用户名: 密码: 验证码:
锥束工业CT扫描方式与近似重建算法的改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
计算机断层成像(简称为CT)无论在医学诊断,还是在工业领域都有着广泛的应用,它被认为是当前最佳的无损检测技术。工业CT和医学CT的基本原理相同,都是以Radon数学变换为基础。但是由于被扫描工件的材质、尺寸和结构等千差万别,所以在射线能量、成像指标和后期处理等方面,工业CT与医学CT有较大的差别。因此,工业CT的扫描方式和重建算法应根据其特点作相应的改进。在三十多年的时间里,CT的扫描方式已由最初的平行束扫描发展到今天的锥束扫描。锥束CT也叫三维CT,与二维扇束CT相比,它具有射线利用率高、轴向分布均匀、扫描时间短等优点。锥束工业CT目前已成为无损检测领域的研究热点。锥束CT的重建算法大致分为迭代法和解析法两大类。迭代重建需要迭代运算,计算比较耗时。解析法又分为精确重建和近似重建,两者比较而言,精确重建需要射线源的扫描轨迹满足Smith提出的充分必要条件,而且算法的执行效率较低。近似算法重建图像的质量虽然没有精确重建的好,但是它具有执行效率高,机械运动简单等优点。Feldkamp、David和Kress提出了基于圆形扫描轨迹的实用近似重建算法(简称为FDK算法),目前该算法是商用锥束CT机上通用的算法。
     本文仔细分析了锥束CT扫描的FDK算法及其扫描轨迹,讨论了在探测器尺寸和探测器中心到转台中心的距离都固定的前提下,物体内任一点能够被射线束扫描的条件;物体完全扫描的高度及其与锥角的关系;并在此基础上分析了多层圆形扫描的层间距,为实际多层圆形扫描参数的选择提供依据。仿真结果证实,用FDK算法对锥束CT圆形扫描轨迹得到的投影数据重建,重建图像的质量随锥角的增大而变差,而且完全扫描的高度也随锥角的增大而变小。
     在工业CT中,经常会遇到待检测物体的直径大于探测器宽度的情况,此时,基于圆形扫描轨迹的Ⅲ代锥束CT扫描方式和FDK算法的应用受到限制。解决此问题的传统方法是用Ⅱ代锥束CT扫描方式,但是Ⅱ代锥束CT扫描非常耗时,得到的投影数据也有很多冗余,并且它的扫描时间不会因增加探测器的密度而减少。本文结合Ⅱ代和Ⅲ代锥束CT的扫描方式研究了一种Ⅱ+Ⅲ代锥束CT扫描,并且对传统的FDK算法进行改进,得到了一种适合于Ⅱ+Ⅲ代锥束CT重建的水平偏心FDK算法和拼接重建区域的方法,利用这种改进的扫描方式和重建方法不但可以实现大尺寸物体的检测,而且不需要对投影数据重排和插值。在本文的仿真实验中,Ⅱ+Ⅲ代锥束CT的采样时间比Ⅱ代锥束CT大幅度减少,投影数据的相对冗余率也比Ⅱ代锥束CT少得多。
     另外,在锥束CT中,一般使用高密度的面阵探测器,相邻探测单元之间的间距约为0.1mm。因此,相邻探测单元之间存在射线散射(或二次散射)引起的串扰。本文讨论了一种在探测器上加隔离网,然后利用探测器四次平移采样再重建的方法来减少射线串扰。通过计算机仿真,证实该方法能够减少相邻探测单元之间的射线串扰以及串扰带来的伪影。
Computed tomography (CT) is regarded as the perfect non-destructive test technology (NDT) in medical diagnosis and engeneering. The principle of industrial computed tomography (ICT) is similar to medical computed tomography. Both are based on Radon transform. In ICT, the size, structure and material of the scanned object vary widely. Thus, the mechanical construction, ray energy, imaging precision and image processing in ICT are partially different from that in medical CT. So, the scan way and the reconstruction algorithm should be modified according to the characteristic of ICT. In about fouty years, the scan mode of CT has changed from parallel-beam to cone-beam. Compared with 2D CT, 3D cone-beam CT, in which cone-beam rays are used to scan the object, has much shorter scan time and higher axis resolution because it can make use of the rays more efficiently. So it has attracted increasing attention, and is gradually being used in medical diagnosis and engineering. The image of the object is reconstructed from cone-beam projection data by use of algebraic or analytic algorithms. The algebraic algorithms need iteration, so the implementary time is longer. There are two types of analytic algorithms: exact and approximate algorithm. The loci of exact algorithms must satisfy the Smith’s necessary and sufficient condition, and the implemenary efficiency is lower. Although the images quality reconstructed by the approximate algorithms is not as good as that reconstructed by exact algorithm, the efficiency is higher than that of the exact algorithms, and scan locus could be incomplete. Feldkamp, Davis and Kress (FDK) proposed the practical approximate cone-beam reconstruction algorithm for the 3D CT with circular ray-source trajectory, which is a generalization of the fan-beam FBP (Filtered Back Projection) algorithm. Now, FDK algorithm is primary reconstruction algorithm in practical cone-beam CT. When detector size and distance between the source and rotary center were both fixed, we analyzed the condition that any point in the object was scanned and the relation between the cone angle and the complete reconstruction height. In addition, we discussed the space-between of multi-cycle locus. The simulations validate reconstruction images qualify is reduced and the complete reconstruction height become lower when the cone angle is larger.
     In ICT, it is common that the diameter of the object is larger than the width of the detector. The conventional 3rd generation circular trajectory and FDK algorithm are limited. In this dissertation, a new“2nd+ 3rd”generation scan mode and an off-center reconstruction algorithm were presented for solving this problem. This“2nd+ 3rd”generation scan mode shares similarities with the conventional 2nd generation cone-beam CT, which is traditionary scan way of inspecting the large object. But the“2nd+ 3rd”generation cone-beam CT needs the source and the detector are only translated a few times at each graduation, and the rotary graduation equals that of the 3rd generation cone-beam CT. The object is reconstructed by joining the pieces of the reconstruction area and using an off-center FDK algorithm that is an extension of the standard FDK algorithm. According to the reconstruction method, the projections do not need rebinning and interpolating, so the implementary efficiency is higher. Futhermore, the view of field and translated times are adjustable according to the size of the oject and horizontal flare angle of cone-beam. In simulation experiments, compared with the 2nd generation cone-beam CT, sampling time of this new scan mode is much shorter than that of the 2nd cone-beam CT, relatively redundant ratio is also reduced greatly. The results of simulations show that the images reconstructed by this method are of good quality.
     In cone-beam CT, because of the cross talk between detector units caused by X-ray’s scatter (especially high energy X-ray’s scatter in industrial CT), the Signal-to-Noise of detector and the space resolution of reconstructed image are decreased, and the artifact near the edges of reconstructed image is also generated. We discussed a sample method. The heavy metal partitions are fixed on the detector horizontally and vertically between the adjacent detector units, or are fixed in front of the detector. The object is scanned four times, and the projections are accordingly sampled four times. This sample way could decrease the cross talk of X-ray, and projections are complemented. After each scan, cone-beam projections are backprojected using FDK algorithm respectively. From the results of simulation experiments, we see the presented sample method can efficiently reduce the artifact caused by cross talk of X-ray’s scatter, and keep the space resolution of reconstructed images.
引文
[1] 庄天戈. CT 原理和算法[M]. 第一版. 上海:上海交通大学出版社,1992: 1-99.
    [2] Jiang Hsieh. Computed Tomography:Principle, Design, Artifacts and Recent Advances [M]. 第一版. 北京:科学出版社,2006: 1-71.
    [3] Harish P. Hiriyannaiah. X-ray computed tomography for medical imaging [J]. IEEE Signal Processing Magazine, 1997: 42-59.
    [4] 陈庆勇. 工业 CT 重建技术与算法研究 [学位论文]. 重庆: 重庆大学,2006: 4-7.
    [5] 叶海霞. 工业 CT 窄角扇束卷积反投影并行图像重建研究 [学位论文]. 重庆: 重庆大学, 2003.
    [6] 黄魁东. 锥束 CT 仿真系统关键技术研究 [学位论文]. 西北工业大学硕士学位论文,2006.
    [7] B. M. Carvalho1, G. T. Herman, S. Matej. ART for helical cone-beam CT reconstruction.
    [8] 霍修坤. 锥束 CT 直接三维成像算法研究 [学位论文]. 安徽大学博士学位论文,2005.
    [9] L. A. Feldkamp, L. C. Davis, and J. W. Kress, Practical cone-beam algorithm [J]. Opt. Soc. Am.,1984, 1 (A): 612-619.
    [10] Grant T. Gullberg,Gengsheng L. Zeng. A cone-beam filtered backprojection reconstruction algorithm for cardiac single photon emission computed tomography [J]. IEEE Trans. Med. Imaging, 1992, 11(1): 91-101.
    [11] Ge Wang, Tein-Hsiang Lin, Ping-chin Cheng, and Douglas M. Shinozaki. A general Cone-beam Reconstruction Algorithm [J]. IEEE Trans. on Medical Imaging, 1993, 12 (3) : 486 - 495.
    [12] Ben Wang, Hong Liu, Ge Wang. Generalized Feldkamp Image Reconstruction from Equiangular Cone-Beam Projection Data [C]. Computer-Based Medical Systems. 2000. U.S., IEEE, 2000: 123-128.
    [13] 杨民,路宏年,孙翠丽. 锥束扫描三维 CT 及其工程应用 [J]. CT 理论及应用研究,2004, 23(3): 43-49.
    [14] Bruce D. Smith. Image reconstruction from cone-beam projection: necessary and sufficient condition and reconstruction methods [J]. IEEE Trans. Med. Imaging, 1985, 4(1): 14-25.
    [15] Ge Wang, Seung Wook Lee. Grangeat-type and Katsevich-type algorithms for cone-beam CT [J]. CT Theory and Applications, 2003, 12(2): 45-55.
    [16] S. Schaller, F. Noo, F. Sauer, K. C. Tam et al. Exact Radon rebinning algorithm for the long object problem in helical cone-beam CT [J]. IEEE Trans. Med. Imaging, 2000, 19(5): 361-375.
    [17] Hiroyuki Kudo, Sujin Park, Frhd6ric Noo, and Michel Defrise. Performance of Quasi-Exact Cone-Beam Filtered Backprojection Algorithm for Axially Truncated Helical Data [J]. IEEE, 1999: 1409-1416.
    [18] Xiaohui Wang, Ruola Ning. A cone-beam reconstruction algorithm for circle-plus-arc data-acquisition geometry [J]. IEEE Trans. Med. Imaging, 1999, 18(9): 815-824.
    [19] Xiangyang Tang, Ruola Ning. An efficient cone beam filtered back-projection (CB-FBP) reconstruction algorithm for a circle-plus-two-arc orbit. IEEE, 2001: 126-130.
    [20] K. C. Tam, G. Lauritsch, K. Sourbelle, F. Saue, and B. Ladendorf. Exact (spiral + circles) scan region-of-interest cone beam reconstruction via backprojection [J]. IEEE Trans. Med. Imaging, 2000, 19(5): 376-383.
    [21] 张顺利. ART 算法几种重建模型的研究和比较 [J]. 航空计算技术, 2005, 35(2): 39-41.
    [22] Klaus Mueller. Fast and accurate three-dimensional reconstruction from cone-beam projection data using algebraic methods [Dissertation]. The Ohio State University Ph.D. thesis, 1998.
    [23] Klaus Mueller, Roni Yagel, John J. Wheller. Fast implementations of algebraic methods for three-dimensional reconstruction from cone-beam data [J]. IEEE Trans. Med. Imaging, 1999, 18(6): 538-548.
    [24] Fang Xu and Klaus Mueller. Accelerating popular tomographic reconstruction algorithms on commodity PC graphics hardware.
    [25] Bruno M. Carvalho, Gabor T. Herman. Helical CT reconstruction from wide cone-beam angle data using ART [C]. Computer Graphics and Image Processing. 2003. U.S.: IEEE, 2003: 363- 370.
    [26] Klaus Mueller, Roni Yagel. On the use of graphics hardware to accelerate algebraic reconstruction methods [C]. SPIE Medical Imaging Conference, Physics of Medical Imaging. San Diego. 1999.
    [27] Klaus Mueller, Roni Yagel. Rapid 3-D cone-beam reconstruction with the simultaneous algebraic reconstruction technique (SART) Using 2-D texture mapping hardware [J]. IEEE Trans. Med. Imaging, 2000, 19(12): 1227-1237.
    [28] 莫仕林,曾理,王珏. 基于 MasterSlave 模式的 CT 同时代数重建的并行进程[J]. 工程数学学报, 2004, 21(8): 111-115.
    [29] 王小璞. 基于分块迭代的快速代数重建算法研究 [学位论文]. 陕西:西安理工大学,2001:17-26.
    [30] 秦中元,牟轩沁,王平等. 一种内存优化的代数重建算法及其快速实现[J]. 电子学报,2003,31(9): 1327-1329.
    [31] J.R. Bilbao-castro, J.M. Carazo. Performance of parallel 3D iterative reconstruction algorithms. No detail.
    [32] 李铮, 李长军. 一种新的迭代消噪重建算法[J]. 小型微型计算机系统, 2004, 25(1): 96-97.
    [33] Klaus Mueller, Roni Yage, and J. Fredrick Cornhill1. The weighted distance scheme: a globally optimizing projection ordering method for ART [J]. IEEE Trans. Med. Imaging, 1997, 16(2): 1-14.
    [34] Johan Sunnegardh. Iterative enhancement of non-exact reconstruction in cone beam CT [Dissertation]. Linkoping University, 2004.
    [35] Klaus Mueller, Roni Yagel, John J. Wheller. Anti-aliased three-dimensional cone-beam reconstruction of low-vontrast objects with algebraic methods [J]. IEEE Trans. Med. Imaging, 1999, 18(6): 519537.
    [36] Per-Erik Danielsson. From cone-beam projections to 3D Radon data in O(N3logN) time[J]. IEEE, 1993: 1135-1137.
    [37] Y. Weng, G.L.Zeng, G.T. Gullberg. A reconstruction algorithm for helical cone-beam SPECT [J]. IEEE Trans. Med. Imaging, 1993, 40(4): 1092-1101.
    [38] Alexander Katsevich. Theoretically exact filtered backprojection-type inversion algorithm for spiral CT[J]. SIAM J. APPL. MATH. 2002,62(6): 2012–2026.
    [39] Alexander Katsevich. Analysis of an exact inversion algorithm for spiral cone-beam CT [J]. Phys. Med. Biol, 2002, 47: 2583–2597.
    [40] Alexander Katsevich. Improved exact FBP algorithm for spiral CT [J]. Adv. Appl. Math, 2004, 32: 681-697.
    [41] Alexander Katsevich. Image reconstruction for the circle and line trajectory [J]. Phys. Med.Biol, 2004, 49: 5059–5072.
    [42] Yangbo Ye, Shiying Zhao, Hengyong Yu et al. A general exact reconstruction for cone-beam CT via backprojection-filtration [J]. IEEE Trans. Med. Imaging, 2005, 24(9): 1190-1198.
    [43] S. Valton, F. Peyrin, D. Sappey-Marinier. Generalization of FDK 3D tomographic reconstruction algorithm for an off-centered cone beam geometry . IEEE, 2005.
    [44] 傅健, 路宏年, 王宏钧. 锥束准三代三维工业 CT 成像方法研究[J]. 兵工学报, 2005, 26(6): 776-779.
    [45] 傅健, 路宏年, 龚磊. 锥束射线三维大视场工业 CT 成像方法研究[J]. 光学技术, 2006, 32(2): 209-212.
    [46] 龚磊,傅健,路宏年,赵飞. 锥束射线 RT 扫描大视场三维 CT 成像方法研究[J]. 光学技术, 2006, 32(4): 567-569, 570.
    [47] 傅健, 路宏年. 一种新颖的 ICT 扫描方式及其 FBP 重建算法[J]. 北京航空航天大学学报, 2003, 29(1):9-12.
    [48] 傅健, 路宏年. 扇束 X 射线 ICT 偏置扫描方式及其重构算法[J]. 光学技术, 2003, 29(1): 115-118.
    [49] Fu Jian , Lu Hongnian. Research of large field of view scan mode for industrial CT [J]. Chinese Journal of Aeronautics , 2003 ,16 (1) :59—64.
    [50] 傅健, 路宏年. 工业 CT 半扫描成像技术[J]. 北京航空航天大学学报, 2005, 31(9): 966-969.
    [51] 赵飞, 路宏年, 孙翠丽. 一种新的二维 CT 扫描方式及其重建算法[J]. 光学技术, 2006, 32(2): 284-286,289.
    [52] 郭艳艳,大型试件 CT 重构的一种方法[J].测试技术学报,2002,16(4): 305-307.
    [53] Hiroyuki Kudo, Tsuneo Saito. Helical-scan computed tomography using cone-beam projections [C]. Nuclear Science Symposium and Medical Imaging Conference. 1991. Santa Fe, U.S. U.S.: IEEE, 1991: 1958 -1962.
    [54] Stefan Schaller, Thomas Flohr, Peter Steffen. A new approximate algorithm for image reconstruction in cone-beam spiral CT at small cone-angles [J]. IEEE 1997, 1703-1709.
    [55] Henrik Turbell. Cone-beam reconstruction using filtered backprojection [Dissertation]. Sweden: Departmet of Electrical Engineering Linkoping University, 2001.
    [56] Grass,M., T. Kohler, and R. Proksa (2000b).Weighted hybrid cone beam reconstruction for circular trajectories[C]. IEEE Medical Imaging. Lyon, France . 2000. U.S. IEEE, 2001, 15-1,15-2.
    [57] 张剑, 陈志强. 三维锥形束CT成像FDK重建算法发展综述[J]. 中国体视学与图像分析, 2005, 10(2): 116-120.
    [58] 曾凯,陈志强,张丽,赵自然. 基于同心圆轨道的锥形束 CT 重建算法[J]. 清华大学学报(自然科学版), 2004, 44 (6): 725-727,731.
    [59] 曾凯,陈志强,张丽,赵自然. 圆轨道锥束重建精度与锥角关系的研究[ J ]. CT 理论与应用研究, 2003,12 (3): 9-16.
    [60] Wang G., Liu Y., Lin T. H., Cheng P C. Half-scan cone-beam x-ray microtomography formula [J]. J. Scanning Microscopy, 1994, 16: 216 - 220.
    [61] Liu Y., Liu H., Wang G.. Half-scan cone-beam CT fluoroscopy with multiple x-ray sources [J]. Med. Phys., 2001, 28: 1466 - 1471.
    [62] 傅健, 路宏年, 张全红. 扇束工业 CT 重建算法速度优化[J]. CT 理论与应用研究, 2002, 11(3): 16-19.
    [63] 傅健, 路宏年. 扇束工业CT滤波反投影重构算法的快速实现[J]. 计算机应用研究, 2003, (3): 51-53.
    [64] 张晓帆, 何明一. 基于 FDK 法的三位 CT 快速计算方法[J]. 计算机工程与应用, 2004, 31: 208-209, 221.
    [65] Hiroyuki Kudo, Thomas Rodet, Frederic Noo, and Michel Defrise. Exact and approximate algorithms for helical cone-beam CT [J]. Phys. Med. Biol., 2004, 49: 2913-2931.
    [66] Hiroyuki Kudo, Frederic Noo, Michel Defrise, and Thomas Rodet. New approximate filtered backprojection algorithm for helical cone-beam CT with redundant data[C]. Nuclear Science Symposium Conference Record. 2003. U.S.: IEEE, 2003, 3211-3215.
    [67] Hiroyuki Kudo, Frederic Noo, Michel Defrise, and Rolf Clackdoyle. New super-short-scan algorithms for fan-beam and cone-beam reconstruction[C]. Nuclear Science Symposium Conference Record. 2002. U.S.: IEEE, 2002: 902-906.
    [68] Shiying Zhao,Ge Wang. Feldkamp-type cone-beam tomography in the wavelet framework[J]. IEEE Trans. Med. Imag. 2000, 19(9):922-929.
    [69] Jiang Hsieh. Reconstruction algorithm for single circular orbit cone beam scans [J]. IEEE, 2002: 838-838.
    [70] Ming Yan,Cishen Zhang. Tilted plane Feldkamp type reconstruction algorithm for spiral cone-beam CT [C]. IEEE International Conference on Control, Automation, Robotics and Vision Kunming,China 2004. U.S.: IEEE, 2004, 419-424.
    [71] Ming Yan, Cishen Zhang, Hongzhu Liang, and Jingxin Zhang. Gantry tilted tilted plane Feldkamp type reconstruction algorithm [C]. IEEE Engineering in Medicine and Biology 27th Annual Conference. Shanghai, China. U.S.: IEEE, 2005, 1810-1813.
    [72] Lifeng Yu, Charles Pelizzari, Xiaochuan Pan, Heinrich Riem, Peter Munro, and Wolfgang Kaissl. Application of Asymmetric Cone-beam CT in Radiotherapy [C]. Nuclear Science Symposium Conference Record . 2004. U.S.: IEEE, 2004: 3249-3252.
    [73] Jicun Hu, Kwok Tam, Roger H Johnson, and Jinyi Qi. A short scan helical FDK cone beam algorithm based on surfaces satisfying the Tuy’s condition [C]. Nuclear Science Symposium Conference Record. 2004. U.S.: IEEE, 2004: 2760-2764.
    [74] X.Yan and R.M.Leahy. Derivation and analysis of a filtered backprojection algorithm for cone beam projection data [J] .IEEE Trans. Med. Imag.1991, 10: 462-472.
    [75] D.Nahamoo,C.R.Crawford, A.C.Kak. Design constraints and reconstruction algorithms for traverse-continuous-rotate CT scanners [J]. IEEE Trans. Bio. Eng. 1981, 28(2):79-98.
    [76] http://www.gris.uni-tuebingen.de/areas/scivis/volren/datasets/data/engine.raw.gz
    [77] S. Izumi, S. Kamata, K. Satoh, and H. Miyai. High Energy X-ray computed tomography for industrial applications [J] . IEEE Transactions on Nuclear Science . 1993; 40(2): 158-161.
    [78] H. Miyai, S. Kawasaki, H. Kitaguchi and S. Izumi. Response of silicon detector for highenergy X-ray computed tomography[J]. IEEE Transactions on Nuclear Science . 1994; 41(4); 999-1003.
    [79] K. Satoh, H. Miyai, and S . Izumi. Correction of cross-talk noise in high energy X-ray computed tomography [C]. Nuclear Science Symposium and Medical Imaging Conference. 1994. U.S.: IEEE, 1995: 1837 - 1841.
    [80] 周日峰, 张平, 张泽宏.高能 X 射线探测器射线串扰模拟研究[J]. 核技术, 2005; 28(12): 937-939.
    [81] 吴沐新, 钱永庚, 王经瑾. 用 Monte Carlo 方法模拟设计工业 CT 探测器[J].核电子学与探测技术, 1999, 16(5): 340-344.
    [82] 李玉兰, 李元景, 王少锋, 李树伟, 何会林. 高能 X 射线成像系统固体探测器模块的设计[J]. 清华大学学报(自然科学版), 2003, 43(12): 1594-1596.
    [83] 阮秋琦. 数字图像处理学[M]. 第一版. 北京: 电子工业出版社,2004: 362-370.
    [84] 张旭东, 卢国栋, 冯健. 图像编码基础和小波压缩技术——原理、算法和标准[M]. 第一版. 北京: 清华大学出版社,2004: 8.
    [85] 盛骤, 谢式千, 潘承毅. 概率论与数理统计[M]. 第二版. 北京: 高等教育出版社,2002: 118.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700