用户名: 密码: 验证码:
大黄素逆转卵巢癌细胞耐药及抑制侵袭作用机制的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     大黄素(Emodin)属蒽醌类衍生物,是大黄、虎杖、首乌等多种中药的有效成分之一,除了具有调节机体免疫,抗菌抗炎等作用外,近年来研究表明,大黄素还具有诱导肿瘤细胞凋亡及抑制肿瘤细胞转移等多种生物学效应。随着研究的逐步深入,其抗肿瘤作用越来越受到人们的重视。
     卵巢癌(Ovarian cancer,OC)是妇科中的常见恶性肿瘤,其死亡率居妇科肿瘤首位。手术治疗和以紫杉醇、顺铂等为主的联合化疗方案是目前卵巢癌治疗的重要手段。而在临床治疗过程中会出现由于长期治疗而导致肿瘤细胞对化疗药物产生耐药性,约80%以上的卵巢癌患者在治疗后会出现肿瘤病灶的侵袭和转移,从而导致肿瘤复发,五年存活率仅45%。如何逆转卵巢癌细胞的耐药及抑制卵巢癌侵袭转移等问题成为卵巢癌治疗的热点和难点。
     紫杉醇(Paclitaxel)是卵巢癌化疗的一线药物,作用机理是诱导和促进微管的装配,使微管在有丝分裂时不能形成纺锤体和纺锤体丝,导致快速分裂的肿瘤细胞在有丝分裂阶段(G2/M期阻滞)固定,阻止肿瘤细胞的分裂和繁殖,诱导细胞凋亡。但在经过数个疗程化疗后,肿瘤细胞往往会出现对紫杉醇的获得性耐药,致使后续化疗失败。紫杉醇耐药的机制包括P-gp(p-glycoprotein,P-gp)表达的升高,微管α、β亚基的改变,凋亡途径改变等。P-gp是多药耐药基因-1(multidrug resistance gene-1,MDR-1)编码的一种跨膜转运蛋白,具有ATP酶活性,能将化疗药物从细胞内泵出,降低细胞内的有效药物浓度从而导致多药耐药,其过表达是紫杉醇耐药的重要原因之一。凋亡抑制蛋白家族(Inhibitor ofapoptosis proteins,IAPs)中的survivin、X染色体连锁凋亡抑制蛋白(X-linkedinhibitor of apoptosi s protein,XIAP)在凋亡过程中能够发挥重要的抑制细胞凋亡的作用,其过表达是导致紫杉醇耐药的机制之一。
     巨噬细胞移动抑制因子(macrophage migration inhibitory factor,MIF)是一种重要的免疫及神经内分泌因子,具有信号调节、免疫活性、促进炎症反应、催化功能以及内分泌功能等多重生物学活性。它还可以刺激细胞增殖、分化和迁移,抑制肿瘤细胞的凋亡,促进肿瘤血管生成,在多种肿瘤的发生、发展和转移中担任重要角色。MIF蛋白在卵巢癌、食管癌、肝细胞癌等多种肿瘤中的表达显著升高,表明MIF参与了肿瘤的发生发展过程。MIF能通过调控细胞外信号调节激酶(ERK)调节的MAPK的激活和磷酸化来促进肿瘤细胞的增殖;通过上调肿瘤MMP-9和MMP-2的表达,增加对肿瘤细胞外基质以及基底膜的溶解;使肿瘤细胞中VEGF、IL-8的表达升高,促进肿瘤细胞转移过程中微血管的形成,这些可能是MIF促进肿瘤细胞侵袭和远处转移的重要因素。基质金属蛋白酶(matrixmetaloproteinases,MMPs)是一族锌肽酶超家族,参与肿瘤细胞对基底膜(basement membrane,BM)和细胞外基质(extracellular matrix,ECM)的降解,是目前已知的能够降解胶原纤维的唯一酶类。MMPs在多种转移癌中表达明显增高,与肿瘤转移密切相关。MMPS成员中,基质金属蛋白酶-2,-9(matrixmetalloproteinase-2,-9,MMP-2,-9)因为能够特异性的降解细胞外基质和基底膜的主要成Ⅳ型胶原,从而在肿瘤侵袭转移过程中发挥最直接和最重要的作用。
     本研究分为两部分:
     第一部分:大黄素对卵巢癌细胞系诱导凋亡和逆转耐药作用及机制的研究;
     第二部分:大黄素对卵巢癌耐药细胞系侵袭能力的抑制作用及其机制研究。
     第一部分:大黄素对卵巢癌细胞系诱导凋亡和逆转耐药作用及其机制的研究
     目的:
     1.研究大黄素(Emodin)作用于人卵巢癌细胞系A2780和A2780/taxol细胞的生长抑制作用;
     2.研究大黄素对卵巢癌细胞的凋亡诱导作用;观察大黄素对紫杉醇诱导耐药细胞系A2780/taxol凋亡的变化;
     3.检测大黄素作用前后卵巢癌细胞中耐药及凋亡相关基因及蛋白的表达水平,探讨大黄素的作用机制。
     方法:
     MTT法检测不同浓度大黄素(10,20,40,80μM)对A2780和A2780/taxol的生长抑制作用;MTT法检测低浓度大黄素联合紫杉醇作用时,对紫杉醇抑制耐药卵巢癌细胞A2780/taxol生长的增强作用;流式细胞仪(FCM)检测大黄素单独或联合紫杉醇作用于耐药卵巢癌细胞A2780/taxol的凋亡诱导情况;QRT-PCR检测大黄素作用后A2780/taxol细胞内MDR-1、XIAP和survivin基因mRNA表达;蛋白印迹法(Western blot)检测A2780和A2780/taxol细胞中MDR-1、XIAP和survivin蛋白的表达,并检测大黄素作用后A2780/taxol细胞中MDR-1、XIAP和survivin蛋白表达;罗丹明外排实验检测P-gp功能水平的改变。
     结果:
     1、大黄素对A2780和A2780/taxol细胞的生长抑制作用
     应用MTT法检测不同浓度大黄素作用于卵巢癌细胞系A2780和A2780/taxol24小时后的生长抑制作用,结果显示:A2780细胞各组细胞增殖率分别为:空白对照组99.81%±3.43%;大黄素10μM组93.85%±4.21%;大黄素20μM组78.17%±1.26%;大黄素40μM组55.90%±7.00%;大黄素80μM组38.91%±3.68%。A2780/taxol细胞各组细胞增殖率分别为:空白对照组98.63%±4.61%:大黄素10μM组93.10%±5.13%;大黄素20μM组75.61%±3.82%;大黄素40μM组57.76%±6.30%;大黄素80μM组36.21%±4.50%。
     2、大黄素对A2780和A2780/taxol细胞的凋亡诱导作用
     应用FCM法检测不同浓度大黄素作用于卵巢癌细胞系A2780/taxol 24小时后的凋亡诱导作用,结果显示各组细胞凋亡率分别为:空白对照组1.30%;10μM大黄素组5.56%;20μM大黄素组17.66%;40μM大黄素组31.96%;80μM大黄素组41.97%。
     3、大黄素与紫杉醇对A2780和A2780/taxol细胞的联合作用
     应用MTT法检测大黄素(10μM)和紫杉醇(1μM)单独或联合作用于卵巢癌细胞系A2780和A2780/taxol 24小时后的生长抑制作用,结果显示,A2780细胞各组细胞增殖率分别为:空白对照组100.00%±3.23%;大黄素10μM组95.00%±3.86%;紫杉醇1μM组56.45%±2.93%;大黄素+紫杉醇组43.29%±2.43%。细胞各组细胞增殖率分别为:空白对照组98.80%±3.17%;大黄素10μM组92.34%±1.07%;紫杉醇1μM组81.49%±4.49%;大黄素+紫杉醇组63.60%±2.27%。
     4、A2780和A2780/taxol细胞中MDR-1、XIAP和survivin的基础表达
     应用Western blot法检测处于对数生长期的A2780和A2780/taxol细胞中MDR-1、XIAP和survivin的基础表达,结果显示:MDR-1所编码的P-gp蛋白的表达在A2780细胞中非常低,但在A2780/taxol细胞中表达明显升高。A2780/taxol细胞中,凋亡抑制蛋白家族的survivin和XIAP的表达也比在其亲本细胞A2780中表达明显升高。
     5、大黄素对A2780/taxol细胞中MDR-1、XIAP和survivin基因及蛋白表达水平的影响
     应用QRT-PCR和Western blot法检测大黄素作用后A2780/taxol细胞中MDR-1、XIAP和survivin的表达水平,QRT-PCR结果用目的基因和内参照基因(β-actin)的比值来表示。结果显示:空白对照A2780/taxol细胞中MDR-1基因水平为1.20±0.25,大黄素10μM干预72小时后A2780/taxol细胞中MDR-1基因水平为0.27±0.09(P<0.05);空白对照A2780/taxol细胞中XIAP基因水平为1.77±0.41,大黄素10μM干预72小时后A2780/taxol细胞中XIAP基因水平为0.987±0.20(P<0.05);空白对照A2780/taxol细胞中survivin基因水平为0.086±0.01,大黄素10μM干预72小时后A2780/taxol细胞中survivin基因水平为0.06±0.01(P<0.05)。Western blot的结果显示大黄素作用后MDR-1、XIAP和survivin蛋白的表达水平降低。罗丹明实验表明大黄素作用后A2780/taxol细胞中P-gp蛋白的功能为空白对照细胞的32.11%±8.8%(P<0.05)。
     结论:
     1、大黄素可以抑制A2780和A2780/taxol细胞的增殖,具有浓度依赖性;
     2、大黄素能诱导A2780和A2780/taxol细胞凋亡,通过降低MDR-1、XIAP和survivin的表达,增强紫杉醇耐药细胞对紫杉醇的药物敏感性并促进紫杉醇诱导的细胞凋亡。
     第二部分大黄素对卵巢癌耐药细胞系侵袭能力的抑制作用及其机制研究
     目的:
     1、探讨A2780/taxol细胞侵袭能力的改变及相关机制;
     2、检测大黄素对卵巢癌A2780/taxol细胞的侵袭抑制作用;并探讨大黄素抑制肿瘤细胞侵袭能力的作用机制。
     方法:
     肿瘤细胞侵袭实验(Transwell)检测A2780和A2780/taxol两种细胞的侵袭能力;Western blot法检测侵袭转移相关因子MIF、MMP-2和MMP-9在A2780和A2780/taxol细胞中基础表达的差异;Transwell法检测不同浓度大黄素(20,40,80μM)作用后卵巢癌A2780/taxol细胞体外侵袭能力的改变:QRT-PCR法检测大黄素作用前后A2780/taxol细胞中MIF、MMP-2和MMP-9基因mRNA表达水平的变化;Western-blot法检测大黄素作用前后A2780/taxol细胞中MIF、MMP-2和MMP-9蛋白表达水平的变化。
     结果:
     1、A2780和A2780/taxol细胞的侵袭能力的检测
     应用Transwell法检测处于对数生长期的A2780和A2780/taxol细胞的侵袭能力,结果显示:每高倍镜视野中有48±4.64个A2780细胞穿透基底膜层,进入侵袭小室下层;每高倍镜视野有92.33±7.40个细胞穿透基底膜,进入侵袭小室下层,差异有统计学意义(P<0.05)。
     2、A2780和A2780/taxol细胞中MIF、MMP-2和MMP-9的表达水平
     应用western blot法检测出于对数生长期的A2780和A2780/taxol细胞中MIF、MMP-2和MMP-9蛋白的基础表达,结果显示:A2780/taxol细胞中侵袭相关蛋白MIF、MMP-2和MMP-9的表达明显高于其亲本细胞系A2780;
     3、大黄素对卵巢癌A2780/taxol细胞侵袭能力的影响
     应用Transwell法检测不同浓度大黄素作用24小时后卵巢癌A2780/taxol细胞的侵袭能力,结果显示:空白对照组有96.33±11.82个细胞穿透基底膜,进入侵袭小室下层;20μM组有58.0±8.47个细胞进入侵袭小室下层;40μM组有33.44±6.97个细胞进入侵袭小室下层;80μM组有16.22±7.36个细胞进入侵袭小室下层。
     4、大黄素作用于卵巢癌A2780/taxol细胞后MIF、MMP-2和MMP-9的表达
     应用ORT-PCR和western blot法检测不同浓度大黄素作用于A2780/taxol细胞24小时后细胞中MIF、MMP-2和MMP-9基因和蛋白的表达水平。QRT-PCR结果用目的基因和内参照基因(β-actin)的比值来表示。结果显示:空白对照A2780/taxol细胞中MIF mRNA水平为1.57±0.16;大黄素20μM干预24小时后,A2780/taxol细胞中MIF mRNA水平为1.35±0.18;大黄素40μM作用后,A2780/taxol细胞中MIFmRNA水平为0.95±0.15;大黄素80μM作用后A2780/taxol细胞中MIF mRNA水平为0.44±0.08。空白对照A2780/taxol细胞中MMP-2 mRNA水平为0.73±0.06;大黄素20μM干预24小时后,A2780/taxol细胞中MMP-2基因水平为0.62±0.08;大黄素40μM作用后MMP-2 mRNA水平为0.27±0.08;大黄素80μM作用后MMP-2 mRNA水平为0.14±0.05。空白对照A2780/taxol细胞中MMP-9 mRNA水平为1.00±0.05;大黄素20μM干预24小时后,A2780/taxol细胞中MMP-9基因水平为0.85±0.07;大黄素40μM作用后MMP-9 mRNA水平为0.58±0.04;大黄素80μM作用后MMP-9mRNA水平为0.38±0.06。Western blot的结果显示大黄素作用后MIF、MMP-2和MMP-9蛋白的表达水平降低。
     结论:
     1、卵巢癌细胞A2780/taxol的侵袭能力比A2780显著增强,与MIF、MMP-2和MMP-9的表达升高有关;
     2、大黄素能够抑制A2780/taxol细胞的体外侵袭能力,具有浓度依赖性;MIF、MMP-2和MMP-9参与了大黄素对卵巢癌细胞侵袭能力的调节。
Backgroud:
     Emodin is an effective component of traditional Chinese herbal medicine. It can be extracted from Rheum, Polygonum cuspidatum, Polygonum multiflorum, et al. Emodin has long been known to have a number of biological activities, such as anti-bacterial, immunosuppressive and anti-inflammatory effects, but its capability of anti-cancer and anti-invasion has not been adequately studied. Ovarian cancer has the highest mortality rate among gynecologic malignancies in the world. The standard treatment for ovarian cancer remains surgical debulking and chemotherapy with carboplatin and paclitaxel. However, the majority of ovarian cancer patients have one of the lowest 5-year survival rates, and the development of drug resistance is a major impediment toward successful treatment of the cancer. Thus, there have been a number of researches aimed at understanding the mechanisms of drug resistance, so as to develop strategies to overcome the disease.
     Paclitaxel is an effective chemotherapeutic agent and widely used for the treatment of ovarian cancer, whereas the development of drug resistance limits its availability. To date, several mechanisms of paclitaxel resistance in ovarian cancer cells have been proposed, including overexpression of ABC/MDR transporter family of proteins to increase the cellular efflux of paclitaxel, delayed G2/M transition, and alterations in apoptosis regulation. The overexpression of P-gp (P-glycoprotein), which is encoded by MDR-1 (Multidrug resistance-1) gene, plays a key role in the resistant mechanisms. P-gp functions as an efflux pump to decrease the intracellular accumulation of a variety of lipophilic drugs, including paclitaxel, leading to decresed therapeutic efficacy.
     Successful treatment with chemotherapeutic agents is largely dependent on their ability to trigger cell death in tumor cells; therefore, try to decrease the over-expression of anti-apoptotic molecules may affect the proximal level of apoptotic threshold. As direct caspase inhibitors and participants in a variety of survival signaling pathways, the inhibitor of apoptosis protein (IAP) family are important to the control of cell proliferation and drug resistance in multiple cancer types. As the important IAPs members, XIAP (X-linked inhibitor of apoptosis protein) and survivin up-regulated in most human tumor cells and make the caner cells escape from apoptosis. Evidence indicates that survivin and XIAP are correlated with chemresistance and decrease of these IAPs could induce apoptosis in chemoresistant human ovarian cancer cells. Down regulation of XIAP and survivin may enhance apoptosis in ovarian cancer cells.
     MIF (macrophage migration inhibitory factor, MIF) was one of the first cytokine activities to be described, originally being identified as a product of activated T lymphocytes that inhibited the random migration of cultured macrophages. Recently, MIF has also been implicated in many processes associated with tumor survival and invasion, such as stimulate cell proliferation, differentiation and migration, promote tumor angiogenesis. MIF expression is increased during the evolution of several malignancies, breast-, prostate-, colon-, lung- and ovarian-derived tumors have all been shown to contain significantly higher levels of MIF message and protein than their noncancerous cell counterparts. MIF has been reported to promote angiogenesis and the invasiveness and matrix degrading activity of cancer cells by stimulating mmp-2 and mmp-9. Taken together, MIF may be an important connective point in the process during invasive inhibition of emodin.
     MMPs (matrix metaloproteinases, MMPs), inuclding MMP-2 and MMP-9, play an important role in the degradation of basement membrane type IV collagen, which is associated with tumor cell invasion and metastasis. A role for MMPs in ovarian cancer development has been postulated based upon the observation that several members of the MMP family are up-regulated during ovarian cancer neoplastic progression. MMPs may play important role in the invasion and migration of tumor cells.
     Part I Emodin sensitizes human ovarian cancer cells topaclitaxel-induced apoptosis
     Objective:
     Ovarian cancer has the highest mortality rate among gynecologic malignancies in the world, and the development of drug resistance is a major impediment toward successful treatment of the disease. Emodin has been reported to sensitize human tumor cells to chemotherapeutic agents. In present study, whether emodin could overcome chemoresistance of paclitaxel resistant A2780/taxol cells and the mechanism were investigated.
     Methods:
     Cells were incubated and then treated with different concentration of emodin (10, 20, 40, 80μM) for 24h, respectively, then the viability of each group was determined by MTT assays. The apoptosis rate of cells treated with emodin or/and paclitaxel was determined by FCM. The expression of gene and protein level of MDR-1、XIAP and survivin were detected by QRT-PCR and western blot respectively. The function of P-gp was determined by FCM.
     Results:
     We found that emodin could induce apoptosis at a high concentration and enhance apoptosis induced by paclitaxel at a low concentration in both paclitaxel sensitive and resisitant ovarian cancer cell lines. QRT-PCR and western blot results indicated that the MDR-1 gene and P-gp, which was encoded by MDR-1 gene, were decreased after treatment with emodin. The function of P-gp is also attenuate. Meanwhile, the expression of XIAP and survivin were significantly down-regulated in cells treated with emodin. Furthermore, we found emodin could enhance the expression of cleaved fragments of caspase-3.
     Conclusion:
     Emodin could induce apoptosis alone and sensitize ovarian cancer cells to paclitaxel induced apoptosis. The results demonstrated that emodin could induce apoptosis of resistant ovarian cancer cells by increasing the cellular concentration of paclitaxel and decreasing the expression of anti-apoptotic molecules.
     Part II Emodin inhibits invasion activity of ovarian cancer cells
     Objective:
     Ovarian cancer has the highest mortality rate among gynecologic malignancies in the world. Most of patients die of tumor invasion. Emodin has been reported to inhibit invasion activity in human tumor cells. In present study, whether emodin could inhibit cell invasion ability of paclitaxel resistant ovarian cancer cells were investigated.
     Methods:
     We checked the invasion ability of different ovarian cancer cells, and then checked the expression of invasion related factors MIF, MMP-2 and MMP-9 in A2780 and A2780/taxol cells. Then the high invasiveness cells were treated with different concentration of emodin (20, 40, 80 u M), then the cell invasion ability was measured by transwell assays. The changes of mRNA and protein expression of MIF, MMP-2 and MMP-9 were examined by QRT-PCR and western blot respectively.
     Results:
     A2780/taxol cells had high invasiveness than A2780 cells, and the expression of MIF, MMP-2 and MMP-9 were up-regulated in A2780/taxol cells. The invasive potential of both cell lines were reduced dramatically after treatment with emodin. QRT-PCR and western blot results indicated that the gene and protein expression of MIF, MMP-2 and MMP-9 were decreased after treatment with emodin. And the effect of emodin showed dose-dependent manner in ovarian cancer cells.
     Conclusion:
     A2780/taxol cells is more invasiveness than A2780 cells. The possible mechanisms are increased MIF, MMP-2 and MMP-9. Emodin could inhibit tumor invasion ability by down-regulation the expression of MIF, MMP-2 and MMP-9 in ovarian cancer cells.
引文
1.Puiffe ML,Le Page C,Filali-Mouhim A,et al.Characterization of ovarian cancer ascites on cell invasion,proliferation,spheroid formation,and gene expression in an in vitro model of epithelial ovarian cancer.Neoplasia.2007:9:820-829.
    2.Sandercock J,Parmar MK,Torri V,Qian W.First-line treatment for advanced ovarian cancer:paclitaxel,platinum and the evidence.Br J Cancer.2002;87(8):815-824.
    3.Greenlee RT,Hill-Harmon MB,Murray T,Thun M.Cancer statistics,2001.CA Cancer J Clin. 2001;51(1):15-36.
    4. Jemal A, Siegel R, Ward E, Murray T, Xu J, Thun MJ. Cancer statistics, 2007. CA Cancer J Clin. 2007; 57 :43-66.
    5. McDaid HM, Bhattacharya SK, Chen XT, He L, Shen HJ, Gutteridge CE, Horwitz SB, Danishefsky SJ. Structure-activity profiles of eleutherobin analogs and their cross-resistance in Taxol-resistant cell lines. Cancer Chemother Pharmacol. 1999,44(2): 131 -137.
    6. Matei D. Novel agents in ovarian cancer. Expert Opin Investig Drugs. 2007: 16: 1227-1239.
    7. Kavallans M,Kuo DYS,Burkhart CA. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific P-tubulin isotypes. J Chn Invest,1997, 100(5): 1282-1293.
    8. Kgu-Ho-Han E, Gehrke L,Tahir SK. Modulation of drug resistance bya-tubulin in paclitaxol-resistant human lung cancer cell lines. Eur J Cancer,2000,36: 1 565-1571.
    9. Sarkadi B, Price EM, Boucher RC, Germann UA, Scarborough GA. Expression of the human multidrug resistance cDNA in insect cells generates a high activity drug-stimulated membrane ATPase. J Biol Chem. 1992;267(7):4854-4858.
    10. Barbarics E, Kronauge JF, Cohen D, Davison A, Jones AG, Croop JM. Characterization of P-glycoprotein transport and inhibition in vivo. Cancer Res. 1998;58(2):276-282.
    11. Li L, Luan Y, Wang G, et al. Development and characterization of five cell models for chemoresistance studies of human ovarian carcinoma. Int J Mol Med. 2004: 14: 257-264.
    12. Hille S, Rein DT, Riffelmann M, Neumann R, Sartorius J, Pfutzner A, Kurbacher CM, Schondorf T, Breidenbach M. Anticancer drugs induce mdrl gene expression in recurrent ovarian cancer. Anticancer Drugs. 2006; 17(9): 1041-1044.
    13. Yadav S, van Vlerken LE, Little SR, Amiji MM. Evaluations of combination MDR-1 gene silencing and paclitaxel administration in biodegradable polymeric nanoparticle formulations to overcome multidrug resistance in cancer cells. Cancer Chemother Pharmacol. 2009;63(4):711-722.
    14. He L, Liu GQ. Effects of various principles from Chinese herbal medicine on rhodamine123 accumulation in brain capillary endothelial cells. Acta Pharmacol Sin. 2002;23(7):591-596.
    15. Hannun YA. Apoptosis and dilemma of cancer chemotherapy. Blood, 1997 , 89 : 1845
    16. Deveraux QL, Takahashi R, Salvesen GS, Reed JC. X-linked IAP is a direct inhibitor of cell-death proteases. Nature. 1997;388(6639):300-304.
    17. Deveraux QL, Roy N, Stennicke HR, Van Arsdale T, Zhou Q, Srinivasula SM, Alnemri ES, Salvesen GS, Reed JC. IAPs block apoptotic events induced by caspase-8 and cytochrome c by direct inhibition of distinct caspases. EMBO J. 1998;17(8):2215-2223.
    18. Duffy MJ, O'Donovan N, Brennan DJ, Gallagher WM, Ryan BM. Survivin: a promising tumor biomarker. Cancer Lett. 2007;249(1):49-60.
    19. Cohen C, Lohmann CM, Cotsonis G, Lawson D, Santoianni R. Survivin expression in ovarian carcinoma: correlation with apoptotic markers and prognosis. Mod Pathol. 2003;16(6):574-583.
    20. Zaffaroni N, Daidone MG. Survivin expression and resistance to anticancer treatments : Perspectives for new therapeutic interventions. Drug Resist Updat. 2002;5(2):65-72
    21. Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR. Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer. 2007;120(11):2344-2352.
    22. Connolly K, Mitter R, Muir M, Jodrell D, Guichard S. Stable XIAP knockdown clones of HCT116 colon cancer cells are more sensitive to TRAIL, taxanes and irradiation in vitro. Cancer Chemother Pharmacol. 2008
    23. Dasgupta P, Kinkade R, Joshi B, Decook C, Haura E, Chellappan S. Nicotine inhibits apoptosis induced by chemotherapeutic drugs by up-regulating XIAP and survivin. Proc Natl Acad Sci U S A. 2006 Apr 18;103(16):6332-7.
    24. Zhang L, Hung MC. Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene. 1996;12(3):571-576.
    25. Yang J, Li H, Chen YY, Wang XJ, Shi GY, Hu QS, Kang XL, Lu Y, Tang XM, Guo QS, Yi J. Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis. Free Radic Biol Med. 2004;37(12):2027-2041.
    26. Yi J, Yang J, He R, Gao F, Sang H, Tang X, Ye RD. Emodin enhances arsenic trioxide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Cancer Res. 2004;64(1): 108-116.
    27. Hung MC, Lau YK. Basic science of HER-2/neu: a review. Semin Oncol. 1999;26(4 Suppl 12):51-59.
    28. Hengstler JG, Lange J, Kett A, Dornhofer N, Meinert R, Arand M, Knapstein PG, Becker R, Oesch F, Tanner B. Contribution of c-erbB-2 and topoisomerase IIalpha to chemoresistance in ovarian cancer. Cancer Res. 1999;59(13):3206-3214.
    29. Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H. Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf. 2007;6(5):609-621.
    30. Basu S, Ghosh A, Hazra B. Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn, and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents. Phytother Res. 2005: 19: 888-894.
    31. Kitano A, Saika S, Yamanaka O, Ikeda K, Okada Y, Shirai K, Reinach PS. Emodin suppression of ocular surface inflammatory reaction. Invest Ophthalmol Vis Sci. 2007;48(11):5013-5022.
    32. Kuo YC, Tsai WJ, Meng HC, Chen WP, Yang LY, Lin CY. Immune reponses in human mesangial cells regulated by emodin from Polygonum hypoleucum Ohwi. Life Sci. 2001;68(11):1271-1286.
    33. Wang XD, Gu LQ, Wu JY. Apoptosis-inducing activity of new pyrazole emodin derivatives in human hepatocellular carcinoma HepG2 cells.Biol Pharm Bull.2007:30:1113-1116.
    34.Yu CX,Zhang XQ,Kang LD,Zhang PJ,Chen WW,Liu WW,Liu QW,Zhang JY.Emodin induces apoptosis in human prostate cancer cell LNCaP.Asian J Androl.2008 Jul;10(4):625-34.
    35.Zhang L,Chang CJ,Bacus SS,Hung MC.Suppressed transformation and induced differentiation of HER-2/neu-overexpressing breast cancer cells by emodin.Cancer Res 1995;55:3890.
    36.Shieh DE,Chen YY,Yen MH,Chiang LC,Lin CC.Emodin-induced apoptosis through p53-dependent pathway in human hepatoma cells.Life Sci 2004;74:2279.
    37.Wang C,Jiang Z,Yao J,Wu X,Sun L,Liu C,Duan W,Yan M,Sun L,Liu J,Zhang L.Participation of cathepsin B in emodin-induced apoptosis in HK-2 Cells.Toxicol Lett.2008;181(3):196-204.
    38.Chan TC,Chang CJ,Koonchanok NM,Geahlen RL.Selective inhibition of the growth of ras-transformed human bronchial epithelial cells by emodin,a protein-tyrosine kinase inhibitor.Biochem Biophys Res Commun 1993;193:1152.
    39.Huang Q,Lu G,Shen HM,Chung MC,Ong CN..Anti-Cancer Properties of Anthraquinones from Rhubarb.Med Res Rev.2007 Sep;27(5):609-30.
    40.Srinivas G,Annab LA,Gopinath G,Banerji A,Srinivas P.Antisense blocking of BRCA1 enhances sensitivity to plumbagin but not tamoxifen in BG-1 ovarian cancer cells.Mol Carcinog.2004;39(1):15-25.
    41.朱峰;刘新光;梁念慈。大黄素、芹菜素抑制人卵巢癌细胞侵袭的体外实验研究。癌症,2004,4。
    42.Huang Z,Chen G;Shi P.Emodin-induced apoptosis in human breast cancer BCap-37 cells through the mitochondrial signaling pathway.Arch Pharm Res.2008;31(6):742-748.
    43.Yu CX,Zhang XQ,Kang LD,Zhang PJ,Chen WW,Liu WW,Liu QW,Zhang JY.Emodin induces apoptosis in human prostate cancer cell LNCaP.Asian J Androl.2008;10(4):625-634.
    44. Lee HZ. Protein kinase C involvement in aloe-emodin- and emodin-induced apoptosis in lung carcinoma cell. Br J Pharmacol 2001 ;134:1093—1103.
    45. Olsen BB, Bjφrling-Poulsen M, Guerra B. Emodin negatively affects the phosphoinositide 3-kinase/AKT signalling pathway: a study on its mechanism of action. Int J Biochem Cell Biol. 2007;39(1):227-237.
    46. Brown M, Bellon M, Nicot C. Emodin and DHA potently increase arsenic trioxide interferon-alpha-induced cell death of HTLV-I-transformed cells by generation of reactive oxygen species and inhibition of Akt and AP-1. Blood.
    2007;109(4): 1653-9.
    47. Huang Q, Shen HM, Ong CN. Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol. 2004;68(2):361-71.
    48. Wang X, Zou Y, Sun A, Xu D, Niu Y, Wang S, Wang K, Ge J. Emodin induces growth arrest and death of human vascular smooth muscle cells through reactive oxygen species and p53. J Cardiovasc Pharmacol. 2007;49(5):253-260
    49. Su YT, Chang HL, Shyue SK, Hsu SL. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem Pharmacol. 2005;70(2):229-241.
    50. Jing Xubin, Li Tao. Experiment study of oxidation damage of hepatocellular carcinoma cell induced by emodin]. Chinese Journal of Gastroenterology and hepatology,2002,11(3): 219-221.
    51. Tamm I, Kornblau SM, Segall H, Krajewski S, Welsh K, Kitada S, Scudiero DA, Tudor G, Qui YH, Monks A, Andreeff M, Reed JC. Expression and prognostic significance of IAP-family genes in human cancers and myeloid leukemias. Clin Cancer Res. 2000;6(5):1796-1803.
    52. Li J, Feng Q, Kim JM, Schneiderman D, Liston P, Li M, Vanderhyden B, Faught W, Fung MF, Senterman M, Korneluk RG, Tsang BK. Human ovarian cancer and cisplatin resistance: possible role of inhibitor of apoptosis proteins. Endocrinology. 2001;142(1):370-380.
    53. Yang X, Xing H, Gao Q, Chen G, Lu Y, Wang S, Ma D. Regulation of HtrA2/Omi by X-linked inhibitor of apoptosis protein in chemoresistance in human ovarian cancer cells. Gynecol Oncol. 2005 May;97(2):413-421.
    54. Shaw TJ, Lacasse EC, Durkin JP, Vanderhyden BC. Downregulation of XIAP expression in ovarian cancer cells induces cell death in vitro and in vivo. Int J Cancer. 2008 Mar 15;122(6):1430-1434.
    55. Sasaki H, Sheng Y, Kotsuji F, Tsang BK. Down-regulation of X-linked inhibitor of apoptosis protein induces apoptosis in chemoresistant human ovarian cancer cells. Cancer Res. 2000;60(20):5659-5666.
    56. Ambrosini G, Adida C, Altieri DC. A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma. Nat Med. 1997;3(8):917-921.
    57. Suzuki A, Hayashida M, Ito T, Kawano H, Nakano T, Miura M, Akahane K, Shiraki K. Survivin initiates cell cycle entry by the competitive interaction with Cdk4/p16(INK4a) and Cdk2/cyclin E complex activation. Oncogene. 2000;19(29):3225-3234.
    58. Li F, Ambrosini G, Chu EY, Plescia J, Tognin S, Marchisio PC, Altieri DC. Control of apoptosis and mitotic spindle checkpoint by survivin. Nature. 1998;396(6711):580-584.
    59. Liguang Z, Peishu L, Hongluan M, Hong J, Rong W, Wachtel MS, Frezza EE. Survivin expression in ovarian cancer. Exp Oncol. 2007 Jun;29(2):121-125.
    60. Zhang B, Pan JS, Liu JY, Han SP, Hu G, Wang B. Effects of chemotherapy and/or radiotherapy on survivin expression in ovarian cancer. Methods Find Exp Clin Pharmacol. 2006 Nov;28(9):619-625.
    61. Xing H, Weng D, Chen G, Tao W, Zhu T, Yang X, Meng L, Wang S, Lu Y, Ma D. Activation of fibronectin/PI-3K/Akt2 leads to chemoresistance to docetaxel by regulating survivin protein expression in ovarian and breast cancer cells. Cancer Lett. 2008;261(1):108-119.
    62. Ma X, Wang S, Zhou J, Xing H, Xu G, Wang B, Chen G, Lu YP, Ma D. Induction of apoptosis in human ovarian epithelial cancer cells by antisurvivin oligonucleotides. Oncol Rep. 2005 Jul;14(1):275-279.
    63. Zheng F, Ruan F, Xie XK, Liu SY. Apoptosis of drug-resistant human ovarian carcinoma cell line COC1/DDP induced by survivin antisense oligonucleotides. Chin Med J (Engl). 2006;119(18): 1572-1575.
    64. Azrak RG, Frank CL, Ghadersohi A, Rustum YM. Silencing survivin results in synergy between methylseleninic acid and paclitaxel against skov3 ovarian cancer cells. Cancer Biol Ther. 2008;7(12):1901-1908.
    65. Cai J, Niu X, Chen Y, Hu Q, Shi G, Wu H, Wang J, Yi J. Emodin-induced generation of reactive oxygen species inhibits RhoA activation to sensitize gastric carcinoma cells to anoikis. Neoplasia. 2008;10(1):41-51.
    66. Wang XJ, Yang J, Cang H, Zou YQ, Yi J. Gene expression alteration during redox-dependent enhancement of arsenic cytotoxicity by emodin in HeLa cells. Cell Res. 2005;15(7):511-522.
    67. Yusuf RZ, Duan Z, Lamendola DE, Penson RT, Seiden MV. Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets. 2003 Feb;3(1):1-19.
    68. de Silva MG, Kantharidis P, Scherer SW, Rayeroux K, Campbell L, Tsui LC, Zalcberg JR. Physical mapping of a tandem duplication on the long arm of chromosome 7 associated with a multidrug resistant phenotype. Cancer Genet Cytogenet. 1999;110(1):28-33.
    69. Mercier C, Decleves X, Masseguin C, Fragner P, Tardy M, Roux F, Gabrion J, Scherrmann JM. P-glycoprotein (ABCB1) but not multidrug resistance-associated protein 1 (ABCC1) is induced by doxorubicin in primary cultures of rat astrocytes. J Neurochem. 2003;87(4):820-830.
    70. Anthony V, Skach WR. Molecular mechanism of P-glycoprotein assembly into cellular membranes. Curr Protein Pept Sci. 2002;3(5):485-501.
    71. Andratschke N, Grosu AL, Molls M, Nieder C. Perspectives in the treatment of malignant gliomas in adults.Anticancer Res.2001;21(5):3541-3550.
    72.Decleves X,Fajac A,Lehmann-Che J,Tardy M,Mercier C,Hurbain I,Laplanche JL,Bernaudin JF,Scherrmann JM.Molecular and functional MDR1-Pgp and MRPs expression in human glioblastoma multiforme cell lines.Int J Cancer.2002;98(2):173-180.
    73.Tsuda H,Sata M,Ijuuin H,Kumabe T,Uchida M,Ogou Y,Akagi Y,Shirouzu K,Hara H,Nakashima Y.A novel strategy for remission induction and maintenance in cancer therapy.Oncol Rep.2002 Jan-Feb;9(1):65-68.
    74.Ohishi Y,Oda Y,Uchiumi T,Kobayashi H,Hirakawa T,Miyamoto S,Kinukawa N,Nakano H,Kuwano M,Tsuneyoshi M.ATP-binding cassette superfamily transporter gene expression in human primary ovarian carcinoma.Clin Cancer Res.2002;8(12):3767-3775.
    75.Veneroni S,Zaffaroni N,Daidone MG,Benini E,Villa R,Silvestrini R.Expression of P-glycoprotein and in vitro or in vivo resistance to doxorubicin and cisplatin in breast and ovarian cancers.Eur J Cancer.1994;30A(7):1002-1007.
    76.Kavallaris M,Kuo DY,Burkhart CA,Regl DL,Norris MD,Haber M,Horwitz SB.Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific beta-tubulin isotypes.J Clin Invest.1997;100(5):1282-1293.
    77.Cole SP,Bhardwaj G,Gerlach JH,Mackie JE,Grant CE,Almquist KC,Stewart AJ,Kurz EU,Duncan AM,Deeley RG.Overexpression of a transporter gene in a multidrug-resistant human lung cancer cell line.Science.1992;258(5088):1650-1654.
    1.Puiffe ML,Le Page C,Filali-Mouhim A,et al.Characterization of ovarian cancer ascites on cell invasion,proliferation,spheroid formation,and gene expression in an in vitro model of epithelial ovarian cancer.Neoplasia.2007:9:820-829.
    2.Jemal A,Siegel R,Ward E,Murray T,Xu J,Thun MJ.Cancer statistics,2007.CA Cancer J Clin.2007;57:43-66.
    3.Mitchell RA,Bucala R.Tumor growth-promoting properties of macrophage migration inhibitory factor(MIF).Semin Cancer Biol.2000;10(5):359-366.
    4.Takahashi N,Nishihira J,Sato Y,Kondo M,Ogawa H,Ohshima T,Une Y,Todo S.Involvement of macrophage migration inhibitory factor(MIF) in the mechanism of tumor cell growth.Mol Med.1998;4(11):707-714.
    5.Cavallaro U,Christofori G.Multitasking in tumor progression:signaling functions of cell adhesion molecules.Ann N Y Acad Sci.2004;1014:58-66.
    6.Yamamoto A,Yano S,Shiraga M,Ogawa H,Goto H,Miki T,Zhang H,Sone S.A third-generation matrix metalloproteinase(MMP) inhibitor(ONO-4817) combined with docetaxel suppresses progression of lung micrometastasis of MMP-expressing tumor cells in nude mice.Int J Cancer.2003 Mar 1;103(6):822-8.
    7.Li L,Luan Y,Wang G,et al.Development and characterization of five cell models for chemoresistance studies of human ovarian carcinoma.Int J Mol Med.2004:14:257-264.
    8.Kimura Y,Sumiyoshi M,Taniguchi M,Baba K.Antitumor and antimetastatic actions of anthrone-C-glucoside,cassialoin isolated from Cassia garrettiana heartwood in colon 26-bearing mice. Cancer Sci. 2008;99(11):2336-2348.
    9. Lu Y, Zhang J, Qian J. The effect of emodin on VEGF receptors in human colon cancer cells. Cancer Biother Radiopharm. 2008;23(2):222-228.
    10. Kumar A, Dhawan S, Aggarwal BB. Emodin (3-methyl-1,6,8-trihydroxyanthraquinone) inhibits TNFinduced NF-kappaB activation, IkappaB degradation, and expression of cell surface adhesion proteins in human vascular endothelial cells. Oncogene 1998;17:913.
    11. Chan TC, Chang CJ, Koonchanok NM, Geahlen RL. Selectivein hibition of the growth of ras transformed human bronchial epithelial cells by emodin, a protein tyrosinekinase inhibitor. Biochem Biophys Res Commun,1993,193(3):1152-1158.
    12. Kaneshiro T, Morioka T, Inamine M, Kinjo T, Arakaki J, Chiba I, Sunagawa N, Suzui M, Yoshimi N. Anthraquinone derivative emodin inhibits tumor-associated
    angiogenesis through inhibition of extracellular signal-regulated kinase 1/2 phosphorylation. Eur J Pharmacol. 2006;553(1-3):46-53.
    13. Huang Q, Shen HM, Ong CN. Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol. 2004;68(2):361-371.
    14. Huang Q, Shen HM, Ong CN. Emodin inhibits tumor cell migration through suppression of the phosphatidylinositol 3-kinase-Cdc42/Rac1 pathway. Cell Mol Life Sci 2005;62:1167-1175.
    15. Lee J, Jung E, Lee J, Huh S, Hwang CH, Lee HY, Kim EJ, Cheon JM, Hyun CG, Kim YS, Park D. Emodin inhibits TNF alpha-induced MMP-1 expression through suppression of activator protein-1 (AP-1). Life Sci. 2006;79(26):2480-2485.
    16. Petrovsky N, Bucala R. Macrophage migration inhibitory factor: a critical neurohumoral mediator. Front Horm Res. 2002;29:83-90.
    17. Bifulco C, McDaniel K, Leng L, Bucala R. Tumor growth-promoting properties of macrophage migration inhibitory factor. Curr Pharm Des. 2008;14(36):3790-3801.
    18. Budarf M, McDonald T, Sellinger B, Kozak C, Graham C, Wistow G.Localization of the human gene for macrophage migration inhibitory factor (MIF) to chromosome 22q11.2. Genomics. 1997;39(2):235-236.
    19. Liu L, Chen J, Ji C, Zhang J, Sun J, Li Y, Xie Y, Gu S, Mao Y. Macrophage migration inhibitory factor (MIF) interacts with Bim and inhibits Bim-mediated apoptosis. Mol Cells. 2008;26(2):193-199.
    20. Lue H, Thiele M, Franz J, Dahl E, Speckgens S, Leng L, Fingerle-Rowson G, Bucala R, Luscher B, Bernhagen J. Macrophage migration inhibitory factor (MIF) promotes cell survival by activation of the Akt pathway and role for CSN5/JAB1 in the control of autocrine MIF activity. Oncogene. 2007;26(35):5046-5059.
    21. Rendon BE, Roger T, Teneng I, Zhao M, Al-Abed Y, Calandra T, Mitchell RA. Regulation of human lung adenocarcinoma cell migration and invasion by macrophage migration inhibitory factor. J Biol Chem. 2007;282(41):29910-29918.
    22. Meyer-Siegler KL, Iczkowski KA, Leng L, Bucala R, Vera PL. Inhibition of macrophage migration inhibitory factor or its receptor (CD74) attenuates growth and invasion of DU-145 prostate cancer cells. J Immunol. 2006;177(12):8730-8739.
    23. Krockenberger M, Dombrowski Y, Weidler C, Ossadnik M, Honig A, Hausler S, Voigt H, Becker JC, Leng L, Steinle A, Weller M, Bucala R, Dietl J, Wischhusen J. Macrophage migration inhibitory factor contributes to the immune escape of ovarian cancer by down-regulating NKG2D. J Immunol. 2008;180(11):7338-7348.
    24. Hagemann T, Robinson SC, Thompson RG, Charles K, Kulbe H, Balkwill FR. Ovarian cancer cell-derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis. Mol Cancer Then 2007;6(7):1993-2002.
    25. Matsuyama Y, Takao S, Aikou T. Comparison of matrix metalloproteinase expression between primary rumors with or without liver metastasis in pancreatic and colorectal carcinomas. J Surg Oncol. 2002;80(2):105-110.
    26. Belaaouaj A, Shipley JM, Kobayashi DK, Zimonjic DB, Popescu N, Silverman GA, Shapiro SD. Human macrophage metalloelastase. Genomic organization, chromosomal location, gene linkage, and tissue-specific expression. J Biol Chem. 1995;270(24):14568-14575.
    27. Chen JM, Aimes RT, Ward GR, Youngleib GL, Quigley JP. Isolation and characterization of a 70-kDa metalloprotease (gelatinase) that is elevated in Rous sarcoma virus-transformed chicken embryo fibroblasts. J Biol Chem.
    1991 ;266(8):5113-5121.
    28. Fullerton J, Paprocki P, Foote S, Mackey DA, Williamson R, Forrest S. Identity-by-descent approach to gene localisation in eight individuals affected by keratoconus from north-west Tasmania, Australia. Hum Genet. 2002;110(5):462-470.
    29. Westermarck J, Kahari VM. Regulation of matrix metalloproteinase expression in tumor invasion. FASEB J. 1999; 13(8):781-792.
    30. Schmalfeldt B, Prechtel D, Harting K, Spathe K, Rutke S, Konik E, Fridman R, Berger U, Schmitt M, Kuhn W, Lengyel E. Increased expression of matrix metalloproteinases (MMP)-2, MMP-9, and the urokinase-type plasminogen activator is associated with progression from benign to advanced ovarian cancer. Clin Cancer Res. 2001;7(8):2396-2404.
    31. Sakata K, Shigemasa K, Nagai N, Ohama K. Expression of matrix metalloproteinases (MMP-2, MMP-9, MT1-MMP) and their inhibitors (TIMP-1, TIMP-2) in common epithelial tumors of the ovary. Int J Oncol. 2000;17(4):673-681.
    32. Lengyel E, Schmalfeldt B, Konik E, Spathe K, Harting K, Fenn A, Berger U, Fridman R, Schmitt M, Prechtel D, Kuhn W. Expression of latent matrix metalloproteinase 9 (MMP-9) predicts survival in advanced ovarian cancer. Gynecol Oncol. 2001;82(2):291-298.
    33. Yuecheng Y, Xiaoyan X. Stromal-cell derived factor-1 regulates epithelial ovarian cancer cell invasion by activating matrix metalloproteinase-9 and matrix metalloproteinase-2. Eur J Cancer Prev. 2007;16(5):430-435.
    34. Sun Y, Liu M, Yang B, Lu J, Li B. Inhibition of laryngeal cancer cell invasion and growth with lentiviral-vector delivered short hairpin RNA targeting human MMP-9 gene. Cancer Invest. 2008;26(10):984-989.
    35. Kenny HA, Lengyel E. MMP-2 functions as an early response protein in ovarian cancer metastasis. Cell Cycle. 2009 Mar 25;8(5).
    36. Chetty C, Bhoopathi P, Rao JS, Lakka SS. Inhibition of matrix metalloproteinase-2 enhances radiosensitivity by abrogating radiation-induced FoxM1-mediated G2/M arrest in A549 lung cancer cells. Int J Cancer. 2008
    37. Li QQ, Cao XX, Xu JD, Chen Q, Wang WJ, Tang F, Chen ZQ, Liu XP, Xu ZD. The role of P-glycoprotein/cellular prion protein interaction in multidrug-resistant breast cancer cells treated with paclitaxel. Cell Mol Life Sci. 2009;66(3):504-515.
    38. Murphy L, Henry M, Meleady P, Clynes M, Keenan J. Proteomic investigation of taxol and taxotere resistance and invasiveness in a squamous lung carcinoma cell line. Biochim Biophys Acta. 2008; 1784(9): 1184-1191.
    39. Huang Q, Shen HM, Ong CN. Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol. 2004;68:361-71.
    40. Kwak HJ, Park MJ, Park CM, Moon SI, Yoo DH, Lee HC, Lee SH, Kim MS, Lee HW, Shin WS, Park IC, Rhee CH, Hong SI. Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int J Cancer. 2006;118:2711-20.
    41. Meyer-Siegler K. Macrophage migration inhibitory factor increases MMP-2 activity in DU-145 prostate cells. Cytokine. 2000; 12:914-21.
    42. Sun B, Nishihira J, Yoshiki T, Kondo M, Sato Y, Sasaki F and Todo S: Macrophage migration inhibitory factor promotes tumor invasion and metastasis via the Rho-dependent pathway. Clin Cancer Res. 2005; 11:1050-58.
    (1). Puiffe ML, Le Page C, Filali-Mouhim A, et al: Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia 9: 820-829,2007.
    
    (2). Matei D: Novel agents in ovarian cancer. Expert Opin Investig Drugs 16: 1227-1239,2007.
    
    (3). Jemal A, Murray T, Ward E, et al: Cancer statistics, 2005. CA Cancer JClin 55: 10-30,2005.
    
    (4). Harries M, Gore M: Part II: chemotherapy for epithelial ovarian cancer-treatment of recurrent disease. Lancet Oncol 3 :537-545,2002.
    
    (5). Kartalou M, Essigmann JM: Mechanisms of resistance to cisplatin. Mutat Res 478: 23-43,2001.
    (6). Agarwal R, Kaye SB: Ovarian cancer: strategies for overcoming resistance to chemotherapy. Nat Rev Cancer 3: 502-516,2003.
    
    (7). Peer D, Dekel Y, Melikhov D, Margalit R: Fluoxetine inhibits multidrug resistance extrusion pumps and enhances responses to chemotherapy in syngeneic and in human xenograft mouse tumor models. Cancer Res 64: 7562-7569, 2004.
    
    (8). Huang Y, Ray S, Reed J.C, Ibrado A.M, Tang C, Nawabi A,Bhalla K: Estrogen increases intracellular p26Bcl-2 to p21Bax ratios and inhibits taxol-induced apoptosis of human breast cancer MCF-7 cells. Breast Cancer Res Treat. 42: 73-81,1997.
    
    (9).Tan M, Jing T, Lan KH, et al: Phosphorylation on tyrosine-15 of p34(Cdc2) by ErbB2 inhibits p34(Cdc2) activation and is involved in resistance to taxol-induced apoptosis. Mol Cell 9: 993-1004, 2002.
    
    (10).Basu S, Ghosh A, Hazra B: Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn, and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents. Phytother Res 19: 888-894 , 2005.
    
    (11).Kitano A, Saika S, Yamanaka O, Ikeda K, Okada Y, Shirai K, Reinach PS: Emodin suppression of ocular surface inflammatory reaction. Invest Ophthalmol Vis Sci 48:5013-5022,2007.
    
    (12).Kuo YC, Tsai WJ, Meng HC, Chen WP, Yang LY, Lin CY: Immune reponses in human mesangial cells regulated by emodin from Polygonum hypoleucum Ohwi. Life Sci 68: 1271-86,2001.
    
    (13).Wang XD, Gu LQ, Wu JY: Apoptosis-inducing activity of new pyrazole emodin derivatives in human hepatocellular carcinoma HepG2 cells. Biol Pharm Bull 30: 1113-1116,2007.
    
    (14). Zhang L, Hung MC: Sensitization of HER-2/neu-overexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogene 12: 571-576,1996.
    
    (15). Yang J, Li H, Chen YY, et al: Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis. Free Radic Biol Med 37: 2027-2041, 2004.
    
    (16). Yi J, Yang J, He R, Gao F, Sang H, Tang X, Ye RD: Emodin enhances arsenic trioxide-induced apoptosis via generation of reactive oxygen species and inhibition of survival signaling. Cancer Res 64: 108-116, 2004.
    
    (17) Li L, Luan Y, Wang G, et al: Development and characterization of five cell models for chemoresistance studies of human ovarian carcinoma. Int J Mol Med 14: 257-264,2004.
    (18) Marupudi NI, Han JE, Li KW, Renard VM, Tyler BM, Brem H: Paclitaxel: a review of adverse toxicities and novel delivery strategies. Expert Opin Drug Saf 6:609-621,2007.
    (19) Harries M, Gore M: Part I: chemotherapy for epithelial ovarian cancer-treatment at first diagnosis. Lancet oncol 3: 529-536,2002.
    (20) Lowe SW, Lin AW: Apoptosis in cancer. Carcinogenesis 21: 485-495, 2000.
    (21) Goyal L: Cell death inhibition: keeping caspases in check. Cell 104 :805-808, 2001.
    (22) Kim HR, Kim K, Lee KH, Kim SJ, Kim J: Inhibition of casein kinase 2 enhances the death ligand- and natural kiler cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol 152: 336-344,2008.
    
    (23)Cha TL, Qiu L, Chen CT, Wen Y, Hung MC: Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res 65: 2287-95,2005.
    (24)Yang J, Li H, Chen YY, et al: Anthraquinones sensitize tumor cells to arsenic cytotoxicity in vitro and in vivo via reactive oxygen species-mediated dual regulation of apoptosis. Free Radic Biol Med 37: 2027-2041, 2004.
    (25)Zhang L, Lau YK, Xia W, Hortobagyi GN, Hung MC: Tyrosine kinase inhibitor emodin suppresses growth of HER-2/neu-overexpressing breast cancer cells in athymic mice and sensitizes these cells to the inhibitory effect of paclitaxel. Clin Cancer Res 5: 343-353,1999.
    (26)Zhang L, Hung MC: Sensitization of HER-2/neuoverexpressing non-small cell lung cancer cells to chemotherapeutic drugs by tyrosine kinase inhibitor emodin. Oncogen 12: 571-576,1996.
    (27) Ozben T: Mechanisms and strategies to overcome multiple drug resistance in cancer. FEBS Lett 580: 2903-2909,2006.
    (28) Kamazawa S, Kigawa J, Kanamori Y, Itamochi H, Sato S, Iba T, Terakawa N: Multidrug resistance gene-1 is a useful predictor of paclitaxel-based chemotherapy for patients with ovarian cancer. Gynecol Oncol 86: 171-176,2002. (29)Krishna R, Mayer LD: Multidrug resistance (MDR) in cancer. Mechanisms, reversal using modulators of MDR and the role of MDR modulators in influencing the pharmacokinetics of anticancer drugs. Eur J Pharm Sci 11: 265-283, 2000. (30)Galski H, Sivan H, Lazarovici P, Nagler A: In vitro and in vivo reversal of MDR1-mediated multidrug resistance by KT-5720: implications on hematological malignancies. Leuk Res 30: 1151-1158, 2006.
    (31) Schimmer AD: Inhibitor of apoptosis proteins: translating basic knowledge into clinical practice. Cancer Res 64:7183-7190,2004.
    (32) Lopes RB, Gangeswaran R, McNeish IA, Wang Y, Lemoine NR: Expression of the IAP protein family is dysregulated in pancreatic cancer cells and is important for resistance to chemotherapy. Int J Cancer 120: 2344-2352, 2007.
    (33)Caldas H, Jaynes FO, Boyer MW, Hammond S, Altura RA: Survivin and Granzyme B-induced apoptosis, a novel anticancer therapy. Mol Cancer Ther 5: 693-703, 2006.
    (34) Gagnon V, Van Themsche C, Turner S, Leblanc V, Asselin E: Akt and XIAP regulate the sensitivity of human uterine cancer cells to cisplatin, doxorubicin and taxol. Apoptosis 13: 259-271, 2008.
    [1] Puiffe ML, Le Page C, Filali-Mouhim A, Zietarska M, Ouellet V, Tonin PN, Chevrette M, Provencher DM, Mes-Masson AM. Characterization of ovarian cancer ascites on cell invasion, proliferation, spheroid formation, and gene expression in an in vitro model of epithelial ovarian cancer. Neoplasia. 2007;9:820-9.
    
    [2] Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, Feuer EJ, Thun MJ. Cancer statistics, 2005. CA Cancer J Clin. 2005;55:10-30.
    
    [3] Kenny HA, Kaur S, Coussens LM, Lengyel E. The initial steps of ovarian cancer cell metastasis are mediated by MMP-2 cleavage of vitronectin and fibronectin. J Clin Invest. 2008;118:1367-79.
    
    [4] Bloom BR, Bennett B. Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. Science. 1966;153:80-2.
    
    [5] David JR. Delayed hypersensitivity in vitro: its mediation by cell-free substances formed by lymphoid cell-antigen interaction. Proc Natl Acad Sci USA. 1966;56:72-7.
    
    [6] Mitchell, R. A., and R. Bucala. Tumor growth-promoting properties of macrophage migration inhibitory factor (MIF). Semin. Cancer Biol. 2000;10:359-66.
    
    [7] del Vecchio MT, Tripodi SA, Arcuri F, Pergola L, Hako L, Vatti R, Cintorino M. Macrophage migration inhibitory factor in prostatic adenocarcinoma: correlation with tumor grading and combination endocrine treatment-related changes. Prostate. 2000; 45:51-7.
    
    [8] Basu S, Ghosh A, Hazra B. Evaluation of the antibacterial activity of Ventilago madraspatana Gaertn., Rubia cordifolia Linn. and Lantana camara Linn.: isolation of emodin and physcion as active antibacterial agents. Phytother Res. 2005; 19:888-94.
    
    [9] Kitano A, Saika S, Yamanaka O, Ikeda K, Okada Y, Shirai K, Reinach PS. Emodin suppression of ocular surface inflammatory reaction. Invest Ophthalmol Vis Sci. 2007;48:5013-22.
    
    [10] Kuo YC, Tsai WJ, Meng HC, Chen WP, Yang LY, Lin CY. Immune reponses in human mesangial cells regulated by emodin from Polygonum hypoleucum Ohwi. Life Sci.2001;68:1271-86.
    
    [11] Wang XD, Gu LQ, Wu JY. Apoptosis-inducing activity of new pyrazole emodin derivatives in human hepatocellular carcinoma HepG2 cells. Biol Pharm Bull. 2007;30:1113-6.
    
    [12] Cha TL, Qiu L, Chen CT, Wen Y, Hung MC. Emodin down-regulates androgen receptor and inhibits prostate cancer cell growth. Cancer Res 2005;65:2287-95.
    
    [13] Su YT, Chang HL, Shyue SK, Hsu SL. Emodin induces apoptosis in human lung adenocarcinoma cells through a reactive oxygen species-dependent mitochondrial signaling pathway. Biochem Pharmacol. 2005;70:229-41.
    
    [14] Li L, Luan Y, Wang G, et al. Development and characterization of five cell models for chemoresistance studies of human ovarian carcinoma. Int J Mol Med. 2004: 14: 257-264.
    
    [15] Huang Q, Lu G, Shen HM, Chung MC, Ong CN. Anti-cancer properties of anthraquinones from rhubarb. Med Res Rev. 2007; 27:609-30.
    
    [16] Sun B, Nishihira J, Suzuki M, Fukushima N, Ishibashi T, Kondo M, Sato Y, Todo S. Induction of macrophage migration inhibitory factor by lysophosphatidic acid: relevance to tumor growth and angiogenesis. Int J Mol Med 2003;12:633- 41.
    
    [17] Xu X, Wang B, Ye C, Yao C, Lin Y, Huang X, Zhang Y, Wang S. Overexpression of macrophage migration inhibitory factor induces angiogenesis in human breast cancer. Cancer Lett. 2008; 261:147-57.
    
    [18] He XX, Chen K, Yang J, Li XY, Gan HY, Liu CY, Coleman TR, Al-Abed Y. Macrophage migration inhibitory factor promotes colorectal cancer. Mol Med. 2009;15:1-10.
    
    [19] Rendon BE, Roger T, Teneng I, Zhao M, Al-Abed Y, Calandra T, Mitchell RA. Regulation of Human Lung Adenocarcinoma Cell Migration and Invasion by Macrophage Migration Inhibitory Factor. J Biol Chem. 2007; 282:29910-8.
    
    [20] Meyer-Siegler Kl, Iczkowski KA, Vera PL. Further evidence for increased macrophage migration inhibitory factor expression in prostate cancer. BMC Cancer. 2005; 5: 73.
    
    [21] Pyle ME, Korbonits M, Gueorguiev M, Jordan S, Kola B, Morris DG, Meinhardt A, Powell MP, Claret FX, Zhang Q, Metz C, Bucala R, Grossman AB. Macrophage migration inhibitory factor expression is increased in pituitary adenoma cell nuclei. J Endocrinol 2003;176:103-10.
    [22] Hagemann T, Robinson SC, Thompson RG, Charles K, Kulbe H, Balkwill FR. Ovarian cancer cell-derived migration inhibitory factor enhances tumor growth, progression, and angiogenesis.Mol Cancer Ther 2007;6(7): 1993-2002
    [23] Ren Y, Law S, Huang X, Lee PY, Bacher M, Srivastava G, Wong J. Macrophage migration inhibitory factor stimulates angiogenic factor expression and correlates with differentiation and lymph node status in patients with esophageal squamous cell carcinoma. Ann Surg. 2005;242:55-63.
    [24] Meyer-Siegler K, Hudson PB. Enhanced expression of macrophage migration inhibitory factor in prostatic adenocarcinoma metastases. Urology. 1996;48:448-52.
    [25] Kim MS, Park MJ, Kim SJ, Lee CH, Yoo H, Shin SH, Song ES, Lee SH. Emodin suppresses hyaluronic acid-induced MMP-9 secretion and invasion of glioma cells. Int J Oncol. 2005;27:839-46.
    [26] Egeblad M, Werb Z. New functions for the matrix metalloproteinases in cancer progression. Effective treatment of tumor invasion and metastasis constitutes the biggest challenge in clinical oncology. Nat. Rev. Cancer. 2002;2:161-74.
    [27] Kwak HJ, Park MJ, Park CM, Moon SI, Yoo DH, Lee HC, Lee SH, Kim MS, Lee HW, Shin WS, Park IC, Rhee CH, Hong SI. Emodin inhibits vascular endothelial growth factor-A-induced angiogenesis by blocking receptor-2 (KDR/Flk-1) phosphorylation. Int J Cancer. 2006;l 18:2711-20.
    [28] Huang Q, Shen HM, Ong CN. Inhibitory effect of emodin on tumor invasion through suppression of activator protein-1 and nuclear factor-kappaB. Biochem Pharmacol.2004;68:361-71.
    [29] Meyer-Siegler K. Macrophage migration inhibitory factor increases MMP-2 activity in DU-145 prostate cells. Cytokine. 2000;12:914-21.
    [30] Sun B, Nishihira J, Yoshiki T, Kondo M, Sato Y, Sasaki F and Todo S: Macrophage migration inhibitory factor promotes tumor invasion and metastasis via the Rho-dependent pathway. Clin Cancer Res. 2005;11:1050-58.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700