用户名: 密码: 验证码:
气候变化与土地利用变化的岩溶水文水资源响应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩溶地区,由于地表崎岖、地下洞隙纵横交错、土层薄、肥力低、植被生长困难、水土流失严重,严重制约了流域持水、保水和供水能力,形成了该地区水文水资源的特殊性和脆弱性,其对变化环境的响应十分显著,成为全球变化研究最为关注的地区之一。近50年来,贵州极端天气现象不断发生,同时我国自“九五”以来就开始了西南岩溶地区的生态环境恢复重建和综合治理的示范研究,部分地区的生态环境已得到一定的恢复和改善,这些地区的气候和下垫面条件相应地发生了改变,其水文过程和水资源量也必然会发生变化。因此,研究西南岩溶地区水资源对土地利用变化和气候变化的响应很有必要,研究成果可对西南岩溶山区生态重建规划提供科学依据,而且对进一步研究岩溶流域洪旱灾害规律、指导防灾减灾、科学研究流域水资源开发利用等方面具有重要意义,对于保障流域社会经济可持续发展有一定的指导作用。
     本论文选取贵州省岩溶典型流域后寨河流域作为研究单元,后寨河流域面积80.6km2,为一典型的湿润岩溶流域,是国家“六五”岩溶研究典型区,也是国家“九五”攻关项目“贵州省岩溶流域生态环境综合治理和发展研究”的示范区域。区域人类活动强烈,生态建设效果明显。
     论文在分析岩溶地区水文特征和水资源形成过程的基础上建立了基于落水洞的岩溶半分布式水文模型。通过该模型的输入因子降雨和蒸发来考虑气候变化对径流量的影响,进行了气候变化的径流量敏感性分析;在对长序列气候特征分析的基础上提出了2030年气候变化特征,采用本文建立的水文模型分析了未来2030年流域的径流量;分析了气候变化对洪峰和洪水概率的影响。在分析后寨河流域土地利用变化特征的基础上构建了3种土地利变化情景,极端情景假设、优化空间情景假设和2030年情景假设,运用所建立的水文模型定量评估了后寨河流域3种土地利用变化情景下的水文响应。应用本文构建的水文模型模拟变化环境(气候变化、土地利用变化和社会经济发展)情景下后寨河流域2030年的径流量。构建了岩溶流域变化环境下水资源综合评价框架,包括分析2030年后寨河流域的水资源供、需求情景;分别采用三种方法分析了变化环境下水资源系统的脆弱性;然后分析了流域水资源可开发利用潜力;使用模糊综合评价法和支持向量机法分析了后寨河流域变化环境下2030年的水资源可持续利用情况,为该流域的水资源规划和水土保持规划提供科学依据。
     通过对普定气象站的气象和水文实测资料进行统计分析得出:70年代以来气温有升高趋势但不显著,其中夏、秋、冬季变暖,春季气温下降;年降雨整体呈下降趋势,但趋势性不显著,春、秋季降雨量减少,夏、冬季降雨量增加。基于TM影像解译土地利用数据结合土地利用变化动态变化模型和ArcGIS软件分析,后寨流域内1993-2005年间土地利用变化的特点是:研究区土地利用类型均以旱作地+裸岩、旱作地和水田为主,两个时期3种土地利用类型的面积之和均占全流域的80%以上,1993-2005年主要土地利用类型转换为旱作地+裸岩转换为旱作地、林地和水田。
     根据后寨河流域地质和气候特征,结合流域特殊的水资源形成过程建立了基于落水洞的岩溶半分布式水文模型,从日时间尺度上对模型进行了率定和验证。结果表明模型模拟的后寨河流域降雨—径流过程与实际观测情况基本吻合,率定期的效率系数为0.82,检验期的效率系数为0.75,总流量相对误差分别为-11%和-8%,说明该模型能够有效地模拟及预报流域的降雨径流过程,为进一步分析不同土地利用和气候情景下的水文效应提供了有力的技术支持。
     利用本文构建的水文模型计算不同气候情景组合假设下的径流量,分析气候变化的径流量敏感性。结果表明岩溶地区径流量对气候变化的敏感性低于我国已研究的其他地区,温度不变,径流量随降雨增加而增加,随降雨减小而减小;降雨不变,径流量随温度升高而减少;径流量对降雨变化比较敏感,对气温变化的敏感度则很小;在同样的情景假设下年总径流量响应程度表现为母猪洞子流域>老黑潭子流域>全流域,因此岩溶发育程度越高其对气候变化响应程度越大;变化相同的幅度,径流量变化率对降雨减少比对其增加敏感。根据对研究区气温和降雨的分析特征,运用典型缩放法预测得到2030年的气温和降雨值,利用所建立的水文模型计算表明2030年总径流量在不同降雨条件下都将减少,径流年内分配受气候变化影响较大,其中春、秋季的径流量减少;而夏、冬季的径流量增加,这与贵州近年来常出现的春旱夏涝一致。对于相同的洪水流量降雨增加20%时的洪水概率远大于降雨减少20%时的洪水概率,而且对于相同的洪水流量降雨增加20%的洪水概率与降雨减少20%时的洪水概率之差在20年一遇的干旱情景大于20年一遇的洪涝情景。
     利用GIS空间分析功能,设定出不同的土地利用/覆被情景假设,并利用本文构建的水文模型,定量分析不同下垫面状况对径流量的影响。结果表明:极端土地利用变化情景下,径流量的高低次序依次为极端裸岩>极端林地>极端水田,其中极端林地和极端水田均使径流减少,而极端裸岩的情景使径流增加,并且径流量的增加和减少主要集中在丰水期,这说明植被变化主要影响洪水期径流;在优化空间配置情景下各子流域和全流域径流量都减少,主要是林地面积增加;基于研究区1993-2005年的土地利用发展趋势,采用土地利用变化模型CLUE-S建立了2030年的土地利用情景,采用本文构建的水文模型进行流量模拟。结果表明:在未来土地利用情景下子流域和全流域径流量都减少,并且径流量的减少主要集中在洪峰阶段。在不同的土地利用情景假设下子流域或全流域径流量变化率与各流域土地利用面积变化比例呈正相关。
     应用本文构建的水文模型,计算得出在气候变化和土地利用变化共同作用下流域2030年总径流量减少,春、秋季减少,夏、冬季增加,全流域径流量在变化环境下比1994年(基准年)在高水位时变化比较明显,对枯水季的影响较少,相对不明显。
     供需初步分析反映出后寨流域2030年水资源供需矛盾很突出,而且缺水量比现状条件下多。通过三种方法分析变化环境下岩溶地区水资源脆弱性,“两指标法”表明后寨河流域水资源脆弱性较大;“水资源敏感性和适应能力评价法”表明变化环境下后寨河流域由于水资源敏感性较高、适应能力较低,使得水资源系统较脆弱;“警示灯法”表明后寨流域水库蓄水量小于年径流量,需水量低于天然径流量,水资源系统为中脆弱度中利用度。综上所述,后寨河流域水资源开发利用程度低,实际天然水资源量大于总需水量,属于工程型缺水地区,变化环境下其水资源系统基本为中脆弱性至较脆弱。
     对比分析了变化环境和现状条件下天然径流量、水资源可利用量和水资源可开发利用潜力。采用分项还原法还原地表水天然径流量,采用径流模数法计算地下水天然径流量,结果表明地表水、地下水天然径流量在变化环境下小于现状条件。采用扣损法和枯水径流模数法分别计算地表水和地下水资源总可利用量,结果表明:现状条件和变化环境下地表水资源可利用量基本一样;地下水资源可开采量在现状条件和变化环境下相差较多。以上说明变化环境对水资源可利用有负面影响,会促使水资源呈现更加紧张的状态。
     根据水资源可持续利用的量度需求,和前人对岩溶地区水资源可持续利用的研究,将水资源可持续利用指标体系分成3个层次,分别为目标层、准则层和指标层;综合分析了指标体系、指标权重的确定和指标等级分类,采用模糊综合评价法和支持向量机法评价了研究区变化环境下水资源可持续利用,都表明后寨河流域变化环境下水资源可持续利用状况为“一般”,这是由该研究区自身的水资源条件所决定的。
The Karst sub-streams system combined with fissures, conduits, caves, pores and other water-bearing medium widely distributes in South-West of China, it takes on some basic features, for example surface rugged, underground cave crisscross, soil layer thin, fertility low, vegetation growth difficult and soil erosion serious, karst development uneven, supplying drain is rapidly, the system's storage and regulation ability is low and the stage-discharge's seasonal variation large. The water system and ecological system in this area is very fragile, its response to changing environment is obvious, so it is the attention of global change. The extreme weather events occur repeatedly in Guizhou province, researches on restoration of ecological environment as well as comprehensive treatment of the karst region environment in southwest China have begun since 1995, which provide a unique opportunity for studying karst region in China. The land use in this area has changed since 1995, and the hydrological processes will change also. Therefore it is emergent to study the runoff variation of the karst catchment and the effect of land use change and climate change on hydrology and water resources, which provides information for developing management strategies for ecological preservation and sustainable utilization of water resources in this region.
     We make the Houzhai Basin as the example, which lies in the Puding country Guizhou province, which has an area of 80.6 km2, it is one of the typical areas where karstification is well developed. The study area is typical karst area of "65" and demonstration area of "95" entitled "Research on ecological environment comprehensive management and development of karst basin of Guizhou province". The human activities is strong and the ecological construction effect is obvious in the area.
     On the basis of analysis the research situation, this thesis builds a karst semi-distributed hydrologic mode based on sinkhole to analyze the runoff sensitivity to climate change through precipitation and evaporation two input factors. We put forward the climate change features in 2030 based on the studying the long sequence climate characteristics, then calculate the runoff in 2030 by using the hydrological model. This paper constructs three land use scenarios and then calculates the runoff under different land use scenarios, to study the runoff response to land use change. The water resources comprehensive evaluation framework was constructed under changing environment, including the supply and demand of water resources, water vulnerability, water potentiality and water resources sustainable utilization.
     Based on the data of temperature and precipitation observation collected from Puding meteorological station from 1960 to 2005, using the linear trend, moving average, the cumulative anomaly, and the Spearman, the seasonal mean temperature and precipitation variations during the past 45 years in Houzhai river is analysed. The mean temperature has increased in recent 45 years, the temperature increases in summer, autumn and winter while decreases a little in spring. The precipitation follow a slight declining trend in Houzhai river in recent 45 years, the precipitation is a little decreases in spring, autumn and increases in summer, winter. The land use distributions of Houzhai catchment in 1993 and 2005 were obtained from Landsat ETM, field investigations and the existing land use maps. These data were grouped into six classes according to the requirement of the study as well as the feature of the region, i.e. paddy field, dry land & barren land, forest land, open water, barren land, and dry land, the main land use types are paddy field, dry land & barren land, barren land, which accounting for over 80%of the study area. From 1993 to 2005, the most significant characteristics were decrease of dry land & barren land, and increase of barren land, forest land, and paddy field.
     On the basis of understanding of the karst features, we built the model based on sinkholes applied in the research of effects of land use change and climatic fluctuation. The model was calibrated against daily streamflow measurements at the three stations for the time period 1988 and 1994, and the data in 1996 were used for model validation. The goodness of fit using the Nash-Sutcliffe (1970) efficiency factor'E'was 0.82 and the standard deviation was-11%in the calibrated period, and 0.75 and-8%in the validated period, which illustrates the ability of the model to simulate the hydrological behaviour of the catchment.
     Based on the building hydrological model and hypothetical climate scenario, sensitivity of runoff in each subregion to climate change was analyzed. The result shows that the runoff increase with the precipitation increase while the temperature not change, the runoff decrease with the temperature increase while the precipitation not change. And results indicate that runoff in region is more sensitive to precipitation change than temperature change. Under the same condition, the runoff sensitivity followed the order of the Muzhudong>Laoheitan>the whole region. The temperature and precipitation of 2030 are forecasted by the typical scaling method. The runoff calculated by the building hydrological model decrease in 2030 under different precipitation conditions, the runoff decrease in spring and autumn, and increase in summer and winter, which can explain the phenomenon that spring drought and summer flood in recent years of Guizhou province. The frequency of flood peak when the precipitation increases 20%is larger than the precipitation decreases 20%.
     With the validated models, we discussed the potential effects of land use change by the simulation of "extreme land use scenarion","spatial deployment land use scenario" and "future land use scenario" with the spatial analysis function of GIS. The result show that the runoff followed the oreder of barren land> forest land>piady field under the extreme scenarios. Compared with the original landuse type, the barren land made the runoff increase, and the paidy field led runoff reduces. The runoff increase or decrease mainly concentrated in wet season, which show that the land use change mainly affect the runoff of wet season. The runoff decrease under spatial deployment land use scenario, and the runoff sensitive to land use change followed the order of the Muzhudong>laoheitan>the whole region. The land use temporal and spatial change of 2030 was simulated through the CLUE-S model based on land use of 2005 in this region, the result show that the runoff of Muzhudong and Laoheitan decreases, and the whole region decreases a little.
     This paper calculates the influence degree of land use change and climate change to the runoff by using the building hydrological model. The results show that the climate change is the main factor. The annual runoff reduces in 2030 under the combined action of land use change and climate change, and the runoff decrease mainly concentrated in wet season, the decrement rate is small in wet season.
     Preliminary analysis of supply and demand reflects that the contradiction between supply and demand is prominent in 2030, and the water deficit is more than in current condition. The natural runoff is bigger than the water demand under different precipitation condition in 2030, so the lacking water for engineering type in 2030 under different precipitation condition of Houzhai Basin. This paper analyzes the water vulnerability of Houzhai Basin under changing environment by using three methods, the two index method shows that the water vulnerability is a little large. The water sensitivity and adaptability method reflects that the water sensitivity is big and the adaptability is small, so the water sensitivity is relatively fragile. The warning lights method reveals that the reservoir storage capacity is smaller than the annual runoff, the water demand is smaller than the natural runoff, so the water sensitivity expresses medium fragile and exploitation. In conclusion, the water resources development and utilization of Houzhai Basin under changing environment is low, and is a engineering type area, the water sensitivity is medium to relatively fragile.
     This paper contrast analyzes the natural runoff, water availability and water potentiality under changing environment and current condition. This paper calculates the natural runoff of surface water by adopting the breakdown investigation method, and calculates the natural runoff of groundwater by using the runoff modulus method. The results reveal that the natural runoff of surface water and groundwater under changing environment are smaller than under the current condition. This paper calculates the water availability of surface water by adopting the losing deduction method, and calculates the water availability of groundwater by using the dry runoff modulus method. The results reveal that the water availability of surface water under changing environment are the same with under the current condition. The water availability of groundwater under changing environment are large different under the current condition. The water availability of changing environment is bigger than the water availability of current condition, and per capita water availability of changing environment is smaller than the per capita water availability of current condition.
     Based on the measurement demand of water resources sustainable utilization and previous research on the water resources sustainable utilization of karst area, this paper divide the water resources sustainable utilization index system into three level, which are garget level, rule level and index level. This paper evaluates the water resources sustainable utilization under changing environment by using fuzzy comprehensive evaluation method and support vector machine method. The results are consistent, and show that the water resources sustainable utilization under changing environment of Houzhai Basin is "general", which are decided by the water resources conditions of the study area.
引文
[1]Abdulla F, Eshtawi T, Assaf H. Assessment of the impact of potential climate change on the water balance of a semi-arid watershed[J]. Water Resources Management,2009,23:2051-2068.
    [2]Abdo K S, Fiseha B M, Rientjes T H M, et al. Assessment of climate change impacts on the hydrology of Gilgel Abay catchment in Lake Tana basin, Ethiopia[J]. Hydrological. Processes,2009,23:3661-3669.
    [3]Abu-taleb M F. Impacts of global climate change scenarios on water supply and demand in Jordan[J]. Water International,2000,25(3):457-463.
    [4]Alcamo J. et al. World Water Scenarios:Analyses[M], F. R. Rijsberman, Ed. Earthscan, London,2000, 204-242.
    [5]Allen R G, Gichuki F N, Rosenzweig C. CO2-induced climatic changes and irrigation requirements [J]. Journal of water resources planning and management,1991,117(2):157-178.
    [6]Arnell N W. A simple water balance model for the simulation of stream flow over a large geographic domain[J]. Journal of Hydrology,1999,217:314-355.
    [7]Arnell N W. Factors controlling the effects of climate change:a river flow regimes in a humid temperature environment[J]. Journal of Hydrology,1992,132:321-342.
    [8]Arnell N. Impacts, Adaptations, and Mitigation of Climate Change R T[M]. Watson et al., Eds. Cambridge Univ. Press, Cambridge,1995,325-363.
    [9]Arnold J G, Srinivasan R, Muttiah R S, et al. Large area hydrologic modeling and assessment. Part I: Model development[J]. Journal of American Water Research Association,1998,341:73-88.
    [10]Aveldkamp, Lambin E F. Predicting land-use change[J]. Agriculture, Ecosystems and Environment, 2001,85:1-6.
    [11]Batelaan O, Smedt De F, Triest L. Regional groundwater discharge:phreatophyte mapping, groundwater modeling and impact analysis of land-use change[J]. Journal of Hydrology,2003,275: 86-108.
    [12]Bergstrom S B, Carlsson M, Gardelin G, et al. Climate change impacts on runoff in Sweden-assessment by global climate models, dynamical downscaling and hydrological modeling[J]. Climate Research,2001,16(2):101-112.
    [13]Bergstrom S. The HBV model[C]. In:Singh VP, editor. Computer models of watershed hydrology. Highland Ranch, CO, USA:Water Resources Publications,1995:443-476.
    [14]Bates B C, Kundzewicz Z W, Wu S. Climate change and Water[M]. Technical paper of the intergovernmental panel on climate change. IPCC secretariat. Geneva,2008.
    [15]Biftu G F, Gan T Y. Semi distributed, Physically based hydrological modeling of the Paddle River Basin, Alberta, using remotely sensed data[J]. Journal of Hydrology,2001,244:137-156.
    [16]Bonell M, Balek J. Recent and scientific developments and research needs in hydrological processes of the humid tropics [M]. In:Bonell M, Hufschmidt M.M, Gladwell J S(Eds.). Hydrology and water Management in the Humid Tropics. UNESCO, Paris,1993,167-260.
    [17]Bosch J M, Hewlett J D. A review of catchment experiments to determines the effect of vegetation change on water yield and evapotranspiration[J]. Journal of Hydrology,1982,55:3-22.
    [18]Budhendra B, Matt G, Carmen L, et al. Assessing long-term hydrologic effects of land use change[J]. ABI/INFORM trade & industry,1997,89(11):94-106.
    [19]Burn D H. Hydrologic effects of climatic change in the west-central Canada[J]. Journal of Hydrology, 1994,160:53-70.
    [20]Burn S E, Band L E. Simulating runoff behavior in an urbanizing watershed[J]. Computer, Environment and urban system,2000,24:5-22.
    [21]Campana N A, Tucci C E M. Predicting floods from urban development scenarios:case study of the Diluvio basin, Porto Alegre, Brazail[J]. Urban water,2001,3:113-124.
    [22]Changnon S A. Trends in floods and related climate conditions in Illinois[J]. Climatic Change,1983, (5):341-363.
    [23]Charles J V. Change and Population Growth Global Water Resources:Vulnerability from Climate References and Notes[J]. Science,2000,289:284-288.
    [24]Chen C C, Gillig D, McCarl B A. Effects of climatic change on water dependent regional economy:A study of the Texas Edwards Aquifer[J]. Climatic change,2001,49(4):397-409.
    [25]Chiew F H, Whetton P H, McMahon T A, et al. Simulation of the impacts of Climate-change on runoff and soil moisture in Australia catchments[J]. Journal of Hydrology,1995,167(1-4):121-147.
    [26]Choi J Y, Engel B A, Chung H W. Daily stream flow modeling and assessment based on the curve-number technique[J]. Hydrological Processes,2002,16:3131-3150.
    [27]Crooks S, Davies H. Assessment of land use change in the Thames catchments and its effect on the flood regime of the river[J]. Physics and Chemistry of the Earth,2001,26(7,8):583-591.
    [28]Dam Van J C, Ed., Impacts of Climate Change and Climate Variability on Hydrological Regimes[M]. Cambridge Univ. Press, Cambridge,1999.
    [29]David A W, Kenneth M. The Impacts of climate change on regional surface water supply from reservoir storage in China, Proceedings of the 1st international Yellow River Forum on River Basin Management, Volume 3[M].Zheng zhou:the Yellow River Conservancy Publishing House,2003.
    [30]Dawson R J, Dickson M E, "Nicholls R J, et al. Integrated analysis of risks of coastal flooding and cliff erosion under scenarios of long term change[J]. Climatic Change,2009,95:249-288.
    [31]De Roo A P J, Ddijk M, Schmuck G, et al. Assessing the effects of land use changes on floods in the Meuse and older catchment[J]. Physics and Chemistry of the earth (B),2001,26,593-599.
    [32]Dunn S M, Mackay R. Spatial variation in evapotrasiration and the influence of land use on catchment hydrology[J]. Journal of hydrology,1995,171:49-73.
    [33]Dvork V, Hlandy J, Kasparek L. Climate change hydrology and water resources impact and adaptation for selected river basins in the Czech Republic[J]. Climatic change,1997,36(1-2):93-106.
    [34]Edwards K A. The water balance of the Mbeya experimental catchments[M]. In:Blackie J R, Edwards K A, Clarke R T(Eds.), Hydrological Research in East Africa, East Afr.Agric.For.1979.43,231-247.
    [35]Feyen L, Barredo J I, Dankers R. Implications of global warming and urban land-use change on flooding in Europe[M]. In:Feyen J, Shannon K, Neville M (Eds.), Water and Urban Development Paradigms. Taylor and Francis,2009,217-225.
    [36]Fischer G, Sun L X. Model based analysis of future land use development in China[J]. Agriculture, Ecosystems and Environment,2001,85:163-176.
    [37]Forther N, Haverkamp S, Eekhardt K, et al. Hydrological response to land use change on the catchment scale[J]. Physics and Chemistry of the earth (B),2001,26:577-582.
    [38]Frederick K D. Adapting to climate impacts on the supply and demand for water [J]. Climatic Change, 1997,37(1):141-156.
    [39]Gibson C C, Eostrom, Anh T K. The concept of scale and the human dimensions of global change:a survey[J]. Ecological Economics,2000,32:217-239.
    [40]Gleick P H. Regional hydro logie consequences of increases in atmospheric CO2 and other trace gases[J]. Climatic Change,1987b,10:137-161.
    [41]Gleick P H. The development and testing of a water balance model for climate impacts assessment: modeling the Sacramento basin[J]. Water Resource Research,1987a,23(6):1049-1061.
    [42]Graham P L, Johan A, Bengt C. Assessing climate change impacts on hydrology from an ensemble of regional climate models, model scales and linking methods-a case study on the Lule River basin[J]. Climatic Change,2007,81:293-307.
    [43]Grasso D A, Jeannin P Y. Erratum to "A deterministic approach to the coupled analysis of karst springs'hydrographs and chemographs"[J]. Journal of Hydrology,2003,279:291.
    [44]Guo S L. A macro-scale and semi-distributed monthly water balance model to predict climate change impacts in China [J]. Journal of Hydrology,2002,268:1-15.
    [45]Hagg W, Braun L N, Kuhn M, et al. Modelling of hydrological response to climate change in glacier zed Central Asian catchments[J]. Journal of Hydrology,2007,332,40-53.
    [46]Hall J W, Sayers P B, Dawson R J. National scale flood risk assessment of current and future flood risk in England and Wales[J]. Natural Hazards,2005,36:147-164.
    [47]Hartig E K, Grozev O, Rosenzweig C. Climate change, agriculture and wetlands in Eastern Europe: Vulnerability, adaptation and policy[J]. Climatic change,1997,36(1-2):1855-1870.
    [48]Hostetler S W, Bartlein P J, Clark P U, et al. Simulated influences of Lake Agassiz on the climate of central North America 11,000 year ago[J]. Nature,2000,405:334-337.
    [49]Hundecha Y, Bardossy A. Modeling of the effete of land use changes on the runoff generation of a river basin through parameter regionalization of a watershed model[J]. Journal of Hydrology,2004,292: 281-295.
    [50]Huo Z L, Feng S Y, Kang S Z, et al. Effect of climate changes and water-related human activities on annual stream flows of the Shiyang river basin in arid north—west China[J]. Hydrological Processes,2008, 22:3155-3167.
    [51]Hurd B N, Leary R J, Smith J. Relative regional vulnerability of water resources to climate change [J]. Journal of the American water resources association,1999,35 (6):1399-1409.
    [52]IPCC,1990:Climate Change:The IPCC scientific assessment[M]. J.T.Houguton, G.J.Jenkins and J. Ephraums, (eds.). Cambrige University Press, Cambrige, UK,365
    [53]James D, Ford B S, Johanna W. Vulnerability to climate change in the Arctic:A case study from Arctic Bay Canada[J]. Global Environment Change,2006,16:145-160.
    [54]Jonathan I M, Graciana P, Kennet M M. Evaluation of the impact of climate change on hydrology and water resources in Swaziland[J]. Physics and Chemistry of the Earth (B),2004,29:1193-1202.
    [55]Jones R N. Analyzing the risk of climate change using an irrigation demand model[J]. Climate research,2000,14:89-100.
    [56]Kamga F M. Impact of greenhouses gas induced climate change on the runoff of the Upper Benue river (Camernoon)[J]. Journal of Hydrology,2001,252:145-156.
    [57]Kiersch B. Land use impacts on water resources:A literature review[M]. Land-Water Linkages in Rural Watersheds Electronic Workshop,2000.
    [58]Kite G W. Development of a hydrological model for a Canadian watershed[J]. Canidian Journal of Civilian Enger,1978,51:126-134.
    [59]Kite G W. Modelling the Mekong:hydrological simulation for environmental impact studies[J]. Journal of Hydrology,2001,253:1-13.
    [60]Klocking B, Haberlandt U. Impact of land use changes on water dynamics—a case study in temperate meso and macroscale river basins[J]. Physics and Chemistry of the Earth,2002,27:619-629.
    [61]Kil S L, Chung E S. Hydrological effects of climate change, groundwater withdrawal, and land use in a small Korean watershed[J]. Hydrological Processes,2007,21,3046-3056.
    [62]Krasovskaia. Frequency of extremes and its relation to climate fluctuations[J]. Nordic Hydrology, 1993,24(1):1-12.
    [63]Krysanova V, Hattermann F, Wechsung F. Development of the ecohydrological model SWIM for regional impact studies and vulnerability assessment[J]. Hydrological Processes,2005,19:763-783.
    [64]Krysanova V, Muller-Wohlfeil D I, Becker A. Development and test of a spatially distributed hydrological water quality model for mesoscale watersheds[J]. Ecol Model,1998,261-289.
    [65]Kwadijk J, Rotmans J.The impact of climate change on the River Rhine[M].a scenario study. Climatic Change,1995,30:397-425.
    [66]Lahmer W, Pfutzner B, Beeker A. Assessment of land use and climate change impacts on the Mesoscale[J]. Physics and chemistry of the earth,2001,26:565-575.
    [67]Lan C, Dennis P, Lettenmaier, et al. Effects of a century of land cover and climate change on the hydrology of the Puget Sound basin[J]. Hydrological Processes,2009,23:907-933.
    [68]Lane M E, Kirshen P H, Vogel R M. Indicators of impacts of global climate change on US water resources[J]. Journal of water resources planning and management ASCE,1999,125(4):194-204.
    [69]Laurens M, Bouwer P B, Jeroen C, et al. Changes in future flood risk due to climate and development in a Dutch polder area[J]. Global Environmental Change,2010,20:463-471.
    [70]Leavesley G H, Stannard L G. In:Singh VP, editor. The precipitation runoff modeling system-PRMS[M]. Highlands Ranch, CO:Water Resources Publications,1995,281-310.
    [71]Legesse D, Vallet-coulomb C, Gasse F. Hydrological response of catchment to climate and land use changes in Typical Africa:case study South Central Ethiopia[J]. Journal of Hydrology,2003,26:593-599.
    [72]Li P J. Variation of snow water resources in northeastern China,1951-1997[J]. Science in China Series D-Earth Sciences,1999,42:72-79.
    [73]Lindstrom G, Johansson B, Persson M, et al. Development and test of the distributed HBV-96 hydrological model[J]. Journal of Hydrology,1997,201:272-288.
    [74]Liu C Z. The Vulnerability of water resources in Noahwest China. 冰川冻土.2003,25(3):309-314.
    [75]Loaiciga H A, Maidment D R, Valdes J B. Climate change impacts in a regional karts aquifer, Texas, USA[J]. Journal of Hydrology,2000,227(1-4):173-194.
    [76]Lorup J K, Hansen E. Effect of land use on the streamflow in the southwestern highlands of Tanzania.In:Rosbjerg D, Boutayeb N, Gustard, et al(Eds). Sustainability of water resources under increasing uncertainty (Proceedings of the Rabat Symposium SI,1997), IAHS Publication 1997,240: 227-236.
    [77]Lorup J K, Refsgaard J C, Hazvimavi. Assessing the effect of land use change on catchment runoff by combined use of statistical tests and hydrological modelling:case studies from Zimbabwe[J]. Journal of Hydrology,1998,205:147-163.
    [78]LOvovich M I, White G F. The Earth as Trans-formed by Human Action[M], B. L. Turner et al., Eds. Cambridge Univ. Press, Cambridge,1990,235-252.
    [79]Mac K, Chiew F, Harle K, et al. Catchment water yield and water demand projections under climate change scenarios for the Ausrtalina Capital Tertitoy[R], Consultancy for ACT Electricity and water,2003.
    [80]Mansell M G. The effects of climate change on rainfall trends and flood risk in the West of Scotland[J]. Nordic Hydrology,1997,28:37-50.
    [81]Marc J M, Rilk L. A multidisplinary multi—scale framework for assessing vulnerabilities to global change[J]. International Journal of Applied Earth Observation and Geoinformation,2005,7(4):253-267.
    [82]Meigh J R, McKenzie A A, Sene K. Id-based approach to water scarcity estimates for eastern and southern Africa[J]. Water Resources Management,1999,13:85-115.
    [83]Mertens B, Lambin E F. Spatial modeling of deforestation in Southern Cameroon:Spatial disaggregating of diverse deforestation Processes[J]. Applied Geography,1997,17:143-162.
    [84]Mimikou M. Impact of climate change on hydrological and water resources systems in the European Community In:Water resources and environmental sciences [J/OL], http://www.Hydro,ntua.gr/e/ subareas/l,1997.
    [85]Mitchell G. Demand forecasting as a tool for sustainable water resources management[J]. International Journal of Sustainable development and World ecology,1999,6(4):231-241.
    [86]Mohamed A, Hamouda.M M, Nour El-Din.Fawzia I.Moursy. Vulnerability Assessment of Water Resources Systems in the Eastern Nile Basin[J]. Water resources Management,2009,23:2697-2725.
    [87]Mokrech M, Nicholls R J, Richards J A, et al. Regional impact assessment of flooding under future climate and socio-economic scenarios for East Anglia and North West England[J]. Climatic Change,2008, 90,31-55.
    [88]Moussa R, Voltz M, Andrieux P. Effects of the spatial organization agricultural management on the hydrological behavior of a farmed catchment during flood[J]. Hydrological Process,2002,16:393-412.
    [89]Muzik I. A first-order analysis of the climate change effect on flood frequencies in a subalpine watershed by means of a hydrological rainfall-runoff model[J]. Journal of hydrology,2002,267:65-73.
    [90]Nash L L, Gleick P H. Sensitivity of streamflow in the Colorado Basinto climate change[J]. Journal of Hydrology,1991,125(1):221-241.
    [91]Niehoff D, Fritsh U, Bronster A. Land use impacts on storm-runoff generation:scenarios of land-use changes and simulation of hydrological response in a meso-scale catchment in SW-Germany[J]. Journal of hydrology,2002,267:80-93.
    [92]Ojima D L, Elgaali E, Miller K, et al. Potential climate change impacts on water resources in the reat plains[J]. Journal of the American Water resources association,1999,35(6):1443-1454.
    [93]Peart R M, Curry R B, Rosenzweig C, et al. Energy and irrigation in south eastern U.S. agriculture under climate change[J]. Journal of Biogeography,1995,22:635-642.
    [94]Pijanowski B C, Gage S H, Long D T, et al. A land transformation model for the Saginaw Bay watershed[M]. In:Sanderson J, Harris L D. Landscape ecology:A top down approach. Lewis Publishing, Boca Raton, FL,2000.
    [95]Pilling C G, Jones J A A. The impact of future climate change on seasonal discharge, hydrological processes and extreme flows in the Upper Wye experimental catchment, mid-Wales[J]. Hydrological processes,2002,16:1201-1213.
    [96]Pontius R G, Schneider L C. Land-use change model validation by a ROC method[J]. Agriculture, Ecosystems and Environment,2000,85:269-280.
    [97]Quinn N W T, Miller N L, Dracup J A. An integrated modeling system for environmental impact analysis of climate variability and extreme weather events in the San Joaquin Basin, California[J]. Advances in Environmental Research,2001,5(4):309-317.
    [98]Remec J, Schaake J C. Sensitivity of Water resources systems to climate variations[J]. Hydrological Science Journal,1982,27:327-343.
    [99]Richey J E, Nobre C, Deser C. Amazon river discharge and climate variability:1903-1985[J]. Science, 1989,246:101-103.
    [100]Ritschard R L, Cruise J F, Hatch L U. Spatial and temporal analysis of agriculture water requirements in the Gulf coast of the US[J]. Journal of the American water resources association (JAWRA),1999,35(6): 1585-1596.
    [101]Root T L, Sehneider S H. Ecology and climate:Research strategies and implications[J]. Science, 1995,269:334-341.
    [102]Rosenberg N J, Crosson P R, Frederick K D, et al. The MINK methodology:Background and baseline[J]. Climatic Change,1993,24:7-22.
    [103]Rounsevell M D A, Evans S P, Mayr T R. Integrating biophysical and socio-economic models for land use studies[M]. In:Pieri C. Proceeding of the ITC-ISSS Conference on Geo-information for Sustainable Land Management. Enschede, Netherland:ITC,1997,368.
    [104]Sandstrom K. Forests and water-Friends of foes. Hydrological implications of deforestation and land degradation in semi-arid Tanzania.University of LinkoPing[M]. LinkoPing, Sweden,1995.
    [105]Schulze R, Meigh J, Horan M. Present and potential future vulnerability of eastern and southern Africa, s hydrology and water resources[J]. South African Journal of Science,2001,97(3-4):150-160.
    [106]Scott D F, Lesch W. Streamflow responses to afforestation with Eucalyptus grandis and Pinus patula and to felling in the Mokobulaan experimental catchlnents, South Afriea[J]. Journal of Hydrology, 1997(3-4),360-377.
    [107]Serneels S. Priority of questions for land-use/cover change research in the next couple of years. LUCC Newsletter 2001.
    [108]Shiklomanov I. Assessment of Water Resources and Water Availability in the World:Scientipc and Technical Report[M]. State Hydrological Institute, St. Petersburg, Russia,1996.
    [109]Smith K. Recent hydroclimatic fluctuations and their effects on water resources in Illinois[J]. Climatic Change,1993,23(2):249-269.
    [110]Smith R E, Scott D F. Effects of forestation on low flows in various regions of south Africa[J]. Water S A,1992,18(3):185-194.
    [111]Stockton C W, Boggess W R. Geohydrological implication of climate change on water resources, development[M]. Washington:Engineering Research Center,1979.
    [112]Strzepek K M, Major D C, Rosezweig C, et al. New method of modeling water availability for agriculture under climate change:The US cornbelt[J]. Journal of the American water resources association (JA WRA),1999,35(6):1639-1655.
    [113]Trimble A S, Weirich F H, Hoag B L. Reforestation and the reduction of water yield on the Southern Piedmont Since Circa 1940[J]. Water Resources Research,1987,23:425-437.
    [114]Verburg P H, Soepboer W, Veldkamp A, et al. Modeling the spatial dynamics of regional land use: the CLUE-S model. Environmental Management,2002,30(3):391-405.
    [115]Waggoner P E. Climate Change and US water resources[M]. New York John Wiley and Sons.1990.
    [116]Weber A, Fohrer N, Moller D. Long-term land use changes in a mesoscale watershed due to socio-economic factors-effects on landscape and functions[J]. Ecol Model,2001,140:125-140.
    [117]Wilby R L. When and where might climate change be detectable in UK river flows? [J]. Geophysical Research Letters,2006,33:9407.
    [118]Wilk J, Andersson L, Plermkamon V. Hydrological impacts of forest conversion to agriculture in large river basin in northeast Thailand[J]. Hydrological Processes,2001,15:2729-2748.
    [119]Xu C Y. Modelling the Effects of Climate Change on Water Resources in Central Sweden[J].Water Resources Management,2000,14:177-189.
    [120]Yao H, Scott L, Guay C. Hydrological impacts of climate change predicted for an inland lake catchment in Ontario by using monthly water balance analyses[J]. Hydrological Processes,2009,23, 2368-2382.
    [121]Zuidema G J, Van D, Born J, et al. Alcamo Simulating changes in global land cover as affected by economic and climatic factors[J]. Water, Air and Soil Pollution,1994,76(1,2):163-198.
    [122]摆万奇,张永民.大渡河上游地区土地利用动态模拟分析[J].地理研究,2005,24(2):206-214.
    [123]摆万奇.深圳市土地利用动态趋势分析[J].自然资源学报,2000,15(2):112-116.
    [124]曹建延.气候变化对水资源管理的影响与适应性对策[J].中国水利,特别关注,2010,1:7-11.
    [125]陈军锋,张明.梭磨河流域气候波动和土地覆被变化对径流影响的模拟研究[J].地利研究,2003,22(1):73-78.
    [126]陈军锋.土地覆被变化对流域水文的影响—以长江上游梭磨河流域为例[D].中国科学院地理科学与资源研究所博士论文,2002.
    [127]陈康宁,董增川,崔志清.基于分形理论的区域水资源系统脆弱性评价[J].水资源保护,2008,24(3):24-26.
    [128]陈丽华.森林水文研究[M],林业译丛,北京:中国林业版社,1989.
    [129]陈利群,刘昌明.黄河源区气候和土地覆被变化对径流的影响[J].中国环境科学,2007,27(4):559-565.
    [130]陈亚宁,徐长春,杨余辉,等.新疆水文水资源变化及对区域气候变化的响应[J].地理学报,2009,64(11):1331-1341.
    [131]陈莹,王国杰.土地覆盖变化预测模型研究进展[J].辽宁师范大学学报(自然科学版),2005,28(4):484-487.
    [132]楚文海.脆弱生态约束下典型喀斯特流域水资源可持续利用评价[D].贵州大学,2007.
    [133]邓慧平,李爱贞,刘厚风,等.气候波动对莱州湾地区水资源及极端旱涝事件的影响[J].地理科学,2000,20(1):56-60.
    [134]邓慧平,李秀彬,陈军锋,等.流域土地利用变化水文效应的模拟-以上江上游源头区梭磨河为例[J].地理学报,2003,58(1):53-62.
    [135]邓慧平,唐来华.沱江流域水文对气球气候变化的响应[J].地理学报,1998,53(1):42-48.
    [136]邓慧平,赵明华.气候变化对莱州湾地区水资源脆弱性的影响[J].自然资源学报,2001,16(1):9-15.
    [137]邓慧平.气候与土地利用变化对水文水资源的影响研究[J].地球科学进展,2001,16(3):436-441.
    [138]冯少辉,李靖,朱振峰.云南省滇中地区水资源脆弱性评价[J].水资源保护,2010,26(1):13-16.
    [139]傅伯杰,陈利顶,马克明.黄土高原小流域土地利用变化对生态环境的影响[J].地理学报,1999,54(3):241-246.
    [140]傅国斌,刘昌明.全球变暖对区域水资源影响的计算分析[J].地理学报,1991,46(3):277-288.
    [141]傅丽昕,陈亚宁,李卫红,等.塔里木河源流区近50a径流量与气候变化关系研究[J].中国沙漠,2010,30(1):204-209.
    [142]高超,翟建青,陶辉,等.巢湖流域土地利用/覆被变化的水文效应研究[J].自然资源学报,2009,24(10):1794—1802.
    [143]高歌,李维京,张强.华北地区气候变化对水资源的影响及2003年水资源预评估[J].气象,2000,29(8):26-30.
    [144]高人,周广柱.辽东山区不同森林植被类型枯落物质截留降雨行为研究[J].辽宁林业科技,2002,5,1-4.
    [145]高彦春,于静洁,刘昌明.气候变化对华北地区水资源供需影响的模拟预测[J].地理科学进展,2002,21(6):616-624.
    [146]葛庆龙.城市主要能源及用水量对全球气候变化的响应—以大连市为例[D].大连,辽宁师范大学,2004.
    [147]谷晓平,刘雪梅.春、夏季降雨对水库蓄水量的影响[J].气象,2001,26(4):50-53.
    [148]光耀华.广西水资源可持续开发利用战略研究[J].广西电力工程,2000,2:4-8.
    [149]郭清海,王焰新,马腾,等.山西岩溶大泉近50年的流量变化过程及其对全球气候变化的指示意义[J].中国科学D辑,2005,35(2):167-175.
    [150]郭生练.气候变化对洪水频率和洪峰流量的影响.水科学进展,1995,6(3):225-230.
    [151]郝芳华,陈利群.土地利用变化对产流和产沙的影响分析[J].水土保持学报,2004,18(3):5-8.
    [152]黄明斌,刘贤赵.黄土高原森林植被对流域径流的调节作用[J].应用生态学报,2002,13(9):1057-1060.
    [153]黄明斌,郑世清,李玉山.流域尺度不同水保措施减水效益分割[J].水土保持通报,2001,21(2):4-7.
    [154]黄乾,彭世彰.北方地区节水灌溉现状简述[J].水资源保护,2005,21(2):12-15.
    [155]贾仰文,高辉,牛存稳,等.气候变化对黄河源区径流过程的影响[J].水利学报,2008,39(1):52-58.
    [156]金菊良,张礼兵,魏一鸣.水资源可持续利用评价的改进层次分析法[J].水科学进展,2004,15(2):227-232.
    [157]金兴平,黄艳,杨文发,等.未来气候变化对长江流域水资源影响分析[J].人民长江,2009,40(8):35-38.
    [158]李大军.西南岩溶山区典型小流域水资源可利用量研究—以贵州普定后寨地下河流域为例[D].贵州大学,学位论文,2008.
    [159]李秀彬.全球环境变化研究的核心领域-土地利用/土地覆被变化国际研究动向[J].地理学报,1996,51(6):553-557.
    [160]李阳兵,谢德体.不同土地利用方式对岩溶山地土壤团粒结构的影响[J].水土保持学报,2001,15(4):122-125.
    [161]刘昌明,钟骏襄.黄土高原森林对年径流影响的初步研究.地理学报,1978,33(2):112-126.
    [162]刘春蓁.气候变化对陆地水循环影响研究的问题[J].地球科学进展,2004,19(1):115-119.
    [163]刘春蓁,刘志雨,谢正辉.地下水对气候变化的敏感性研究进展[J].水文,2007,27(2) 1-6.
    [164]刘世荣.中国森林生态系统水文生态规律[M].北京:中国林业出版社,1996,61-62.
    [165]刘晓英,林而达.气候变化对华北地区主要作物需水量的影响[J].水利学报,2004,2:77-87.
    [166]刘志韬.山西管涔山林区森林对径流的影响[J].水土保持通报,1981,4:56-61.
    [167]龙健,黄昌勇,李娟.喀斯特山区土地利用方式对土壤质量演变的影响[J].水土保持学报,2002,16(1):76-79.
    [168]鲁荣安,李淑芳,田新生,等.《脆弱度》技术在山西省水资源开发利用程度分区评价中的应用[J].地下水,1996,18(2):55-58.
    [169]马宏伟,王乃昂.近50年石羊河出山口径流对气候变化的响应[J].干旱区资源与环境,2010,24(1):113-117.
    [170]马力,杨新民,吴照柏,等.不同土地利用模式下土壤侵蚀空间演化模拟[J].水土保持通报,2003,23(1):49-52.
    [171]马荣田,周雅清.晋中近49年气候变化特征及其对水资源的影响[J].气象,2007,33(1):107-111.
    [172]马雪华.四川米亚罗地区高山冷杉林水文作用的研究[J].林业科学,1987,23(2):253-265.
    [173]马雪华.岷江上游森林的采伐对河流流量和泥沙悬移质的影响[J].自然资源学报,1990,(3):78-87.
    [174]缪启龙,张永勤,金龙,等.长江三角洲农业耗水的气候变化影响研究[J].南京气象学院学报,1999,22(增刊):518-522.
    [175]秦大河,陈宜瑜,李学勇.中国气候与环境演变(下卷)气候与环境变化的影响与适应减缓对策[M].北京:科学出版社,2005.
    [176]沈振荣.节水新概念—真实节水的研究和应用[M].北京:中国水利水电出版社,2000.
    [177]盛前丽,张洪江.香溪河流域不同土地利用类型的产流特性研究[J].西部林业科学,2009,38(2):28-32.
    [178]石玉林,卢良恕.中国农业需水与节水高效农业建设[M].北京:中国水利水电出版社,2001.
    [179]史培军,苏绮,周武光.土地利用变化对农业自然灾害灾情的影响机制[J].自然灾害学报,1999,8(1):1-10.
    [180]史培军,袁艺,陈晋,等.深圳市土地利用变化对流域径流的影响[J].生态学报,2001,21(7):1041-1049.
    [181]史运良,王腊春,朱文孝.西南喀斯特山区水资源开发利用模式[J].科技导报,2005,23(2):52-55.
    [182]史运良,王腊春.岩溶水概念性分布模型[J].南京大学学报,1992,13:136-149.
    [183]水利部水文信息中心.“八五”国家科技攻关计划“气候变化对中国水文水资源影响及适应对策研究”技术报告,1996.
    [184]宋永芳,郭彦波,石志增,等.石家庄城市供水与气象条件[J].气象,2000,26(5):51-54.
    [185]苏维词,周济柞.贵州喀斯特山区的“石漠化”及防治对策[J].长江流域资源与环境,1995,4(2):177-182.
    [186]苏维词.岩溶地区生态环境敏感度评价研究[J].中国岩溶,1997,16(1):57-65.
    [187]唐国平,李秀彬,刘燕华.全球气候变化下水资源脆弱性及其评估方法[J].地球科学进展,2000,15(3):314-317.
    [188]陶辉,毛炜峄,白云岗,等.45年来塔里木河流域气候变化对径流量的影响研究[J].高原气象,2009,28(4):854-860.
    [189]万军.喀斯特地区土壤侵蚀风险评价—以贵州省关岭布依族苗族自治县为例[J].水土保持研究,2003a,10(3):148-153.
    [190]万军.应用线性光谱分离技术研究喀斯特地区土地覆被变化—以贵州省关岭县为例[J].地理研究,2003b,22(4):439-446.
    [191]万荣荣,杨桂山.流域LUCC水文效应研究中的若干问题探讨[J].地理科学进展,2005,24(3):25-33.
    [192]万荣荣,杨桂山.流域土地利用/覆被变化的水文效应与洪水响应研究[J].湖泊科学,2004,16(3):258-264.
    [193]万荣荣,杨桂山.流域土地利用/覆被对洪峰的影响研究—以太湖上游西苕溪流域为例[J].自然资源学报,2009,24(2):318-327.
    [194]汪承杰.水资源计算与评价[M].南京:南京大学出版社,1993.
    [195]王国庆,张建云,章四龙.全球气候变化对中国淡水资源的脆弱性影响研究综述[J].水资源与水工程学报,2005,16(2):7-15.
    [196]王国庆,张建云,刘九夫,等.气候变化对水文水资源影响研究综述[J].中国水利,2008,2:47-51.
    [197]王红闪,黄明斌,张槽.黄土高原植被重建对小流域水循环的影响[J].自然资源学报,2004,19(3):344-350.
    [198]王建生,张世法,黄国标,等.气候变化对京津唐地区水资源及供需平衡的影响[J].水科学进展,1996,7(1):26-36.
    [199]王金霞,李洁,夏军,等.气候变化条件下水资源短缺的状况及适应性措施:海河流域的模拟分析[J].气候变化研究进展,2008,4(6):336-341.
    [200]王腊春,李道元,左平,等.岩溶山区石漠化治理生态需水量初步研究[J].水资源保护,2004(5):10-15.
    [201]王腊春,史运良,顾国琴,等.岩溶地区地表地下水库联合优化调度模型—以贵州普定后寨地下河流域为例[J].中国岩溶,1999,18(3):245-250.
    [202]王腊春,史运良.西南岩溶山区三水转化与水资源过程及合理利用[J].地理科学,2006,26(2): 173-178.
    [203]王腊春,许有鹏,张立峰,等.贵州普定后寨地下河流域岩溶水特征研究[J].地理科学,2000,20(6):557-562.
    [204]王腊春,杨晓轩.喀斯特流域空间结构与地貌瞬时单位线应用—以贵州后寨地下河流域为例[J].南京大学学报,1995,31(4):649-656.
    [205]王礼先,张志强.干旱地区森林对流域径流的影响[J].自然资源学报,2001,16(5):454-459.
    [206]王玲,刘海隆.重庆岩溶区气候变化对水文水资源的影响[J].水文,2007,27(3):71-74.
    [207]王明泉,张济世,程中山.黑河流域水资源脆弱性评价及可持续发展研究[J].水利科技与经济,2007,13(2):114-116.
    [208]王守荣,黄荣辉,丁一汇.水文模式DHSVM与区域气候模式RegCM2/China嵌套模拟试验[J].气象学报,2002,60(4):421—427.
    [209]王艳君,吕宏军,施雅风.城市化流域的土地利用变化对水文过程的影响—以秦淮河流域为例[J].自然资源学报,2009,24(1):30-36.
    [210]魏静,陈正洪,彭毅.武汉市日供水量与气象要素的相关分析[J].气象,1997,26(11):27-29.
    [211]吴志勇,郭红丽,金君良,等.气候变化情景下黑河流域极端水文事件的响应[J].水电能源科学,2010,28(2):7-9.
    [212]夏军,谈戈.全球变化与水文科学新的进展与挑战[J].资源科学,2002,24(3):1-6.
    [213]向毓意,张永勤,刘文泉,等.气候变化对长江三角洲工业和生活用水影响的统计模型[J].南京气象学院学报,1999,22(增刊):523-528.
    [214]熊峰,王玉杰,王云琪,等.森林植被影响水文通量空间分布研究进展[J].防护林科技,2005,2:29-33.
    [215]徐静,任立良,袁飞,等.基于BTOPMC模型的土地覆被变化径流响应模拟[J].湖泊科学,2008,20(4):507-513.
    [216]徐立荣.气候变化对莱州湾地区水文极端事件的影响研究—以弥河流域为例[D].山东师范大学,2000.
    [217]杨晓婷,王文科,乔晓英,等.关中盆地地下水脆弱性评价指标体系的探讨[J].西安工程学院学报,2001,23(2):46-49.
    [218]英爱文,姜广斌.辽河流域水资源对气候变化的响应[J].水科学进展,1996,7(增刊):67-72.
    [219]俞锦标,杨立铮,方明泽,等.中国喀斯特发育规律典型研究[M].北京:科学出版社,1990.
    [220]袁道先.我国西南岩溶石山的环境地质问题[J].世界科技研究与发展,1997,19(5):41-43.
    [221]袁飞,谢正辉,任立良,等.气候变化对海河流域水文特性的影响[J].水利学报,2005,36(3):274-279.
    [222]游燕.气候与土地利用变化的流域水文系统响应——以东江流域为例[D].中山大学博士论文, 2007.
    [223]张华丽,董婕,延军平,等.西安市城市生活用水对气候变化响应分析[J].资源科学,2009,31(6):1040-1045.
    [224]张建云,何惠.应用地理信息应用无资料地区流域水文模拟研究[J].水科学进展,1998,9(4):345-350.
    [225]张建云,章四龙,朱传保.气候变化与流域径流模拟[J].水科学进展,1996,7(增刊):54-59.
    [226]张建云.短期气候异常对我国水文水资源的影响评估[J].水科学进展,1996,7(增刊):1-3.
    [227]张建云,王国庆.气候变化对水文水资源影响研究[M].北京:科学出版社,2007,214.
    [228]张凯,王润元,韩海涛,等.黑河流域气候变化的水文水资源效应[J].资源科学,2007,29(1):77-83.
    [229]张升堂,拜存有.人类活动的水文效应研究综述[J].水土保持研究,2004,11(3):318-319.
    [230]张笑天,陈崇德.漳河水库灌区水资源脆弱性评价研究[J].华北水利水电学院学报,2010,31(2):12-15.
    [231]张翼,许秀元.用SCCM模式估算气候变化对黄淮海平原土壤水分平衡各分量的影响[M].北京:气象出版社,1993,223-234.
    [232]张永勤,向毓意,缪启龙,等.气候变化对长江三角洲地区水资源供需平衡的影响[J].南京气象学院学报,1999,22(增刊):529-535.
    [233]章程,蒋勇军,LIAN Yan-qing,等.利用SWMM模型模拟岩溶峰丛洼地系统降雨径流过程—以桂林丫吉试验场为例[J].水文地质工程地质,2007,3:10-14.
    [234]章海生,史运良,俞锦标.高原分水岭型喀斯特径流过程模拟——以贵州普定县南部地区为例[J].中国岩溶,1987,6(4):263-285.
    [235]赵世伟,黄占斌,苏静,等.宁南山区小流域雨水资源潜力与供需分析[J].水土保持通报,2004,24(6):94-98.
    [236]周光益.尖峰岭热带山地雨林天然更新林产流特征研究[J].林业科学研究,1993,6(1):70-75.
    [237]朱利,张万昌.基于径流模拟的汉江上游区水资源对气候变化响应的研究[J].资源科学,2005,27(2):16-22.
    [238]邹君,刘兰芳,田亚平,等.地表水资源的脆弱性及其评价初探[J].资源科学,2007,29(1):92-98.
    [239]左其亭.水资源利用与管理[M].郑州:黄河水利出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700