用户名: 密码: 验证码:
海绵窦显微解剖与海绵窦海绵状血管瘤的显微手术治疗
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景与目的
     海绵窦位于中颅窝底,部位深在,手术时显露比较困难。此部位的多数病变需要手术治疗,因此选择良好的手术入路是手术成功的关键之一。目前常用的手术入路是翼点入路、扩大中颅窝底入路和颅眶颧入路。海绵窦是颅内重要的组织结构,其内部血管、神经及膜性结构十分复杂,Parkinson称其为“解剖学的珠宝箱”。近年人们对该部位显微解剖结构进行了深人研究。海绵窦(cavernoussinus,CS)病变分为血管性和肿瘤性,前者首选介入治疗,少数患者如海绵窦海绵状血管瘤仍需行手术治疗;肿瘤病变以手术治疗为首选。海绵窦部位也是颅底病变常侵犯的部位,掌握海绵窦的常用三角对进行海绵窦的手术非常重要。海绵窦内有颈内动脉及其分支、动眼神经、滑车神经、外展神经和三叉神经的第一、二支神经通过。许多国内外学者对海绵窦的显微解剖进行了大量研究工作,目的是发现和掌握各个三角间隙的解剖位置,从这些间隙内进入海绵窦即能切除病变,有能有效地保护神经及颈内动脉不受损害。CS位置深,与周围结构关系紧密,暴露困难,手术难度大。自从Parkinson发现Parkinson三角后,切开CS外侧壁处理窦内病变成为可能。
     海绵窦海绵状血管瘤是少见的疾病,占海绵窦肿瘤的0.4%-2%。这种肿瘤虽然是良性肿瘤,但因其富含血管,位于海绵窦内,与颈内动脉海绵窦段及其内的颅神经关系密切,而手术具有挑战性。从组织学方面讲,海绵窦海绵状血管瘤与脑内海绵状血管瘤是一样的,但与脑内海绵状血管瘤相比较具有独特的临床特点,治疗也截然不同。海绵窦海绵状血管瘤局限于海绵窦的硬膜内,早期不易诊断,肿瘤巨大时才产生临床症状。常见的症状是突眼、眼外肌麻痹、面部麻木和颅内压增高症状。手术入路是经翼点入路、颧弓-翼点入路和颅眶颧入路。
     通过对19例成人尸体头部标本的CS进行解剖学研究,希望能为临床手术提供解剖学参数,对海绵窦区病变的显微手术治疗提供指导。本研究同时总结了手术和病理证实的海绵窦海绵状血管瘤12例。
     实验方法
     1.经10%甲醛溶液固定的成人尸头湿标本19例,所有标本均在动脉内灌入红色乳胶,静脉内灌注蓝色乳胶。
     尸头19个(38侧),用以模拟术中技术操作。我们对颅眶颧入路进行了改良,手术的显著特点是将颅骨瓣与颧弓一次成型,具体方法如下:取起自耳屏前1cm,颧弓下缘水平,向前上方的跨中线小冠状切口。游离皮瓣,沿颞肌额颞附着点全长暴露深面的颞深筋膜(DTF)。在无光泽的颞浅筋膜(STF)和有光泽的颞深筋膜(DTF)之间解剖,至颞中(Yasargil)脂肪垫。切开脂肪垫浅面的DTF浅层,并将其连同脂肪垫一同翻开,保持DTF深层的完整。将DTF的浅层由颧弓的浅面、DTF的深层从颧弓深面分别予以剥离。将颧弓表面的筋膜游离,可沿眶外侧缘进行骨膜下分离下达颧结节水平。从眶缘外侧由骨膜下开始向眶内游离眶筋膜,将眼球连同眶筋膜从眶外侧壁及上壁游离。凿开眶上孔,将眶上神经从眶上孔游离,并随眶筋膜一同翻起。钝性剥离眶内的眶筋膜,将线锯从眶内经眶下裂穿出,越过颧弓下方,用脑压板或剥离子保护眼球及眶筋膜,顺利完成从眶下裂到颧结节之间的这一重要切割过程,形成整块额颞眶颧骨瓣。骨瓣取下后,可广泛操作前中颅底及颞下窝甚至翼愕窝的结构。
     当完成双侧开颅后,去除剩余颅骨,切开硬脑膜,在脑组织近端剪断颅神经,在前床突上方剪断ICA,完整取出大脑、小脑及脑干。在显微镜下切开海绵窦侧壁,解剖海绵窦内部结构,显露第ⅢⅣⅤⅥ颅神经和颈内动脉及其分支,观察上述结构的走行和相互之间的比邻关系,并用游标卡尺测量它们之间的距离,量化动脉和神经之间的关系。
     测量19例标本得到的数据,经SPSS统计软件包计算样本均数和标准差,数据均以均数±标准差表示。
     2.总结临床资料:男2例,女10例。发病年龄28~61岁。自首发症状至就诊时间3月~2年。临床表现:首发症状:头痛胀8例,面部麻木4例,一侧眼睑下垂2例。本组中动眼神经麻痹2例,三叉神经损害4例,外展神经损害2例,视神经损害2例,眼球突出3例。CT检查:未增强时肿瘤为等或稍高密度影,密度均匀,边缘清晰,呈类圆形或哑铃形,周围无水肿:增强时可见肿瘤明显而均匀的增强。肿瘤最大径0.9cm~5.7cm,平均为4.5cm。MRI检查:MRI扫描呈边界清晰的哑铃型较均匀的稍长T1长T2信号,增强扫描见明显强化,周围无水肿。
     12例病人均行手术治疗。根据病变的大小分别采用不同的入路从中颅底硬膜下暴露,剪开海绵窦外侧壁并切除肿瘤,经颧弓-翼点入路8例、翼点入路2例、颅眶颧入路2例。术中为有效地显露肿瘤分开侧裂池6例。
     经颧弓-翼点入路手术方法为:取额颞发际内大弧形切口,经耳屏前颞浅动脉的后方向下越过颧弓至颧弓下1cm,分层切开,游离皮瓣,上方沿颞筋膜浅层,下方沿腮腺筋膜浅层翻起。在颞筋膜外层分离保护面神经额颞支,于颞前额骨颧突至颧弓做肌瓣。将皮肌瓣翻向颧面部后显露上外侧眶缘、颧弓下方。在颧弓前端及后端切断颧弓。在颞窝内游离颞肌,将肌瓣与离断的颧弓一起翻向下外侧。作额颞游离骨瓣,尽可能磨去蝶骨嵴外侧部分,咬除颞骨鳞部的前内侧部分及部分蝶骨大翼。
     颅眶颧入路:经此入路可最大程度地增加从下向上的视角,提供进入海绵窦、向上至颅底的最宽通路,翻开帽状腱膜后,切开额骨颧突和眶外侧缘骨膜并剥开。在颞骨鳞部和颧突内侧面的颞肌附着处游离颞肌,用铣刀锯掉颧骨。分离颅骨骨膜至眶周筋膜,将颅骨骨膜和眶周筋膜一并抬起。从中线上方至眼眶的下外侧面,抬起眶周筋膜,然后在颅骨上钻孔,并磨除连接前颞底部至眶壁处的厚骨质。在平行于颧骨、上颌骨骨缝切缘上方切入眶外侧壁,锯开眶上缘的内侧,继续向后至眶底。再从内侧至外侧,用磨钻打开眶壁,离断眶上缘及眶外侧缘。最后一个切口从后面通过颧骨和蝶骨的关节。通过这些切口可将骨瓣整体分离。硬膜外途径:磨除蝶骨翼,去除视神经管顶壁。磨除位于视神经管外侧面的前床突。磨开整个前外侧颅底。优点是减少对神经结构的牵拉。增加神经活动性,避免其压力性缺血。扩大手术入路。硬膜下途径:对生长超出海绵窦边界的病变,采用“T”形切口打开硬膜,从内侧上方和外侧三角打开海绵窦,切开硬膜,从硬膜内暴露其毗邻区域。
     打开硬膜开放侧裂池,放液后脑压下降颞叶不用过度牵拉,充分暴露同侧鞍旁、幕缘及中颅窝底。手术中见病变成红色或褐色的鞍旁硬脑膜外肿块,边界清,充血,压迫后可缩小,解除压迫病变复原。穿刺病变可见血液自病变流出。手术过程中,我们采用控制性低血压(收缩压控制在90mmHg)可以减少出血,有利于病变切除。反复电灼病变上方的硬脑膜,缩小病变体积,减少术中出血。在显微镜下切开海绵窦上外侧壁硬脑膜,切开处应位于海绵窦上壁与颈内动脉穿过硬脑膜处、动眼神经进入海绵窦处和后床突外缘3点围成的内侧三角区。应尽量在病变包膜内刮除病变,动作要轻柔且速度要快。刮除病变后止血时应尽量少用双极电灼,可用止血纱布及海绵压迫止血。术中出血量约600ml~1000ml,未全切病人术后行放射治疗。
     结果
     1.颅眶颧入路及海绵窦结构观察
     在所有19个尸头(38侧)中,眶下裂的宽度均足以毫无困难地穿过线锯。模拟颅眶颧开颅骨瓣取下后,可广泛暴露整个眶内结构、前中颅底及颞下窝。为进一步显露海绵窦,将硬脑膜剪开至眶上裂,切除部分眶板,切除前床突,更有效显露海绵窦,特别是其前部结构。
     海绵窦位于颅中窝的两侧,是两层硬脑膜之间的较宽大的不规则的间隙,其内有许多纤维小梁,把窦腔分成多个相互交通的小腔隙,形态似海绵状。海绵窦由内、上、外及下壁组成。海绵窦的内壁、上壁和外壁是由硬脑膜的脑膜层构成;海绵窦的下壁由蝶骨体表面的硬膜骨膜层构成。海绵窦的外壁和上壁由表层和里层两层构成。表层厚而质地坚韧致密,里层由颅神经和其间菲薄半透明的细小间隙构成。在海绵窦外侧壁,表层与里层间疏松粘连,有较易解剖开的明显界面。前床突外侧是海绵窦顶的前部,表面覆盖有硬膜脑膜层的表层,下方被硬膜脑膜层的里层覆盖,两层在海绵窦上壁与内壁交界处紧密粘连在一起。颈内动脉在前床突内侧出海绵窦顶时的表层形成硬膜的远侧环,里层形成硬膜的近侧环。
     颈内动脉远侧环又称上环(distal or upper carotid ring),海绵窦的项由两层硬膜构成。两层硬膜在眶上裂、前床突处分离。外层硬膜覆盖于前床突的上表面,内层则覆盖于下表面,前床突内外表面还有骨膜覆盖。外层硬膜自前床突上表面向内侧延续,与颈内动脉的外膜相融合,形成颈内动脉的上环,继续向内延伸形成鞍隔,同时也是视神经鞘的组成成分。外膜还可自前床突尖弧形向内经视神经的上方到达鞍结节形成镰状韧带。颈内动脉近侧环又称下环(proximal or lowercarotid ring),内层硬膜覆盖于前床突的下表面,向内侧延伸环绕颈内动脉形成颈内动脉下环。向外延续参与海绵窦外侧壁的构成。下环与上环不同,下环不与颈内动脉外膜相结合,在下环与颈内动脉之间有一狭窄的空间存在。
     动眼神经从大脑脚内侧出脑后向前外走行(19.38±2.46mm),在后床突前外下(6.25±2.03mm)处进入CS上壁。此点距棘孔(27.68±2.23mm)。在岩床后褶之上,截面直径3mm左右,经后床突外侧或前外侧海绵窦后顶的动眼神经三角入海绵窦内。动眼神经在海绵窦外壁硬膜表层内斜向下走行至前床突下,然后通过眶上裂进入总键环。
     滑车神经从中脑下丘下方出脑,绕大脑脚外侧向前,在后床突前外(13.02±3.14mm)处,小脑幕切迹下(1.68±0.51mm)处进入CS上壁。此点距动眼神经入CS处(10.82±2.57mm)。滑车神经截面直径不足1mm,绕过脑干背外侧后进人小脑幕的后外侧缘,在其内走行数毫米,在岩床前后摺分开处进入海绵窦的硬膜外壁里层。然后与窦顶平行前行,位于动眼神经之下,三叉眼神经之上。进眶上裂之前,滑车神经向上越过动眼神经,经眶上裂的外侧部入眶,不经过总腱环。
     三叉眼神经在海绵窦的后下方进入海绵窦硬膜外壁,在外上方有滑车神经走行。进入眶上裂前三叉眼神经分作三支,较大的额神经与滑车神经和较小的泪腺神经,经眶上裂的外侧部入眶,不经过总健环;只有鼻睫神经经总键环入眶。三叉神经的Ⅱ、Ⅲ支分别自圆孔和卵圆孔出颅。
     外展神经出桥延沟后,穿过岩斜坡硬膜进入岩下窦开口上方的基底窦外下壁。在静脉窦内斜行向上走行5--8mm,穿过Gruber韧带形成的Dorellu管,向前进入海绵窦后部。具有Gruber韧带的标本中,外展神经均从其下的中1/3穿过。Gruber韧带上端附于鞍背外侧,下端附于岩尖上的蝶棘,长(12.43±2.61mm)。5.56%(2/38)的标本中Gruber韧带缺如。外展神经入海绵窦后部后,斜向外绕过颈内动脉海绵窦段后曲部的外侧,并在此处膜孔入基底窦下部。外展神经入海绵窦后部后,斜向外绕过颈内动脉海绵窦段后曲部的外侧,并在此处与颈内动脉有粘连,外展神经也最多在此分成多束。外展神经在海绵窦内行于颈内动脉水平段外下方,二者共同走在海绵窦腔内。
     海绵窦段预内动脉海绵窦内的动脉是指颈内动脉及其分支。颈内动脉经颈动脉管及破裂孔进入海绵窦,先向上达到后床突根旁,继而转向前方,在前床突的内侧转向上方,穿出海绵窦前部的上壁。海绵窦内的颈内动脉部分称为颈内动脉海绵窦段。该段动脉按其形态又可分为后升段、后曲段、水平段、前曲段和前升段。前曲及前垂直段,先后发出:脑膜垂体干主要分支:①小脑幕动脉供应Ⅲ,Ⅳ,CS上外侧壁及半月神经节被囊深面;②脑膜背动脉供应外展神经与斜坡硬膜;③垂体下动脉供应鞍底、鞍背硬膜及垂体后叶。此三支均分别与对侧同名动脉相吻合。海绵窦下动脉是海绵窦内神经的主要血供来源,分前后二支供应海绵窦外壁下部和下壁、卵圆孔、棘孔区硬膜,并与脑膜中动脉吻合,少数还发出半月节被囊动脉、幕缘动脉和眼动脉等分支。McConnell垂体被膜动脉常缺如,若存在则起自ICA内面直接伸向鞍底前部硬脑膜,并分前、后二支分别与同侧垂体下动脉和对侧同名动脉吻合。CSHAs血供主要来源于CS段ICA、脑膜中动脉、副脑膜动脉。
     海绵窦内的静脉空间按照其内的颈内动脉走形分为:①颈内动脉前曲部以前的前间隙、②颈内动脉内侧的内侧间隙、③颈内动脉外侧的外侧间隙、④颈内动脉水平部前下部的前下间隙、⑤颈内动脉后上部的后上间隙。我们显微镜下观察发现,内侧间隙占优势者57.89%(22/38),内外均衡者42.11%(16/38);前下间隙占优势者47.37%(18/36),后上间隙占优势者31.58%(12/38),前下与后上间隙无明显差别占21.05%(8/38)。海绵窦前间隙是一个很小的静脉问隙,斜向前外方与眼上静脉相通。海绵窦向前与眶内眼上静脉相通、向上与引流大脑半球的侧裂浅静脉和蝶顶窦相通;向外与脑膜中静脉窦相通;向下经蝶导静脉孔或卵圆孔与颞下凹的翼静脉丛相通;向后与鞍背后表面的斜坡基底窦相通,基底窦与岩上、下窦和椎管硬膜外静脉丛沟通。垂体硬膜两层间有前、下、后三个海绵窦间窦,通过海绵间窦两侧海绵窦之间在鞍背之前有相通,在鞍背之后则通过较大的斜坡基底窦相通。斜坡基底窦是两侧海绵窦间最大最恒定的静脉交通。本研究观察发现19例标本中全部出现了眼上静脉、脑膜中静脉窦和斜坡基底窦。海绵窦前间窦的出现率为78.95%(15/19),下间窦的出现率为73.68%(14/19),后间窦出现率仅有42.11%(8/19)。前间窦最大,下间窦和后间窦较小。岩上窦起始部通常位于三叉神经跨过岩尖之上,岩上窦底部的硬膜与三叉神经硬膜鞘膜上部相融合。Gruber韧带下方附着点蝶棘之下有岩下窦在斜坡基底窦上的开口,本研究发现岩下窦在基底窦上的开口约有84.21%(32/38)在外展神经的外侧;15.79%(6/38)在外展神经的内侧。约有83.33%(30/38)的侧裂浅静脉汇入蝶骨小翼上的蝶顶窦,或者直接汇入海绵窦的前外侧壁。约有16.67%(6/38)的标本中,侧裂浅静脉进入海绵窦外壁的硬膜表、里两层间形成一较大的静脉间隙。52.63%(20/38)标本中海绵窦后下部有静脉丛经破裂孔向外延伸包裹岩段颈内动脉。
     海绵窦三角的显微观察
     前内侧三角即Dolenc三角。内侧边为视神经,长度是(12.25±1.40mm);外侧边为动眼神经,长度(20.13±1.27mm);底边为视神经管内口与动眼神经入海绵窦处间的硬膜缘之间的连线,长度是(11.32±1.41mm)。
     内侧三角即Hakuba三角。由颈内动脉床突上段与鞍隔相交外侧点,动眼神经穿硬膜进入海绵窦外侧壁内侧交点,后床突外缘三点连线形成。内侧边即颈内动脉出硬脑膜处与后床突外缘连线,长度是(7.85±1.79mm);外侧边即颈内动脉床突上段与鞍隔相交外侧点动眼神经穿硬膜进入海绵窦外侧壁内侧交点之间的连线,长度是(8.03±2.10mm);底边即动眼神经穿硬膜进入海绵窦外侧壁内侧交点与后床突外缘之间的连线,长度是(5.12±1.31mm)。
     颈动脉三角内侧边为鞍隔硬膜(11.93±2.88mm),外侧边为床突间韧带(10.98±3.54mm),底边沿前床突内缘由其尖端到神经管颅口内缘(10.76±2.38mm)。
     动眼神经三角内侧边为床突间韧带(11.08±3.74mm),外侧边为前岩床皱壁(19.57±2.53mm),底边为后岩床皱壁(13.49±3.25mm)。
     旁内侧三角动眼神经组成内侧边,长度是(14.9±2.9mm);外侧边为滑车神经,长度是(24.9±4.7mm);底边为小脑膜切迹,长(11.7±3.2mm)。有一例因滑车神经走行变异,底边呈裂隙状而三角消失。
     Parkinson三角内侧边为滑车神经,在海绵窦内长度(15.72±3.15mm);外侧边为三叉神经分支眼神经,长(19.23±4.62mm);底边是由附着于鞍背和斜坡小脑幕切迹构成,长(8.05±2.21mm)。
     前外侧三角即Mullan三角。内侧边为眼神经,长度是(22.23±3.16mm);外侧边为上颌神经,长度是(15.45±2.38mm);底边为眼神经入眶上裂处与圆孔之间的连线,长度是(11.68±3.12mm)。
     外侧三角内侧边为上颌神经,长(13.26±2.37mm);外侧边为下颌神经,长(7.28±1.51mm);底边为圆孔与卵圆孔的连线,长(12.18±1.53mm)。
     后内三角取面神经裂孔与岩上窦、三叉神经的交点连线为内侧边,长(15.68±2.15mm);岩大神经为外侧边,长(11.71±1.67mm);三叉神经为底边,长(13.31±1.65mm)。
     后侧三角以岩大神经为内侧边,其长(11.65±1.768mm);卵圆孔与面神经裂孔的连线为外侧边,长(14.12±1.78mm);底边为下颌神经,长(6.51±1.88mm)。
     下内三角内侧边为外展神经入硬脑膜处与后床突的连线,长(18.42±1.18mm);外侧边为滑车神经入硬脑膜处与后床突的连线,长(13.78±2.65mm);底边为外展神经入硬脑膜处与滑车神经入硬脑膜处的连线,长(13.72±2.15mm)。
     下外三角内侧边为滑车神经入硬脑膜处与岩静脉入岩上窦处的连线,长(11.87±1.69mm);外侧边为外展神经入硬脑膜处与岩静脉入岩上窦处的连线,长(13.56±2.12mm);底边为外展神经入硬脑膜处与滑车神经入硬脑膜处的连线,长(13.68±2.38mm)。
     2.海绵窦海绵状血管瘤病人疗效:肿瘤全切除5例;次全切除4例,部分切除3例,无手术死亡。术后视力进步者2例,4例动眼神经麻痹,6例面部麻木。术后随访半年—2年,2例动眼神经麻痹病人术后3个月恢复,3例面部麻木减轻。5例全切除病例无复发,未全切病人术后行放射治疗得到有效控制。
     结论
     1.海绵窦部位深在,内部结构复杂,是神经外科领域最具有挑战性的区域。熟练掌握海绵窦区的显微解剖结构,尤其是各海绵窦三角的关系,可以减少手术中出血,避免损伤颈内动脉,有效地保护Ⅲ、Ⅳ、Ⅴ、Ⅵ颅神经。颅眶颧入路是可以充分显露海绵窦,减少手术中的盲区,有效地显露此区的病变。额眶颧骨瓣一次成型可以减少颅骨缺损,术后颅骨塑形好的优点。
     2.经翼点入路可以有效地暴露和切除较小的局限型海绵窦海绵状血管瘤。广泛型CHSAs经颧弓-翼点入路和颅眶颧入路。手术中经硬脑膜下、分开侧裂,可以增加入路视角,减少对脑组织的损伤;有效地显露鞍旁和海绵窦区域;切开海绵窦外侧壁可以近距离达到供血动脉,更有效地减少出血。手术后如果病变残余,选择Y-刀治疗,可以减少病变复发,缓解颅神经受压症状。
Background and Purpose:
     The cavernous sinuses are venous structures in the middle fossa.It is very difficult to expose due to its deep location.Many diseases in this region are needed to treat by surgery;therefore,it is very important to choose a better surgical approach. The cavernous sinus is an envelope containing the cavernous carotid segment and its branches;the sympathetic plexus;theⅢrd,Ⅳth,andⅥth cranial nerves;the first trigeminal division;and multiple venous tributaries and spaces.This study attempts to define the important relationships of the microsurgical anatomy for the various surgical approaches to the cavernous sinus.
     Cavernous hemangioma of the cavernous sinus is an uncommon lesion accounting for 0.2-2%of all cavernous sinus tumors[1].Although the tumor is benign,but it is a neurosurgical challenge due to the high vascularity,location within the cavernous sinus,and relationship to the intracavernous internal carotid artery and cranial nerves.Histologically,cavernous hemangioma of the cavernous sinus is similar to intracerebral cavernous angioma,but is a distinct clinical entity and the management issues are vastly different from those located within the cerebral parenchyma.Cavernous hemangiomas limit to the dura of the cavernous sinus,and frequently reach giant size before diagnosis.
     Cavernous sinuses of 19 adult cadaveric specimens were examined using×3 to×20 surgical microscope.We had obtained the anatomic parameter of the cavernous sinuses,and also summarized 12 cases of cavernous sinus hemangiomas to treat by surgery.
     Methods:
     1.Anatomy
     Cavernous sinuses were examined in 19 adult cadaveric specimens using×3 to×20 surgical microscopes.The heads were injected with colored silicone,and the structure of cavernous sinus was investigated.
     In the study,we simulated surgical procedure to investigate 19 adult cadaveric heads.After head fixation in the Mayfield clamp,the skin incision is placed along or in the hair line starting in the preauricular region 1 cm below the zygomatic arc.The anterior superficial temporal artery is carefully located and protected during the coronal incision.A temporal subfascial dissection is performed to preserve the frontal branches of the facial nerve.As the scalp flap is elevated,the temporal fat pad will appear.After dissecting the lateral orbit and zygomatic arch,the zygoma is divided at either end and is displaced inferiorly on its masseteric pedicle.The temporalis muscle is elevated off the calvarium in subperiosteal fashion beginning low on the temporal squama and ending by disinserting the muscle at the superior temporal line.The cranioorbital flap is elevated as a single piece.A burr hole is placed in the keyhole to gain simultaneous entrance into the cranium and orbit.A second burr hole is placed posteriorly on the temporal floor.A cut is made from the medial aspect of the lateral orbital wall to its lateral aspect and is continued to the keyhole.The keyhole is then connected to the posterior burr hole by cutting through the temporal fossa.A cut starting at this burr hole is then brought superiorly to the frontal bone and then anteriorly through the supraorbital rim.The inferior orbital fissure is exposed after the orbital periosteum is separated from the osseous orbit.A wire saw is transferred through it below the zygomatic arc,and a cut of the lateral orbit is finished.A notched osteotome is used to incise the orbital roof from the second burr hole toward the nasion.The bone flap is now elevated.
     After opening dura,the sylvian fissure is opened in a lateral-to-medial manner and the carotid and chiasmatic cisterns are opened.This allows gentle retraction of the frontal and temporal lobe.The parasellar region,edge of tentorium and the base of middle fossa are exposed.The lateral wall of cavernous sinus is dissected under the microscope.
     After having finished the simulating surgical procedure,the remaining of the cranium and the dura of this area is removed.The cerebrum,the cerebellum and the brainstem are removed.We investigate the structures of cavernous sinus under the surgical microscope,measure the distances among the nerves and the arteries.
     2.Summarizing the clinical data:
     There were 2 males and 10 females.The ages ranged 28-61 years old.The duration of symptoms at the time of presentation ranged from 3 months to 2 years.8 patients presented with symptoms of headache,4 patients presented with symptoms of facial numbness.Two patients had visual deficits on the side of the tumor.The visual deficits were progressive in all patients.Two patients had oculomotor paralysis;two patients had abducent nerve lesion.Two patients had eyeball protrution.All patients were investigated with computed tomography(CT)and magnetic resonance(MR) imaging.CT showed the lesions as hypodense to isodense,and the lesions were demarcated and bell-shaped with marked enhancement after contrast administration. T_1-weighted MR imaging showed the lesions as hypointense with marked enhancement after contrast administration.T_2-weighted MR imaging showed the lesions as highly hyperintense.The size of the tumor ranged from 9 to 57 mm in maximum dimension(mean 45 mm).The surgical treatment was performed in all 12 patients.We adopted various ways to expose the lesions under the dura,according to the size of the lesions.The lateral wall of cavernous sinus was incised and the lesion was removed.There were 8 cases with zygomatic-pteroinal approach,2 cases with pteroinal approach and 2 cases with frontal-orbital-zygomatic approach in the surgical process.The sylvian fissures were dissected in 6 cases.
     Results:
     1.Frontal-orbital-zygomatic approach and structure of cavernous sinus
     In all 19 adult cadaveric heads,inferior orbital fissures are wide enough to being tranfered the wire saws from them.After having simulated the frontal-orbital-zygomatic ctaniotomy,the intra-orbital structure,bases of anterior and middle fossas and the infratemporal fossa were exposed widely.
     ①General relationships
     The roof of the cavernous sinus is trapezoid being formed by the medial half of the lesser wing and the posterior dural membranous layer..The anterior border of this trapezoid corresponds to the anterior rim of the origin of the C2 portion of the internal carotid artery(ICA)medially and the lateral end of the superior orbital fissure laterally.The posteromedial point is the posterior clinoid process;the posterolateral point is the dural entrance of the fourth cranial nerve.The anterior clinoid process is situated above the anterior part of the roof.
     The floor is formed by the medial portion of the greater wing of the sphenoid bone,including the lower margin of the foramen rotundum anteriorly and foramen ovale posterolaterally.
     The medial wall of the cavernous sinus is formed by the lateral wall of the pituitary gland and the most medial greater wing.The middle clinoid process is a small eminence of the lateral part of the sella turcica,which forms the superior margin of the carotid sulcus,and the ICA courses between the anterior and middle clinoid processes.
     The lateral wall of the sinus consists of two membranous folds compressing an outer dural layer and an inner layer of loose connective tissue,which envelopes the third,fourth,and fifth cranial nerves.The inner layer around the third cranial nerve is rather thick and relatively easily dissected.However,the inner layer around the fourth cranial nerve and the first division of the fifth cranial nerve is thin and often firmly attached to the outer layer,resulting in an uniformly thick wall.The third cranial nerve penetrates the roof slightly anteromedial to the penetration site of the fourth cranial nerve,which forms the posterosuperior angle of the lateral wall of the cavernous sinus.At the anterior lateral wall,the third and fourth cranial nerves and the first division of the fifth cranial nerve meet just before entering the superior orbital fissure,where the two layers unite to form a thick single wall.As the third, fourth,and fifth cranial nerves approach the superior orbital fissure,the fourth cranial nerve courses inferolaterally to the third cranial nerve,which is situated immediately below the anterior clinoid process.The sixth cranial nerve pierces the dura mater lateral to the dorsum sellae,runs through Dorello's canal,and enters the posterior wall of the cavernous sinus,and then courses between the first division of the fifth cranial nerve and ICA within the cavernous sinus.
     The anterior wall is a relatively shallow rectangle formed by the anteromedial portion of the greater wing,which includes the superior orbital fissure above and the foramen rotundum below.The third and fourth cranial nerves and the first division of the fifth cranial nerve pass through the superior orbital fissure and the second division of the fifth cranial nerve passes through the foramen rotundum.
     The posterior wall is bounded by the ligament petroclinoidea posterior above, which forms the tentorial edge situated between the posterior clinoid process and the superior border of the petrous temporal bone,and the petrous apex below.The superolateral border of the clivus is situated at a point two-thirds along the medial border of the posterior wall.The trigeminal ganglion occupies the trigeminal (Meckel's)cave in the dura mater,covering the trigeminal impression near the petrous apex.It is medial to the petrous ICA and the posterior part of the cavernous sinus,and inferior to the greater petrosal nerve,the petrous apex,and the foramen lacerum.The first and second divisions of the fifth cranial nerve then pass forward into the cavernous sinus close to the lateral part of the posterior wall.The sixth cranial nerve runs through Dorello's canal and pierces the dura mater lateral to the clivus in the cavernous sinus.Within the cavemous sinus,this sixth cranial nerve courses along the carotid artery,medial and parallel to the first division of the fifth cranial nerve.
     ②Arterial Relationships
     The cavernous sinus contains the intracavernous segment of the internal carotid artery and its branches.The intracavernous segment begins at the intracranial end of the carotid canal superior to the foramen lacerum and lateral to the posterior clinoid process,where the petrous segment of the internal carotid artery enters the cavernous sinus.The petrous segment of the internal carotid artery passes between the cartilaginous foramen lacerum below and the petrolingual ligament above to become intracavernous.The petrolingual ligament extends from the lingual process of the sphenoid bone to the petrous apex.The intracavernous segment passes upward and forward along the carotid sulcus posterior to the optic strut and medial to the anterior clinoid process and exits the cavernous sinus by piercing the dura extending medially from the upper surface of the anterior clinoid process.The intracavernous carotid artery has five parts:1)the posterior vertical segment,2)the posterior bend,3)the horizontal segment,4)the anterior bend,and 5)the anterior vertical segment The anterior vertical segment,also known as the clinoidal segment,is short and can be exposed only with removal of the anterior clinoid process.It is surrounded by the carotid collar and the clinoidal venous plexus inside the carotid collar and is limited above and below by the upper and lower dural rings.The intracavernous carotid artery has two main branches.The first,the meningohypophyseal trunk,arises from the posterior bend.The second,the inferolateral trunk,also called the artery of the inferior cavernous sinus,arises from the horizontal segment.The meningohypophyseal trunk typically originates from the posterior bend of the intracavernous carotid artery and has three branches:1)the dorsal meningeal artery,2) the inferior hypophyseal artery and 3)the tentorial artery.The dorsal meningeal artery passes posteriorly in the direction of Dorello's canal and supplies the dura of the upper clivus.
     ③Venous Relationships
     The cavernous sinus has five venous spaces(anterial,medial,anteroinferior, posterosuperior,and lateral),which are defined according to their position in relation to the intracavernous carotid.The anterial venous space is located before anterial bend of ICA.The medial venous space is located between the intracavernous carotid and the pituitary gland.The anteroinferior venous space is located anteroinferior to the posterior bend of the intracavernous carotid.The superior and inferior ophthalmic veins or their common trunk usually opens into the anteroinferior venous space.The posterosuperior venous space is located between the intracavernous carotid artery and the posterior part of the roof of the cavernous sinus and is the site where the cavernous sinus joins the basilar sinus.The lateral venous space,located between the intracavernous carotid and the ophthalmic nerve,is narrow.The abducens nerve courses medial to the ophthalmic nerve in this space.The main venous channels that communicate with the cavernous sinus are from the orbit,cerebral hemisphere, posterior fossa,and contralateral cavernous sinus.The communications between the two cavernous sinuses are through the anterior,inferior,and posterior intercavernous sinuses and the basilar sinus.The anterior intercavernous sinus courses anterosuperior, the posterior intercavernous sinus courses posterosuperior,and the inferior intercavernous sinus courses below the pituitary gland.These sinuses can occur together or separately.The basilar sinus is located behind the dorsum sellae and upper clivus and communicates at the lateral edge of the dorsum sellae with both cavernous sinuses.
     ④Triangles of cavernous sinus
     Anteromedial(Dolenc)triangle:medial edge is optic nerve,12.25±1.40mm: lateral edge is oculomotor nerve,20.13±1.27mm;edge of bottom,11.32±1.41mm.
     Medial(Hakuba)triangle:medial edge is line between lateral ring of ICA and margin of the posterior clinoid process,7.85±1.79mm;the length of lateral edge, 8.03±2.10mm;the length of edge of bottom,5.12±1.31mm.
     Carotid triangle:medial edge is dura of sellae diaphragma(11.93±2.88mm); lateral edge is interclinoid ligament(10.98±3.54mm);edge of bottom (10.76±2.38mm).
     Oculomotor triangle:Clinoid ligament(11.08±3.74mm);Anteropetroclinoid ligament(19.57±2.53mm);Posteropetroclinoid ligament(13.49±3.25mm).
     Supratrochlear triangle:Trochlear nerve(14.9±2.9mm);Oculomotor nerve (24.9±4.7mm);Tentorial edge(11.7±3.2mm).
     Parkinson's triangle:Trochlear nerve(15.72±3.15mm);Ophthalmic nerve(19.23±4.62mm);Tentorial edge(8.05±2.21mm).
     Mullan triangle:Ophthalmic nerve(22.23±3.16mm);Maxillary nerve (15.45±2.38mm);Line between foramen rotundum and superior orbital fissure (11.68±3.12mm).
     Lateral triangle:superior maxillary nerve(13.26±2.37mm);inferior maxillary nerve(7.28±1.51mm);line between the foramen rotundum and the foramen ovale(12.18±1.53mm).
     Kawase triangle:Superior petrosal sinus(15.68±2.15mm);Greater petrosal nerve (11.71±1.67mm);Trigeminal nerve(13.31±1.65mm).
     Posterolateral triangle:Greater petrosal nerve(11.65±1.768mm);Line between foramen spinosum and eminentia arcuata(14.12±1.78mm);Mandibular nerve (6.51±1.88mm).
     Inferomedial triangle:Line between Dorello canal and poster clinoid process (18.42±1.18mm);Line between trochlear nerve and Dorello canal(13.78±2.65mm); Petrous apex(13.72±2.15mm).
     Inferolateral triangle:Line between trochlearnerve and Dorello canal (11.87±1.69mm);Line between petrosal vein and Dorello canal(13.56±2.12mm); Petrous apex(13.68±2.38mm).
     2.Therapeutic effect of cavernous sinus hemangiomas
     The lesions were totally removed in 5 patients,sub-totally removed in 4 patients and partially removed in 3 patients.None of the patients was dead.In the immediate postoperative phase,2 patients showed optic acuity recovery,3 patients showed oculomotor paralysis,6 patients showed facial numbness.Extraocular movements completely recovered in two patients about 3 months following surgery.The function of the fifth nerve partially recovered.At follow up after six monthes to 2 years,the lesions were not recurrence in 5 patients that were totally removed.Other patients were administered with radio-therapy,and were controled validly.
     Conclusion:
     1.The cavernous sinus is the most challenging region in neurosurgery due to its deep location and complex structure.It is very important to understand the microsurgical anatomy of cavernous sinus.To known this knowledge is helpful for preserving ICA and cranial nerves and minimizing bleeding during the surgical procedures.We find that the flap of frontal-temperal-zygomatic craniotomy as a whole flap can minimize bone defect.
     2.Operation is the best choice for cavernous sinous hemangioma.It was helpful to control bleeding through intradura and incising lateral wall of cavernous sinus.
引文
1 Parkinson D.Lateral sellar compartment O.Y.(cavemous sinus);history,anatomy,terminology.Anat Rec.1998,251(4):486
    2 Kim JM,Romano A,Sanan A,et al.Microsurgical anatomy features and nomenclature of the paraclinoid region.Neurosurgery,2000,46(3):670-682.
    3 Kehrli P,Ali M,Reis M,et al,Anatomy and embryology of the lateral sellar compartment(cavernous sinus)medial wallfJ1.Neurol Res,1998,20(4):585-592.
    4 Weninger WJ,Streicher J,Muller GB.Anatomical compartments of theparasellar region:adipose tissue bodies represent intracranial continuations of extracranial spaces[J1.J Anatomy,1997,191(2):269-275.
    5 Taptas JN.Theso-called cavernous sinus:a review of the controversy and its implications for neurosurgeons[J].Neurosurgery,1982,11(5):712-717.
    6 江涛,王忠诚,于春江,等.海绵窦显微外科相关三角解剖学研究[J].中华神经外科杂志,1999,15(1):45-49.
    7 张保中,刘吉祥,于春江,等.海绵窦三角的显微外科解剖及其临床意义[J].中国临床解剖学杂志,1999,17(2):104-106.
    8 左国平,柏根基,王鹤鸣,等.海绵窦的断层解剖及其临床意义[J]。中国临床解剖学杂志,1999,17(2):112-114.
    9 Seoane E,Rhoton AL,Oliverira ED.Microsurgical anatomy of the dural collar (carotid collar)and rings around the clinoid segment of the internal carotid artery [J].Neurosurgery,1998,42(4):869-886.
    10 Inoue T,Rhoton AL,Yheele D,et al.Surgical approaches to the cavernous sinus:a microsurgical study[J].Neurosurgery,1990,26(6):903-932.
    11 Kawase T,Loveren HV,Keller JT,et al.Meningeal architecture of the cavernous sinus:clinical and surgical implications[J].Neurosurgery,1996,39(3):527-536.
    12 Krisht A,Barnett DW,Barrow DL,et al.The blood supply of the intracavernous cranial nerves: anatomic study [Jl.Neurosurgery, 1994, 34(2) :275-279.
    13 Sekhar LN, Burgess J, Akin O. Anatomical study of the cavernous sinusemphasizing operative approaches and related vascular and neural reconstruction [ J ]. Neurosurgery, 1987,21(6) :806-816.
    14 Oikawa S,Kyoshima K,Kobayyshi S. Surgical anatomy of the juxta-dural ring area[J] J Neurosurg,1998,89(2):250-254.
    15 Marinkovic S, Caibo H, Vucevic R, et al. Anatomy of the cavernous sinus region. J Clin Neurosci, 2001, 8(Suppl 1):78-81.
    16 Tekdentir I, Tuccar E, Cubuk HE, et al. Branches of the intracavemous internal carotid artery and the blood supply of the intntcaventous cranial nerves. Anat Anz,1998,180(4):343-348.
    17 Bouthillier A, Loveren HRV, Keller JT. Segments of internal carotid artery: a new classification[J].Neurosurgery, 1996, 38(3): 425-433.
    18 Rhoton AL. The cavernous sinus, the cavernous venous plexus, and the carotid collar. Neurosurgery, 2002, 51(Suppl4):375-410.
    19 Lang J, Kageyama I . Clincal anatomy of the blood spaces and blood vessels surrounding the siphon of the internal carotid artery[ Jl.Acta Anal' (Basel), 1990,139(4) :320-325.
    20 Spektor S, Piontek E, Umansky F. Orbital venous drainage into the anterior cavernous sinus space: microanatomic relationships [J] . Neurosurgery, 1997, 40(3): 532-540.
    21 Sadasivan B, Ma SH, Dujovny M, et al.The anterior cavernous sinus space[J] . Acts Neurochir, 1991, 108(4):154-158.
    22 Kyu-Won Shim, Dong-Seok Kim, Joong-Uhn Choi ,et al Congenital cavernous sinus cystic teratoma . Yonsei Medical Journal [J], 2007, 48 (4): 704-710.
    23. Aoki S, Barkovich AJ, Nishimura K, et al: Neurofibromatosis types 1 and 2: cranial MR findings.Radiology. 1989, 172: 527-534.
    24 Berlin AJ, Rich LS, Hahn JF: Congenital orbital teratoma. Childs Brain, 1983, 10: 208-216.
    25 Brook J, Moss E: Air in the cavernous sinus following scalp vein cannulation. Anae, 1994,49:219-220.
    26 El-Kalliny, van Loveren H, Keller JT, et al: Tumors of the lateral wall of the cavernous sinus Neurosurg, 1992, 77: 508-514.
    27 Delfini R, Iannetti G, Belli E, et al: Cranio-facial approaches for tumor involving the anterior half of the skull base. Acta Neurochir, 1993, 124:53-60.
    28 Knosp E, Miiller G, Perneczky A: The paraclinoid carotid artery: anatomical aspects of a microneurosurgical approach. Neurosurgery, 1988, 22: 896-901.
    29 Eisele D, Flint P, Janas J ,et al. The sublabial transseptal transsphenoidal approach to sellar and parasellar lesions. Laryngoscope, 1988, 98: 1301-1308.
    30 Umansky F, Valarezo A, Elidan J. The superior wall of the cavernous si nus: a microanatomical study. J Neurosurg, 1994, 81:914-920.
    31 Hakuba A, Tanaka K, Suzuki T, et al. A combined orbitozygomatic infrat emporal epidural and subdural approach for lessions involving the entire caverno us sinus. J Neurosurg, 1989, 71:699-704.
    32 Umansky F, Nathan H. The lateral wall of the cavernous sinus, with spe cial reference to the nerves related to it. J Neurosurg, 1982, 56:228-234.
    33 Dolenc W. Direct microsurgical repair of intracavernous vascular lesio ns. J Neurosurg, 1983, 58:824-831.
    34 Van Loveren HR, Keller JT, EL-Kalliny M, et al. The Dolenc technique f or cavernous sinus technique for cavernous sinus exploration (cadarveric prosecti on). J Neurosurg, 1991, 74:837-844.
    35 Seklar LN, Sen CN, Tho HD, et al. Surgical treatment of intracavernous neoplasms: a four-year experience. Neurosurgery, 1989, 24:18-30.
    36 Froelich, Sebastien C. M.D.; Aziz, Khaled M. Refinement of thr extradural anterior clinoidectomy: surgical anatomy of orbitotemporal periosteal fold. Neurosurgery. Operative Neurosurgery Supplement 2007, 2:179-186.
    37 Mullan S. Treatment of carotid-cavernous fistulas by vernous sinus oc clusion. J Neurosurg, 1979, 50:131-144.
    38 Kawase T, Toaya S, Shinobara R. Transpetrosal approach for aneurysms of the lower basilar artery. J Neurosurg, 1985, 63:857-861.
    39 Glassock ME Ⅲ,Smith PG Bond AG,et al.Management of aneurysms of the petrous portion of the internal carotid artery by resection and primary ana stomosis.Laryngoscope,1983,93:1445-1453.
    40 Dolenc W.A combined epi-and subdural direct approach to carotid-oph thalmic artery aneurysms.J Neurosurg,1985,62:667-672.
    41 Miller CG,Loveren HR,Keller JT,et al.Transpetrosal approach:surg ical anatomy and technique.Neurosurgery,1993,33:461-469.
    42 Bristot R,Santoro A,Fantozzi L.Cavernoma of the cavernous sinus case report.Surg Neurol,1997,48:160-163.
    43 Atul Goel,Dattatraya Muzumdar,Pravin Sharma et al:Extradural approach for cavernous hemangioma of cavernous sinus:experience with 13 cases.Neural Med Chir,2003,43:112-119.
    44 Linskey ME,Sekhar LN.Cavernous sinus hemangiomas:a series,a review and a hypothesis.Neurosurgery,1992,30(1):101-108.
    45 Ohata K,E1 Naggar A.Takami T,et al.Eficacy of induced the surgical treatment of large cavernous sinus haemangiomas.J Neurosurg,1999,90(4):702-708.
    46 Jose Luiz Furtado,Sergio Lopes Viana,Makoto Matsumine,et al.Cavernous angioma of the cavernous sinus:imaging findings.Arq Neuropsiquiatr,2004,62(4):1004-1007.
    47 BristotR,Santoro A,Fantozzi L,et al.Cavernoma of the cavernous sinus:case report.Surg Neurol,1997,48(2):160-163.
    48 何任,高彩虹,刘运振 海绵窦海绵状血管瘤5例分析[J].Henan J Pract Nerv Dis,2001,14(16);22
    49 印红霞,史继新,海绵窦海绵状血管瘤[J].江苏医药杂志,2000,26(11):880-881。
    50 Eisenberg MB.Cavernous hemangiomas of the cavernous sinus[A].In:Einberg MB,AL-Merty O,eds.The cavernous sinus[M].Lippincott Wilkins,Philadephia,2000:315-319.
    51 贺业新,张辉,刘起旺,海绵窦区海绵状血管瘤的磁共振诊断[J].山西医 科大学学报,2005,36(1):107-109。
    52 李学记.鞍室内海绵状血管瘤[J].国外医学神经病学外科学分册,2004,31(1):5-8.
    53 Sawamura Y,de Tribolet N.Cavernous hemangioma in cavernous sinus:a case report.Neurosurgery,1990,26:126-128.
    54 Zabramski JM,Awasthi D.Extra axial cavernous malformations.In:Awad IA,Barrow DL,eds.Cavernous malformations.Park Ridge,Ⅲ:American Association of Neurological Surgeons,1993.133-143.
    55 Kim IM,Y im MB,L eeC Y,e ta 1.Merits of intralesional fibrin glue injection in cavernous sinus cavernous hemangiomas.J Neurosurg,2002,97(3):718-721.
    56 Zhou LF,Mao Y,Chen L.Diagnosis and surgical treatment of cavernous sinus hemangiomas:an experience of 20 cases.Surg Neurol,2003,24:1148-1151.
    57 Suri A,Ahmad FU,Mahapatra AK.Extradural transcavernous approach to cavernous sinus hemangiomas.Neurosurgery.2007 Mar;60(3):483-8;
    58 于兰冰,赵继忠,贾文清.海绵窦海绵状血管瘤的诊断及治疗.中华医学杂志 2004,84(24):2086-2088
    59 Shi J,Hang C,Pan Y,et al.Cavernous hemangioma in the cavernous sinus.Neurosurgery,1999,45(6):1308-1314.
    60 Lechevalier B,Houtteville JP:Cavernomas intracraniens.Rev Neurol(Paris)148:173-179,1992(fre,with Eng abstract)
    61 Mori K,Handa H,Gi H:Cavernomas in the middle fossa.Surg Neurol 1980,14:21-31.
    62 Yasargil MG,Mortara RW,Curcic M.Meningiomas of basalposterior cranial fossa.Adv Tech Stand Neurosurg,1980,7:3.
    63 王忠诚,张俊廷,倪明等.额颞联合耳前颞下入路切除中颅窝底鞍旁肿瘤.中华神经外科杂志,1995,2:63.
    64 Rosenorn J.Self-retaining brain retractor pressure during intracranial procedures.Acta Neurochir(wien),1987,87:17.
    65 Andrews RJ,Bringas JR.A review of brain retraction and recommendation for minimizing intraoperative injury.Neurosurgery 1993,33:1052.
    66 Alaywan M,Sindon M.Fronto-temporal approach with orbitozygomatic removal surgical anatomy.Acta Neurochir(wien):1990,104:79.
    67 袁贤瑞,曹美鸿,刘运生等.经眶颧额颞下入路显微切除中颅窝底肿瘤.中华神经外科杂志,1995,1:29.
    68 杨扬,王建刚,邵毅,等.颞区解剖特点及手术策略.中华神经外科疾病研究杂志,2005,4:345-348.
    69 杨扬,王建刚,邵毅,等.线锯穿过眶下裂行额颞眶颧开颅技术 中华神经外科杂志2006,22(7):402-404.
    70 赵杰,袁贤瑞,姜维喜,等.眶上裂的显微外科解剖及其手术入路.中国耳鼻咽喉颅底外科杂志,2004,10:321-323.
    71 刘伟国,叶红星,沈宏海绵窦海绵状血管瘤的诊断和显微手术治疗.中华神经外科学杂志2005,21(6):354-356.
    72 Chanda A,Nanda A.Anatomical study for the orbitozygomatic transellar-transeavernous-transclinoidal approach to the basilar artery bifurcation.J Neurosurg,2002,97:151-160.
    73 Gonzales LF,Crawford NR,Horgan M,et al.Working area and angle of attack in three cranial base approaches:Pterional orbitozygomatic and maxillary extension of the orbitozygomatic approach,Neurosurgery,2002,50:550-555.
    74 Al-Mefiy O,Borba LA.Skull base chordomas:a management challenge.J Neurosurg,1997,86:182-189
    75 Hakuba A,Tanaka K,Suzuki T,et al.A combined orbitozygomatic intratemporal epidural and subdural approach for lesions involving the entire cavernous sinus.J Neurosurg,1989,71:699-704.
    76 徐伟,徐启武,鲍伟民.颅眶交界区肿瘤的显微外科手术治疗中国微侵袭神经外科杂志,2001,6,98-101.
    77 朴京虎,岳树元,杨树源.三叉神经鞘瘤17例临床分析.中国神经精神疾病杂志,2000,26;45-46.
    78 王光弟,夏吉勇,许建波.三叉神经鞘瘤的外科治疗(附11例报告).中华神经 外科杂志,1998,14;111-112.
    79 莫文元,沈建康,胡秉诚,等.颅底中线部肿瘤的手术治疗.浙江临床医学,2001,3;802-803.
    80 只达石,焦德让,杨玉山,等.33例椎-基底动脉瘤的临床观察.中华神经外科杂志,1998,14;358-360.
    81 Hashimoto M,Yokota A,Ohta H,et al.Intratumor lnjection of plastic adhesive material for removal of cavernous sinus hemangioma:technical note.J Neurosurg,2000,93(6):1078-1081.
    82 Li S,Pan Q,Liu N,et al.Neurotization of oculomotor,trochlear and abducent nerves in skull base surgery.Chin Med J(Engl),2003,116(3):410-413.
    83 Tekdentir 1,Tuccar E,Cubuk HE,et al.Branches of the intracavernous internal carotid artery and the blood supply of the intntcaventous cranial nerves.Anat Anz,1998,180(4):343-348
    84 Kids Y,Kobayashi T,Mon Y,et al,Radiosurgery of cavernous hemangiomas in the cavernous.Surg Neurol,2001,56(2):117-123.
    85 Iwai Y,Yamanaka K,Nakajima H,et al.Stereotactic radiosurgery for cavernous sinus cavernous hemangioma.Case report.Neuro Med Chit(Toyo),1999,39:288-290.
    86 Thompson TR Lunsford LD,Flickinger JC.Radiosurgery for hemangiomas of the cavernous sinus and orbit:technical case report.Neurosurgery,2000,47:778-783.
    87 Kida Y,Kobayashi T,Mori Y.Radiosurgery of cavernous hemangiomas in the cavernous sinus.Surg Neurol,2001,56:117-123.
    88 Peker S,Kilic T,Sengoz M,et al.radiosurgical treatment of cavernous sinus cavernous hemangiomas.Acta Neurochir(Wien),2004,146:337-341.
    89 王恩敏,潘力,王滨江等:海绵窦海绵状血管瘤的MRI表现及伽马刀治疗,立体定向放射神经外科2006,22(5):267-269.
    1. Browder J: Treatment of carotid artery cavernous sinus fistula: Report of a case. Arch Ophthalmol 18:95-102, 1937.
    2. Parkinson D: A surgical approach to the cavernous portion of the carotid artery: Anatomical studies and case report. J Neurosurg 23:474-483, 1965.
    3. Dolenc VV: Direct microsurgical repair of intracavernous vascular lesions. J Neurosurg 58:824-831. 1983.
    4. Dolenc VV: A combined epi- and subdural direct approach to carotidophthalmic artery aneurysms. J Neurosurg 62:667-672. 1985.
    5. Dolenc VV: Transcranial epidural approach to pituitary tumors extending beyond the sella. Neurosurgery 41:542-552, 1997.
    6. Dolenc VV: Extradural approach to intracavernous ICA aneurysms. Acta Neurochir Suppl (Wien) 72:99-106, 1999.
    7. Dolenc VV, Skrap M, Sustersic J, Skrbec M, Morina A: A transcavernous transsellar approach to the basilar tip aneurysms. Br J Neurosurg 1:251-259. 1987.
    8. Harris FS, Rhoton AL Jr: Anatomy of the cavernous sinus: A microsurgical study. J Neurosurg 45:169-180,1976.
    9. Inoue T, Rhoton AL Jr, Theele D, Barry ME: Surgical approaches to the cavernous sinus: A microsurgical study. Neurosurgery 26:903-932, 1990.
    10. Seoane E, Tedeschi H, de Oliveira EP, Wen HT, Rhoton AL Jr: The pretemporal transcavernous approach to the interpeduncular and prepontine cisterns: Microsurgical anatomy and technique application. Neurosurgery 46: 891-899, 2000.
    11. Hakuba A, Tanaka K, Suzuki T, Nishimura S: A combined orbitozygomatic infratemporal epidural and subdural approach for lesions involving the entire cavernous sinus. J Neurosurg 71:699-704, 1989.
    12. Hayreh SS: Arteries of the orbit in the human being.Brit J Surg 50: 938-953, 1963
    13. Renn WH, Rhoton AL Jr: Microsurgical anatomy of the sellar region. J Neurosurg 43:288-298, 1975.
    14. Paullus WS, Pait G, Rhoton AL: Microsurgical exposure of the petrous portion of the carotid artery. J Neurosurg 47: 713-726, 1977
    15. McConnell EM: The arterial blood supply of the human hypophysis cerebri. Anat Rec 115: 175-203, 1953
    16. Pait TG, Zeal A, Harris FS, Paullus WS, Rhoton AL: Microsurgical anatomy and dissection of the tern poral bone. Surg Neurol 8: 363-391, 1977
    17. Umansky F, Valarezzo A, Elidan J: The superior wall of the cavernous sinus: A microanatomical study. J Neurosurg 81:914-920,1994.
    1 刘伟国,叶红星,沈宏,等.海绵窦海绵状血管瘤的诊断及显微手术治疗,中华神经外科杂志,2005,21(6):354-356.
    2.Sohn CH,Kim SP,Kim IM,Lee JH,Lee HK.Characteristic MR imaging fmdings of cavernous hemangiomas in the cavernous sinus.AJNR 2003;24:1148-1151.
    3.Bristot R,Santoro A,Fantozzi L,Delfmi R.Cavernoma of the cavernous sinus:case report.Surg Neurol 1997;48:160-163.
    4.Momoshima S,Shiga H,Yuasa Y,Higuchi H,Kawase T,Toya S.MR findings in extracerebral cavernous angiomas of the middle cranial fossa:report of two cases and review of the literature.AJNR 1991;12:756-760.
    5.Suzuki Y,Shibuya M,Baskaya MK,et al.Extracerebral cavernous angiomas of the cavernous sinus in the middle fossa.Surg Neurol 1996;45:123-132.
    6.Gliemroth J,Missler U,Sephernia A.Cavernous angioma as a rare neuroradiologic finding in the cavernous sinus.J Clin Neurosci 2000;7:542-560.
    7.Goel A,Nadkarni TD:Cavernous hemangioma in the cavernous sinus.Br J Neurosurg 9:77-80,1995
    8.Suzuki Y,Shibuya M,Baskaya MK:Extracerebral cavernous angiomas of the cavernous sinus in the middle fossa.Surg Neurol 45:123-132,1996
    9.Linskey ME,Sekhar LN:Cavernous sinus hemangioma:aseries,a review,and a hypothesis. Neurosurgery 30: 101-108,1992
    10. Ito J, Takahashi M, Saito A: Cavernous hemangioma of the middle cranial fossa with an angiographically demonstrated feeding artery and tumor stain. Rinsho Hoshasen 22: 339-144,1997
    11. Shi J, Hang C, Pan Y, Liu C, Zhang Z. Cavernous hemangiomas in the cavernous sinus. Neurosurgery 1999; 45: 1308-1312.
    12. Rosenblum B, Rothman AS, Lanzieri C: A cavernous sinus cavernous hemangioma. Case report. J Neurosurg 65: 716-718, 1986
    13. Sawamura Y, Tribolet N: Cavernous hemangioma in the cavernous sinus: case report. Neurosurgery 26: 126-128,1990
    14. Mori K, Handa H, Gi H: Cavernous in the middle fossa. Surg Neurol 14: 21-31, 1980
    15. Rigamonti D, Pappas CTE, Spetzler RF: Extracerebral cavernous angiomas of the middle fossa. Neurosurgery 27: 306-310, 1990
    16. Stea RA, Schicker L, King GA, Winfield JA. Stereotactic linear radiosurgery for cavernous angiomas. Stereotact Funct Neurosurg 1994; 63(1-4):255-265
    17. Kondziolka D, Lunsford LD, FlickingerJC, Kestle JR. Reduction of hemorrhage risk after stereotactic radiosurgery for cavernous malformations. J Neurosurg 1995; 83:825-831
    18. Shibata S, Mori K. Effect of radiation therapy on extracerebral cavernous hemangioma in the middle fossa. Report of three cases. J Neurosurg 1987; 67: 919-922
    19. Rigamonti D, Pappas TE, Spetzler RF, Johnson PC. Extracerebral cavernous angiomas of the middle fossa. Neurosurgery 1990; 27: 306-309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700