用户名: 密码: 验证码:
时滞切换神经网络的稳定性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着智能控制的发展,混杂系统得到了更广泛的应用.作为一种特殊的混杂系统,切换系统是由一族连续时间或离散时间子系统和描述它们之间联系的切换规则所组成的线性或非线性系统.近年来,由一系列神经网络子系统所构成的切换神经网络被应用到高速信号处理和人工智能等领域.因此,人们对时滞切换Hopfield神经网络的稳定性问题进行了研究,并基于Lyapunov-Krasovskii泛函方法得到了一些稳定性条件.区间时滞切换神经网络是参数在某一有界区间内变化的切换神经网络系统,研究区间时滞切换神经网络的稳定性在理论和实践上都具有十分重要的意义.该论文主要针对时滞切换神经网络系统的稳定性及状态衰减估计问题做了一些理论性的研究.其主要结果包括以下两个部分:
     1)中立型区间时变时滞切换Hopfield神经网络的指数稳定性分析和状态衰减估计.
     研究中立型区间时变时滞切换Hopfield神经网络的全局指数稳定性和状态衰减估计的问题.基于Lyapunov-Krsasovskii稳定性理论和线性矩阵不等式技术,构造新的Lyapunov泛函,应用平均驻留时间方法对中立型区间时变时滞切换Hopfield神经网络系统,给出时滞依赖渐近稳定性条件和状态衰减估.所给这些充分条件均以线性矩阵不等式的形式给出,容易验证.仿真结果进一步证明结论的有效性.
     2)不确定离散时间时滞切换Hopfield神经网络的鲁棒指数稳定性.
     针对离散时间时滞不确定切换Hopfield神经网络系统考虑其鲁棒指数稳定性及状态衰减估计问题.首先给出不确定离散时间时滞切换Hopfield神经网络的模型,再应用有限和不等式技术和平均驻留时间方法,通过建立一个新的Lyapunov泛函得到几个时滞依赖条件,使其确保所考虑的不确定离散时间切换Hopfield神经网络鲁棒指数稳定.最后通过数值例子验证了方法的有效性.
With the rapid development of intelligent control, hybrid systems have been investigated for their extensive applications. As a special class of hybrid systems, switched systems are regarded as linear or nonlinear systems, which are composed of a family of continuous-time or discrete-time subsystems and a rule that orchestrates the switching between the subsystems. In recent years, the switched neural networks, whose individual subsystems are a set of neural networks, have found their applications in the fields of high speed signal processing, artificial intelligence and other aspects. Therefore, researchers have studied the stability issues for the delayed switched Hopfield neural networks. Some stability conditions for switched Hopfield neural networks with time-varying delay are addressed based on the Lyapunov-Krasovskii functional approach. A switched neural network is usually called interval switched neural networks when the uncertainty is only due to the bounded deviations and perturbations of its parameters. The study on the stability of delayed interval switched neural networks becomes an important topic in theory and real applications. In this thesis, we consider the stability and state decay estimation problems for a class of delayed switched Hopfield neural networks. The main results are as follows:
     1) Delay-range-dependent global exponential stability and decay estimation for a class of switched Hopfield neural networks (SHNNs) of neutral type.
     The problem of delay-range-dependent global exponential stability and decay estima-tion for a class of switched Hopfield neural networks (SHNNs) of neutral type is studied. An average dwell time method is introduced into switched Hopfield neural networks. By constructing a new Lyapunov-Krasovskii functional and designing a switching law, some cri-teria are proposed to guarantee exponential stability for given system, while the exponential decay estimation is explicitly developed for the states. A numerical example is provided to demonstrate the effectiveness of the main results.
     2) Robust exponential stability problem for uncertain discrete-time switched Hopfield neural networks with time delay.
     We deal with the problem of robust exponential stability and decay estimation problem for uncertain discrete-time switched Hopfield neural networks with time delay. Firstly, the mathematical model of the uncertain discrete-time switched system is established. Then by constructing a new switching dependent Lyapunov-Krasovskii functional, some new delay-dependent criteria are developed, which guarantee the robust exponential stability of the uncertain discrete-time switched Hopfield neural networks. A numerical example is provided to demonstrate the effectiveness of the proposed algorithms.
引文
[1]S. Arik. Stability analysis of delayed neural networks[J]. IEEE Transactions on circuits and Systems Part Ⅰ:Regular Paper,2000,7:1089-1092.
    [2]S. Arik. Global asymptotic stability of a larger class of neural networks with contant time delay[J]. Phys. Lett. A,2003,311:04-511.
    [3]P. Balasubramaniam, S. Lakshmanan. Delay-range dependent stability criteria for neu-ral networks with Markovian jumping parameters [J]. Nonlinear Anal. Hybrid Syst. 2009,3(4):749-756.
    [4]S. Boyd, L. El Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, PA,1994.
    [5]T. X. Brown. Neural networks for switching[J]. IEEE Communications Magazine,72-81, November,1989.
    [6]J. Cao. An estimation of the domain of attraction and convergence rate for Hopfield continuous feedback neural networks[J]. Phys. Lett. A,2004,325:370-374.
    [7]J. Cao. New results concerning exponential stability and periodic solution of delayed cellular neural networks[J]. Phys. Lett. A,2003,307:136-147.
    [8]J. Cao, D.W.C. Ho, A general framework for global asymptotic stability analysis of delayed neural networks based on LMI approach, Chaos, Solitons, Fractals 24(2005) 1317-1329.
    [9]J. Cao. Global stability analysis in delayed cellular neural networks[J]. Phys. Rev.,1999, 59(5):5940-5944.
    [10]D. G. Chen, R. R. Mohler. Neural-network-based load modeling and its use in voltage stability analysis[J]. IEEE Trans. Control Sys. Technology,2003,11(4):460-470.
    [11]D. Z. Cheng. Stabilization of planar switched systems[J], Systems and Control Letters, 2004,51(2):79-88.
    [12]R. A. DeCarlo, M. S. Branicky, Pettersson S, Lennartson B. Perspectives and results on the stability and stabilizability of hybrid systems[J], Proceedings of the IEEE,2000, 88(7):1069-1082.
    [13]D. Du, B. Jiang, P. Shi, etal. H∞ filtering of discrete-time switched systems with state delays via switched Lyapunov function approach[J]. IEEE Trans. Autom. Control,2007, 49(4):574-578.
    [14]J. Ezzine, A. H. Haddad. Controllability and observability of hybrid systems [J]. Int. J. Control,1989,49(6):2045-2055.
    [15]A. Goll, P. P. Varaiya. Hybrid dynamical system[C]. Proc.28th IEEE conf. Decision and Control. FL USA:Tmpa,1989,2708-2712.
    [16]K Gopalsamy, X. Z. He. Delay-independent stability in bidireetional associative memory networks[J]. IEEE Trans, Neural Networks,1994,5:998-1002.
    [17]S. Grossberg. Compectitive learning:from interactive activation to adaptive reso-nance[J]. Cognitive Science,1987,11:23-63.
    [18]J. P. Hespnaha, A. S. Morse.·Stability of switched systems with average dwell-time[J]. In:Proceedings of the 38th Conference on Decision Control, Phoenix, Arizona:Omn-Piress,1999,2655-2660.
    [19]J. P. Hespanha, A. S. Morse. Switching between stabilizing controllers [J]. Automatica, 2002,38:1905-1917.
    [20]J. J. Hopfield. Neural networks and physical systems with emergent collective compu-tational abilities[J]. Proc. Natl. Acad. Sci.,1982,79:2554-2558.
    [21]J. J. Hopfield. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proc. Natl. Acad. Sci.,1984,81:3088-3092.
    [22]L. Hou, G. Zong, H. Sun. Robust stability analysis of switched linear systems with time delay[C]. Chinese Control and Decision Conference, Yantai, Shandong,2-4, July,2008, 3746-3750.
    [23]H. Huang, Y. Z. Qu, H. X. Li. Robust stability analysis of switched Hopfield neural networks with Time-varying delay nnder uncertainty[J]. Phys. Lett. A,2005,345(4-6): 345-354.
    [24]D. Jeon, M. Tomizuka. Leaning hybrid force and position control of robot manipula-tors[J]. IEEE Trans. on Robotics Automat,1996,9:423-421.
    [25]H. K. Lam, Leung Fran H F, Tam Peter K S. A switching controller for uncertain nonlinear systems[J]. IEEE Control system Magazine,2002,22(1):7-14.
    [26]C. Li, G. Feng, T. Huang. On hybrid impulsive and switching neural networks[J]. IEEE Transactions on Systems, Man, and Cybernetics-Parte B:Cybernetics,2008,38(6): 1549-1560.
    [27]X. F. Liao. Theory and applications of stability for dynamical systems[M]. Beijing National Defensive Industrial Press,2000.
    [28]D. Liberzon, A. S. Morse. Basic problems in stability and design of switched systems[J], IEEE Conrt. Syst. Mag.,1999,19(5):59-70.
    [29]D. Liberzon. Switching in systems and control[M]. Systems and Control:Foundations and Applications. Birkhauser, Boston,2003.
    [30]T. Liou, J. Yan, C. Cheng, C. Huang. Global exponential stability condition of a class of neural networks with time-varing delays[J]. Phys. Lett. A.,2003,339:333-342.
    [31]2. J. Liu, G. Zong, Y. Zhang. Delay-dependent global asymptotic stability of BAM neural networks with time-varying delays via LMI approach[J]. Applied Mathematics-A Journal of Chinese Universities Series B,2009,24(3):282-290.
    [32]J. Liu, G. D. Zong. New delay-dependent asymptotic stability conditions concering BAM neural networks of neutral type[J]. Neurocomputing,2009,72:2549-2555.
    [33]J. Liu, X. Liu, W. Xie. Delay-dependent robust control for uncertain switched systems with time-delay[J]. Nonlinear Analysis:hybrid Systems,2008:81-95.
    [34]X. Y. Lou, B. T. Cui. Delay-dependent criteria for robust stability of uncertain switched Hopfield neural networks[J]. International Journal of Automation and Computing,2007, 4(2-6):304-314.
    [35]H. Lu, F. L. Chung, Z. He. Some sufficient conditions for gloabl exponential stability of delayed Hopfceld neural networks[J]. Neural Networks,2004,17:537-544.
    [36]M. S. Mahmoud. Switched discrete-time systems with time-varying delays:A gener-alized H2 approach[J]. Computers and Mathematics with Applications,2009,57(1): 79-95.
    [37]X. Mao. Exponential stability of stochastic delay interval systems with Markovian switching[J]. IEEE Transactions on Automatic Conirol,2002,47(10):1604-1612.
    [38]C. M. Marcus, R. M. Westervelt. Stability of analog neural networks with delays[J]. Phys. Rev. A,1989,39:347-359.
    [39]Y. S. Moon, P. Park, W. H. Kwon, etal. Delay-depended robust stabilization of uncertain state-delayed systems[J]. International Journal of Control,2001,74(14):1447-1455.
    [40]A. S. Morse. Supervisory control of families of linear set-point controllers-part Ⅱ:exact matching[J], IEEE Trnas. Automat Contr.,1996,41(10):1413-1431.
    [41]M. Muselli. Gene selection through switched neural networks[C]. Contribution to NET-TAB 03, Bologna,2003,27-28.
    [42]P. Niamsup. Stability of time-varying switched systems with time-varying delay [J]. Non-linear Anal. Hybrid Syst.,2009,3(4):631-639.
    [43]H. Nie, J. Zhao. Hybrid state feedback H∞ robust control for a class of linear systems with norm-bound uncertainty[C]. Porc. of the ACC. Denver, Colorado, Tune 4-6,2003.
    [44]J. H. Park, O. M. Kwon, S. M. Lee. LMI optimization approach on stability for delayed neural networks of neutral-type[J]. Appl. Math. Comput.2008,196:236-244.
    [45]J. H. Park, C. H. Park, O. M. Kwon, S. M. Lee. A new stability criterion for bidire-crtional associative memory neural networks of neutral-type[J]. Appl. Math. Comput., 2008,199:716-722.
    [46]J. H. Park, O. M. Kwonb. Global stability for neural networks of neutral-type with interval time-varying delays[J] Chaos, Solitons, Fractals,2009,41(3):1174-1181.
    [47]P. Peleties, R. A. DeCarlo. Asymptotic stability of m-switched systems using Lyapunov-like functions[C]. In:Proceedings of American Control Conference, Boston, MA,1991: 1679-1684.
    [48]C. Peng, Y.C. Tian. Delay-dependent robust stability criteria for uncertain systems with interval time-varying delay[J]. J. Comput. Appl. Math.,2008,214:480-494.
    [49]J. Qiu, J. Cao. Delay-dependent robust stability of neutral-type neural networks with time delays [J]. J. Math. Control Science and Applications,2007,4:179-188.
    [50]V. Singh. On global robust stability of interval Hopfield neural networks with delay[J]. Chaos, Solitons and Fractals,2007,33(4):1183-1188.
    [51]Hasan SMR, Siong NK. A VLSI BAM neural network chip for pattern recognition application[C]. Proceedings of IEEE international Conference on neural networks,1995, 1:164-168.
    [52]Y. Song, J. Fan, M. Fei, T. Yang. Robust H∞ control of discrete switched systems with time delay[J]. Applied Mathematics and Computation,2008,205(1):159-169.
    [53]X. Sun, W. Wang, G. Guo, etal. Stability analysis for linear switched systems with time-varying delay[J]. IEEE Transactions on Systems, Man, and Cybernetics-Part B: Cybernetics,2008,38(2):528-533.
    [54]X. Sun, J. Zhao, D. J. Hill. Stability and L2-gain analyssis for switched delay systems: A delay-dependent method[J]. Automatica,2006,42:1769-1774.
    [55]Y. Sun, L. Wang, G. Xie. Delay-dependent robust stability and H∞ control for un-certain discrete-time switched systems with mode-dependent time delays[J]. Applied Mathematics and Computation,2007,187:1228-1237.
    [56]Z. D. Sun, S. S. GE. Switched linear systems-control and design, NewYork[M]:SPringer-Verlag,2004.
    [57]Z. Sun, S. S. Ge, Lee T H. Controllability and reachability criteria for switched linear systems[J]. Automatica,2002,38(5):775-786.
    [58]Z. Sun, D. Zheng. On reachability and stabilization of switched linear control systems[J]. IEEE Trans. Automa. Control,2001,46:291-295.
    [59]Y. Tsividis. Switched neural networks, United States Patent, Patent number 4873661, 1989.
    [60]X. Wei, D. Zhou, Q. Zhang. On asymptotic stability of discrete-time non-autonomous delayed Hopfield neural networks[J]. Computers and Mathematics with Applications, 2009,57(11-12):1938-1942.
    [61]H. Wu. Global exponential stability of Hopfield neural networks with delays and inverse Lipschitz neuron activations[J]. Nonlinear Analysis:Real World Applications,2009, 10(4):2297-2306.
    [62]Y. S. Xia, J. Wang. Global exponential stability of recurrent neural networks for solving optimization and related problems[J]. IEEE Trans, Neural networks,2000,11(4):1017-1022.
    [63]D. Xie, X. Chen. Observer-based switched control design for switched linear systems with time delay in detection of switching signal[J]. IET Control Theory Appl.2008, 2(5):437-445.
    [64]G. Xie, L. Wang. Quadratic stability and stabilization of discretetime switched systems with state delay[C]. Proc.43th IEEE Conf. Decision Control, Atlantis, Paradise Island, Bahamas, Dec.14-17,2004:3235-3240.
    [65]G. M. Xie, L. Wnag. Stabilization of switched linear systems with time-delay in detection of switching signal[J]. Journal of Mathematical Analysis and Applications,2005,305(1): 277-290.
    [66]G. Xie, L. Wang, Q. Ye. Controllbaility of a class of hybrid dynamic systems(Ⅰ-Ⅲ) Basic properties, and preliminary results[J]. Applied Mathematics and Mechnaics(English Edition),2003,24:1041-1050-1074.
    [67]H. Xu, X. Liu, K. Teo. A LMI apporoach to stability analysis and synthsis of impulsive switched systems with time delay[J]. Nonlinear Analysis:Hybrid Systems.2008:38-50.
    [68]S. Xu, T. Chen. Robust H∞ control for uncertain discrete-time stochastic bilinear sys-tems with Markov switching[J]. International Journal of Robust and Nonlinear Control, 2005,15(5):201-217.
    [69]S. Xu, J. Lam, D. W. C Ho, Y. Zou. Delay-dependent exponential stability for a class of neural networks with time delays[J]. J. Comput. Appl. Math.,2005,183:16-28.
    [70]Z. B. Xu. Global convergence and asymptotic stability of asymmetric Hopfield neural networks[J]. J. Math. Anal. Appl.,1995,191:405-427.
    [71]F. Yang, Y. Huang. Robust mixed H2/H∞ filtering with regional pole assignment for uncertain discrete-time systems[J]. IEEE Trans. Circuits Syst. I,2002,49:1236-1241.
    [72]H. Yang, T. Chu, C. Zhang. Exponential stability of neural networks with variable delays via LMI approach[J]. Chaos, Solitons and Fractals,2006,30(1):133-139.
    [73]Z. Yang. An algebraic approach towards the controllability of controlled switching linear hybrid systems[J]. Automatica,2002,38:1221-1228.
    [74]Z. Yang. A sufficient and necessary condition for the controllability of linear hybrid systems [J]. Proc. of the 2003 IEEE International Symposium on Intelligent Control. Houston, Texas.2003.128-133.
    [75]C. Yuan, X. Mao. Robust stbaility and controllabiliy of stochastic differential delay equations with Markovian switching[J]. Automatica,2004,40(3):343-354.
    [76]D. Yue, C. Peng, G.Y. Tang. Guaranteed cost control of linear systems over networks with state and input quantisations[C]. IEE Proc. Control Theory Appl.,2006,153(6): 658-664.
    [77]G. Zhai. Quadratic stabilizability of discrete-time switched systems via state and output feedback[J]. Proceedings of the 40th IEEE conference on decision and control. Orlando, Florida,2001,2165-2166.
    [78]G. Zhai, et al. Improving closed-loop stability of second-order LTI systems by hybrid static output feedback[C]. Proc. of the IEEE conf. on D. C.,2002,3:2792-2797.
    [79]G. Zhai, B. Hu, K. Yasuda, et al. Stability of analysis of switched systems with stable and unstable subsystems:an average dwell time approach[C]. Pro. of the American Control Conference, Chieago,2000,200-204.
    [80]G. Zhai, Y. Sun, X. Chen, etal. Stability and L2 gain analysis for switched symmetric systems with time delay[C]. Proc. Amer. Control Conf., Denver, CO,2003:4-6.
    [81]L. Zhang, C. H. Wang, H. Gao. Delay-dependent stability and stabilization of a class of linear switched time-varying delay systems[J]. Journal of Systems Engineering and Electronics,2007,18(2):320-326.
    [82]W. Zhang, L. Yu. Stability analysis for disctete-time switched time-delay systems[J]. Automatica,2009,45(10):2265-2271.
    [83]Y. Zhang, L. Guo, C. Feng. Stability analysis on a neutral neural network model[J]. Lecture Notes in Computer Science,2005,3644:697-706.
    [84]Y. Zhang, X. Z. Liu, X. M. Shen. Stability of switched systems with time delay [J]. Nonlinear Anal. Hybrid Syst.,2007,1:44-58.
    [85]Y. Zhang, Y. Shen, X. F. Liao. Novel criteria stability for stochastic interval delayed Hopfield neural networks[J]. Advances in Syst. Sci. Appl.,2002,2(1):37-41.
    [86]J. Zhao and G. M. Dimirovski. Quadratic stability of a class of switched nonlinear systems[J]. IEEE Trans. Automa. Contr.,2004,49(4):574-578.
    [87]J. Zhao, M. W. Spong. Hybrid control for global stabilization of the cart-pendulum system[J]. Automatica,2001,37(12):1941-1951.
    [88]J. Zhou, S. Li, Z. Yang. Global exponential stability of Hopfield neural networks with distributed delays[J]. Applied Mathematical Modelling,2009,33(3):1513-1520.
    [89]J. Zhu, Q. Zhang, C. Yang. Delay-dependent robust stability for Hopfield neural net-works of neutral-type[J]. Neurocomputing,2009,72(10-12):2609-2617.
    [90]G. Zong, J. Liu. New delay-dependent global robust stability conditions for interval neural networks with time-varying delays[J]. Chaos, Solitons and Fractals,2009,42(5), 2954-2964.
    [91]G. Zong, S. Xu, Y. Wu. Robust H∞ stabilization for uncertain switched impulsive control systems with state delay:an LMI approach[J]. Nonlinear Anal. Hybrid Syst., 2008,2:1287-1300.
    [92]G. Zong, S. Xu, Y. Wu. Robust H∞ stabilization for uncertain switched impulsive control systems with state delay:An LMI approach[J]. Nonlinear Analysis:Hybrid Systems,2008,2(4):1287-1300.
    [93]高立群,景丽.线性切换系统经周期切换渐近稳定性研究[J].控制与决策,2005,20(5):541-544.
    [94]刘佳,宗广灯,张运喜.中立型BAM神经网络的鲁棒稳定性分析.信息技术与信息化,2009,3:48-52.
    [95]孙洪飞,赵军,高晓东.带有时滞摄动的线性切换系统的稳定性[J].控制与决策,2002,17(4):431-434.
    [96]孙文安,赵军.凸锥型不确定线性切换系统的二次镇定[J].控制理论与应用,2005,22(5):790-793.
    [97]俞立.鲁棒控制-线性矩阵不等式处理方法[B].清华大学出版社,2002,6-11,241-269.
    [98]刘玉忠,赵军.一类非线性开关系统二次稳定的充要条件[J].自动化学报,2002 28(3):596-600.
    [99]宗广灯,武玉强.一类离散时间切换系统鲁棒控制器设计[J].控制与决策,2004,19(6):663-666.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700