浪杰学群碎屑物质来源的古水流证据[J].地质论评,2003,49(2):132~137
    124.李亚林,王成善,伊海生.青藏高原新生代地堑构造研究中几个问题的讨论[J].地质论评,2005,51(5):493~501
    125.李亚林,王成善,伊海生等.西藏北部双湖地堑构造与新生代伸展作用[J].中国科学(D辑),31(增刊),2001:228~233
    126.李亚林,王成善,伊海生等.长江源区新生代地堑的构造特征与形成机制[J].地质通报,2006a,25(1~2):204~212
    127.李亚林,王成善,伊海生等.西藏北部新生代大型逆冲推覆构造唐古拉山的隆起[J].地质学报,2006b,80(8):1118~1130
    128.李勇,李亚林,王谋等.唐古拉山中段地质特征与资源环境[M].地质出版社,2006,pp281
    129.李勇,王成善,伊海生.中生代羌塘前陆盆地充填序列及演化过程[J].地层学杂志,2002,26(1):62~67
    130.李勇,王成善,伊海生等.青藏高原中侏罗世—早白垩世羌塘复合型前陆盆地充填模式[J].沉积学报,2001,19(1):20~27
    131.刘池阳,魏永佩,赵红格.造山带研究中值得注意得几个问题[A].马宗晋等主编.构造地质学一岩石圈动力学研究进展.北京:地震出版社,1999,130~137
    132.刘池洋,孙海山.改造型盆地类型划分[J].新疆石油地质,1999,20(2):79~82
    133.刘池洋,王成善等.藏北羌塘盆地茶桑地区构造格局与演化[J].中国科学:D辑,2001,31(B12):14~19
    134.刘池洋,杨兴科.改造型盆地油气评价的思路[J].石油与天然气地质,2000,21(1):11~14
    135.刘德民,李德威,杨巍然等.喜马拉雅造山带晚新生代构造隆升的裂变径迹证据[J].地球科学——中国地质大学学报,2005,30(2):147~152
    136.刘光鼎.试论残留盆地[J].勘探家,1997,2(3):1~4
    137.刘和甫.盆地—山岭耦合体系与地球动力学机制[J].地球科学,2001,26(6):581~596
    138.刘顺,王成善,伊海生等.青藏高原中部风火山地区第三纪地壳南北缩短量研究[J].地震地质,2001,23(1):122~125
    139.刘顺生,张峰.西藏南部地区的裂变径迹年龄和上升速率的研究[J].中国科学(B辑),1987,(9):1000~1010
    140.刘树根,罗志立,赵锡垒等.中国西部盆山系统的耦合关系及其动力学模式[J].地质学报,2003,77(2):177~186
    141.刘增乾,徐宪,潘桂棠等.青藏高原大地构造与形成演化[M].地质专报(构造地质,地质力学),第10号.北京:地质出版社.1990,pp158
    142.刘志飞,王成善,伊海生等.青藏高原北部可可西里盆地早新生世沉降史及其高原隆升意义[A].见:中国地质学会80周年学术文集,北京:地质出版社,2002,111~119
    143.刘志飞,王成善.青藏高原北部可可西里盆地第三纪风火山群沉积环境分析[J].沉积学报,2001a,19(1):20~27
    144.刘志飞,王成善,伊海生等.可可西里盆地新生代沉积演化历史重建[J].地质学报,2001c,75(2):250~258
    145.刘志飞,王成善,伊海生等.青藏高原北部可可西里盆地早第三纪沉积区物源区分析及其高原隆升意义[J].地球科学,2001b,26(1):1~6
    146.马钦忠,李吉均.晚新生代青藏高原北缘构造变形和剥蚀变化及其与山脉隆升关系[J].海洋地质与第四纪地质,2003,23(1):27~34
    147.马宗晋,张家声,汪一鹏.青藏高原三维变形运动随时间的变化—论青藏高原构造变动的非平衡性[A].见:马宗晋等主编,青藏高原岩石圈现今变动与动力学,北京:地震出版社,2001,88~105
    148.潘桂棠.青藏高原第五缝合带的发现与论证[J].地球物理学报,1994,37(2):184~192
    149.潘桂棠等,丁俊,姚东生等.青藏高原及邻区地质图说明书(1:1500000)[M].成都:成都地图出版社,2004,pp133
    150.潘裕生.西昆仑山构造特征与演化[J].地质科学,1990,3:224~232
    151.潘裕生等.高原岩石圈结构、演化和动力学[M].见《青藏高原形成演化与发展》,广东科技出版社,1998,1~71
    152.青海省地质矿产局.青海省区域地质志[M].北京:地质出版社,1991,pp662
    153.沙金庚.青海可可西里地区古生物[M].北京:科学出版社,1995,pp177
    154.石和,陶晓风,马润则等.洁居纳卓组:西藏措勤地区的上新统岩石地层单位[J].沉积与特提斯地质,2003,23(2):20~22
    155.谭富文,王剑,李永铁等.羌塘盆地侏罗纪末—早白垩世沉积特征与地层问题[J].中国地质,2004,31(4):400~405
    156.汤济广,梅廉夫,沈传波等.滇黔桂地区海相地层油气宏观保存条件评价[J].地质科技情报,2005,24(2):7~11
    157.陶晓风,刘登忠,朱利东等.西藏措勤地区夏康坚地垒的形成及隆升特征[J].地质通报,2003,23(11~12):941~943
    158.万晓樵.西藏第三纪有孔虫生物地层学及古地理[J].武汉地质学院(北京研究生院)院刊,1987,1:47~74
    159.万晓樵,丁林等.西藏仲巴地区白垩纪末期-始新世早期海相地层[J].地层学杂志,2001,25(4):267~272
    160.王成善,张哨楠.西藏高原含油气盆地分析及油气资源预测[J].地球科学.中国地质大学学报.1996,21(2):120~129
    161.王成善,丁学林.青藏高原地质研究新进展.地球科学进展[J].1998,13(6):526~532
    162.王成善,李祥辉主编.沉积盆地分析原理及其应用(百部研究生教材)[M].北京:高教出版社,2003b,70~114
    163.王成善,李祥辉,胡修棉.再论印度—亚洲大陆碰撞的启动时间[J].地质学报,2003a,77(1):16~24
    164.王成善,李亚林,李永铁.青藏高原油气资源远景评价中的十个问题[J].石油学报,2006,27(4):1~7
    165.王成善,伊海生等.西藏羌塘盆地地质演化与油气远景评价[M].北京:地质出版社,2001
    166.王成善,朱利东,刘志飞.青藏高原北部盆地构造沉积演化与高原向北生长过程[J].地球科学进展,2004a,19(3):373~381
    167.王成善,伊海生,刘池洋等.西藏羌塘盆地古油气藏发现及其意义[J].石油与天然气地质,2004b,25(2):139~143
    168.王根厚,胡玲.第32届国际地质大会构造地质研究进展综述[J].现代地质,2004,18 (4):423~428
    169.王国灿,杨巍然.地质晚近时期山脉地区隆升及剥露作用研究[J].地学前缘,1998,5(1-2):151~156
    170.王国芝,王成善等.西藏羌塘阿木岗群硅质岩段时代归宿[J].中国地质,2002,29(2):139~142
    171.王鸿祯等.中国古地理图集[M].北京:地质出版社,1985,pp110
    172.王纪祥,陈清华,任拥军.西藏措勤盆地油气成藏条件分析[J].地球科学进展,2003,18(2):313~316
    173.王剑,谭富文,李亚林等.青藏高原重点沉积盆地油气资源潜力分析[M].北京:地质出版社,2004,pp317
    174.王军.利用磷灰石裂变径迹计算隆升速率的一些问题[J].地质科技情报,1997,16(1):97~102
    175.王岫岩.西藏羌塘盆地动力学演化与油气前景探讨[J].石油学报,1999,20(3):38~42
    176.文世宣.珠穆朗玛峰地区的地层:白垩系,第三系[A].见:珠穆朗玛峰地区科学考察报告(1966-1968),北京:科学出版社,1974,148~212
    177.吴孔友,陈清华,洪梅.青藏地区措勤盆地它日错深凹陷主含油气系统[J].石油大学学报(自然科学版),1999,23(4):13~15
    178.吴瑞忠,胡承祖,王成善等.藏北羌塘地区地层系统[J].青藏高原地质文集(9),1986,1~32
    179.吴珍汉,叶培盛,胡道功.青藏高原腹地的地壳变形与构造地貌形成演化过程[M].北京:地质出版社,2003,p292
    180.吴中海,吴珍汉.裂变径迹法在研究造山带隆升过程中的应用介绍[J].地质科技情报,1999,18(4):28~32
    181.伍新和,王成善,胡建宏等.羌塘盆地中生界含油气系统[J].新疆石油地质,2004,25(5):474~478
    182.伍新和,王成善,伊海生等.西藏羌塘盆地烃源岩—古油藏及其油气远景[J].石油学报,2005.26(1):13~17
    183.吴根耀,马力.“盆”“山”耦合和脱耦:进展,现状和努力方向[J].大地构造与成矿学,2004,28(1):81~97
    184.西藏自治区地质矿产局.西藏自治区区域地质志[M].地质出版社,1993,100~188
    185.夏代祥,刘世坤主编.西藏自治区岩石地层[M].武汉:中国地质大学出版社,1997,pp302
    186.肖序常,李延栋等.喜马拉雅岩石圈构造演化总论[M].北京:地质出版社,1988,pp236
    187.肖序常,王军.青藏高原构造演化及隆升的简要评述[J].地质论评,1998,44(4):372~381
    188.徐钰林,万晓樵,苟宗海等.西藏侏罗纪、白垩纪、第三纪地层[M].武汉:中国地质大学出版社,1990,pp147
    189.薛爱民.利用磷灰石裂变径迹资料反演热演化史的综合分析法[J].地球物理学报,1994,37(3):338~343
    190.杨桂芳,藤玉洪,卓胜广等.藏北羌塘盆地双湖地区油气成藏条件[J].地质通报,2003,22(4):285~289
    191.杨巍然,王国灿,简平.别造山带构造年代学[M].武汉:中国地质大学出版社,2000,1~17
    192.尹安.喜马拉雅—青藏高原造山带地质演化—显生宙亚洲大陆生长[J].地球科学,200l,22(3):193~230
    193.尹集祥,徐均涛,刘成杰等.拉萨至格尔木的区域地层[A].见:中英青藏高原综合地质考察队编.青藏高原地质演化.北京:科学出版社,1990,1~48
    194.余光明,王成善,张哨楠等.西藏特提斯中生代沉积盆地特征及演化[J].中国科学(B辑),1989,9:82~990
    195.余光明,王成善,张哨楠.西藏班公湖~丁青断裂带侏罗纪沉积盆地的特征[J].中国地质科学院成都地矿所所刊,1991,(13):33~45
    196.余光明,王成善.西藏特提斯沉积地质[M].北京:地质出版社,1990,94~98
    197.曾允孚,夏文杰主编.沉积岩石学[M].北京:地质出版社,1986,pp274
    198.张以葬,郑健康.青海可可西里及邻区地质概况[J].北京:地质出版社,1994,pp177
    199.张抗.改造型盆地及其油气地质意义[J].新疆石油地质,1999,20(1):1~5
    200.张渝昌.中国含油气盆地原型分析[M].南京:南京大学出版社,1997,pp450
    201.赵兵,伊海生,林金辉等.北羌塘乌兰乌拉湖地区白垩纪岩石地层及沉积环境[J].地质通报,2002,21(11):749~755
    202.赵国连.构造反转与油气聚集[J].新疆石油地质,2001,22(6):469~471
    203.赵政璋,李永铁,叶和飞等.青藏高原大地构造特征及盆地演化[M].北京:科学出版社,2001b,pp439
    204.赵政璋,李永铁,叶和飞等.青藏高原地层[M].北京:科学出版社,2001a,pp542
    205.赵政璋,李永铁,叶和飞等.青藏高原羌塘盆地石油地质[M].北京:科学出版社,2000,pp398
    206.赵政璋,李永铁,叶和飞等.青藏高原中生界沉积相及油气储盖层特征[M].北京:科学出版社,2001c,pp347
    207.郑德文,张培震,万景林.碎屑颗粒热年代学—一种揭示盆山偶合过程的年代学方法[J].地震地质,2000,22(增刊):25~36
    208.郑度,姚檀栋.青藏高原隆升与环境效应[M].北京:科学出版社:2004,pp160
    209.郑海翔,潘桂棠,徐跃荣等..怒江构造带超基性岩新知—一个完整蛇绿岩套的确定[J].青藏高原地质文集(13),北京:地质出版社,1983,191~198
    210.郑来林,金振民,潘桂棠等.喜马拉雅造山带东、西构造结的地质特征与对比[J].地球科学——中国地质大学学报,2004,29(3):269~277
    211.钟大赉,丁林.青藏高原的隆起过程及其机制探讨[J].中国科学D辑,1996,26(4):289~295
    212.朱利东,刘登忠,陶晓风等.西藏措勤地区石炭纪—早二叠世古地理演化[J].地球科学进展,2004,19(增刊):46~49
    213.周中毅,潘长春.沉积盆地古地温测定方法及其应用[M].广州:广东科技出版社,1992,68~103
    214.朱文斌,万景林,舒良树等.裂变径迹定年技术在构造演化研究中的应用[J].高校地质学报,2005,11(4):593~600
    北京石油勘探开发科学研究院遥感所.1998.青藏羌塘盆地双湖地区遥感石油地质填图综合工程报告
    成都地质矿产研究所.2005.1:25万吐错幅区域地质调查报告
    成都理工大学.2002.1:25措勤县幅区域地质调查
    成都理工大学.2005.青藏高原新生代陆相盆地石油地质综合研究
    成都理工学院.1997.青藏地区可可西里盆地区域石油地质调查报告
    大庆油田勘探分公司.2002.羌塘盆地、措勤盆地北部油气勘探早期评价及部署研究
    河南地调院.2002.1:25万尼玛区幅区域地质调查
    贾建称.2006.羌塘盆地东部中新生代沉积特征与动力学演化[D].中国地质大学
    江西地调院.2002.1:25万班戈幅区域地质调查报告
    刘志飞.1999.青藏高原腹地第三纪沉积与高原隆升的关系[D].成都理工学院
    卢楠辉等.1998.“羌塘盆地中新生代古生物群等地层划分对比”研究报告
    西藏地调院.2003.1:25兹格塘错幅区域地质调查
    西藏地调院.2005.1:25狮泉河幅区域地质调查
    张哨楠.1984.西藏北部西雅尔岗地区白垩—第三纪沉积环境及成岩作用[D].成都地质学院)
    中国地质大学.2005.1:25万安多县幅区域地质调查报告
    中石油青藏项目经理部.1997.羌塘盆地构造—热演化研究与盆地初步评价
    朱利东.2004.青藏高原北部隆升与盆地和地貌记录[D].成都理工大学

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700