用户名: 密码: 验证码:
土木工程中结构识别方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在深入分析现有结构识别方法的基础上,针对观测不完整及数据误差造成的识别困难,基于三种类型观测数据——静力位移观测数据、模态观测数据、时域动力响应数据,开展了结构识别方法的研究。本文的主要研究工作如下:
     首先通过对土木工程结构识别方法的发展现状进行研究与总结,认识到观测自由度不完整及观测数据误差是制约结构识别发展与应用的主要因素,指出在观测不完整及不精确基础上进行结构识别方法的研究是土木工程结构识别的发展方向,阐述了本文研究的背景及意义,确定了本文研究的总体思路。
     针对广泛存在于结构参数估计、结构损伤识别、大坝参数反演、岩土力学反演中的一类结构识别问题——基于静力位移观测的结构识别,建立了结构参数识别的部分特征结构分配法。对基于静力位移结构识别问题的参数分组及可辨识性标准进行了讨论,建立了基于模拟退火-单纯形的完全非线性识别算法。使用部分特征结构分配法对结构参数估计、结构损伤识别、大坝分区弹模反演问题进行数值模拟,结果表明本文方法在观测不完整及数据误差条件下具有较好的数值稳定性和鲁棒性。
     为了克服柔度阵比较法可能出现错误损伤定位,提出了结构损伤定位的柔度投影法。首先,通过理论分析证明了柔度投影法对低阶模态参数敏感的特性及其损伤定位原理;其次,根据模型缩聚和振型扩展对柔度投影法定位能力影响的对比研究,将柔度投影法与多目标优化振型扩展算法结合使用,实现了观测自由度不完整条件下的结构损伤定位;最后,在统计意义的框架下定义了加权柔度投影误差,解决了数据误差条件下的损伤定位问题。通过对典型结构的数值模拟研究表明,本文建立的柔度投影法能够在观测不完整、不精确条件下有效地解决结构损伤定位问题。
     在柔度投影法的基础上,建立了基于观测柔度阵的结构损伤识别方法。从观测柔度阵出发,提出了结构识别的部分特征结构分配识别模型,建立了识别问题的线性化、拟线性化和完全非线性算法,并通过对三种算法的对比研究,确定了用于结构损伤识别的完全非线性识别算法。将结构损伤识别的完全非线性算法与柔度投影法结合,利用频率观测数据较为精确的特点,使用混合法研究了数据误差条件下的损伤识别问题。
     地震动作用下的时域识别技术是结构识别领域的一个重要研究方向。针对观测自由度不完整的剪切型结构,建立了地震动输入和未知结构参数的复合反演方法。本文所建立的方法分为两个阶段:地震动子结构反演和单元结构参数识别。首先,使用子结构识别技术,研究了未知参数、观测不完整条件下的地震动输入反演问题,建立了未知输入的最小二乘估计算法;其次,在估计地震动输入的基础上,使用广义Kalman滤波器方法,识别全部单元结构参数。研究结果显示,复合反演的两阶段方法能够为结构无损检测和状态评估提供理论依据。
In order to overcome the identification difficulties caused by measurement incompleteness and data error, this dissertation is devoted to study the methods and application of structural identification in civil engineering using the static displacement, the modal data and the response in the time domain.
    Based on the extensive investigation of the literature, research situation of structural identification in civil engineering was summarized. The incomplete and noisy measurement was realized the main adverse factor to hamper the development of structural identification. Study on the identification method with the incomplete and noisy measurement was the research direction in the future. The significance of this dissertation was expounded and the research scheme was determined.
    Aiming at the structural identification problem based on the static displacement extensively existing in civil engineering, the partial eigenstructure assigned method was presented to identify the structural parameters. Then the parameter group and identifmbility criterions were discussed. The identification algorithm based on the Simulated Annealing-Simplex Shape algorithm was proposed. Several numerical examples of structural parameter estimation, structural damage identification, dam parameter inversion and geotechnical engineering were demonstrated that the proposed method had the good numerical steadiness and robustness to resist the data error with the condition of the incomplete and noisy measurement.
    In order to avoid the possible error of damage location by the flexibility comparison method, the flexibility projection method to locate the damage was proposed. Firstly, the sensitive property to the low modes and the location principle of the flexibility projection method was theoretical proved. Secondly, based on the comparative study on the model reduction and the mode shape expansion, the flexibility projection method was combined with the multi-objective optimum mode shape expansion algorithm to achieve the damage location with the limited measurement. Finally, the weighed flexibility error was defined on the frame of the statistical meaning to solve the damage location problem with the condition of data error. The numerical simulations were carried on the typical structures, and the results show that the flexibility projection method can effectively locate the damage with the incomplete and noisy measurement.
    On the basis of the flexibility projection method, the method of damage identification using the measured flexibility was proposed. Based the measured flexibility, the identification model of the partial eigenstructure assignment was presented. The linear algorithm, the pseudolinear algorithm and the fully nonlinear algorithm were established, and the comparative studies were carried on the above algorithms. The fully nonlinear algorithm was determined to solve the identification problem based on the measured flexibility. By using of the frequency, which is more accurate than the mode shape, the fully nonlinear identification algorithm using the frequency data was coupled with the flexibility projection method to estimate the magnitude of damage in a structure.
    At present, structural identification in time domain excited by ground motion is an important
    
    
    
    research topic in civil engineering. A two-stage method, which can estimate structural parameters down to the element level based on incomplete response data alone without measuring the input excitations, was proposed. The method consists of two stages: sub-structural inversion of ground motion using least-square estimation, and parameter identification using extended Kalman Filter. Firstly, the inversion of the ground motion with the unknown parameters and limited measurements was studied by the sub-structural identification, and the least-square algorithm of unknown input was built. Secondly, based on the estimated input, structural parameter down to the element level was identified in time domain by extended Kalman filter algorithm. Several cases of a 6-sto
引文
[1] 邸小坛,周燕.旧有建筑物的检测加固与维修.北京:地震出版社,1991
    [2] 张富春.建筑物鉴定修复和改造之十五——建筑物鉴定技术的现状和展望.北京:冶金部
    
    建筑研究总院技术情报室,1990
    [3] 杨林德.岩土工程问题的反演理论与工程实践.北京:科学出版社,1996
    [4] Park R, Paulay T. Reinforced concrete structures. New York: John & Wiley, 1990
    [5] 吴中如,顾冲时.大坝原型反分析极其应用.南京:江苏科学技术出版社,2000
    [6] 李杰.随机结构系统——分析与建模.北京:科学出版社,1996
    [7] 陈长征,罗跃刚,白秉三,唐忠.结构损伤检测与智能诊断.北京:科学出版社,2001
    [8] Liu SC, Yao JTP. Structural identification concept. Journal of Structural Division, 1978,104(12): 1845-1858
    [9] Aktan AE, Yao JTP. On structural identification of constructed facilities. Proceedings of Structures Congress ⅩⅣ, 1996:651-658
    [10] Vandiver JK. Detection of structural failure on fixed platform by measurement of dynamic response. Proceedings of the 7th Annual Offshore Technology Conference, 1975: 243-252
    [11] Vandiver JK. Detection of structural failure on fixed platform by measurement of dynamic response. Journal of Petroleum Technology, 1977,29(5):305-310
    [12] Begg RD, Mackenzie AC, Dobbs JC, Loland O. Structural integrity monitoring using digital processing of vibration signals. Proceedings of the 8th Annual Offshore Technology Conference, 1976: 305-311
    [13] Brincker R, Kirkegaard P, Anderson P, and Martinez ME. Damage detection in an offshore structure. Proceedings of the 13th International Modal Analysis Conference, 1995:661-667
    [14] Loland O, Dodds JC. Experience in developing and operation integrity monitoring system in North Sea. Proceedings of the 8th Annual Offshore Technology Conference, 1976: 313-319
    [15] Roitman N, Viero PF. Detection and location of damages in offshore platforms: an application of some methods using eigenvectors. Proceedings of the 15th International Modal Analysis Conference, 1997:1124-1131
    [16] Wojnarowski ME, Stiansen SG, and Reddy NE. Structural integrity evaluation of a fixed platform using vibration criteria. Proceedings of the 9th Annual Offshore Technology Conference, 1977: 247-256
    [17] Kenley RM, Dodds JC. West Sole WE platform: detection of damage by structural response measurements. Proceedings of the 12th Annual Offshore Technology Conference, 1980:111-118
    [18] Nataraja R. Structural integrity monitoring in Real Seas. Proceedings of the 15th Annual Offshore Technology Conference, 1983:221-228
    [19] Whittome TR, Dodds JC. Monitoring offshore structures by vibration techniques. Proceedings of Design in Offshore Structures Conference, 1989: 93-100
    [20] Martinez ME, Quijada P. Experimental modal analysis in offshore platform. Proceedings of the 9th International Modal Analysis Conference, 1991: 213-218
    [21] Kato M, Shimada S. Vibration of PC bridges during failure process. Journal of Structural Engineering, 1986,112(7):
    [22] Spyrakos CC. Assessment of SSi on the longitudinal seismic response of short span bridge.
    
    Engineering Structures, 1990,12(1):60-66
    [23] Aktan AE, Lee KL, Chuntavan C, and Aksel T. Modal testing for structural identification and condition assessment of constructed facilities. Proceedings of the 12th International Modal Analysis Conference, 1994:462-468
    [24] Farrar CR, Cone KM. Vibration testing of the I-40 bridge before and after the introduction of damage. Proceedings of the 13th International Modal Analysis Conference,1995:203-209
    [25] Stubbs N, Kim JT, and Farrar CR. Field verification of a nondestructive damage localization and severity estimation algorithm. Proceedings of the 13th International Modal Analysis Conference, 1995:210-218
    [26] Farrar CR, Jauregui DV. Damage detection algorithms applied to experimental and numerical modal data from the I-40 bridge. Los Alamos National Laboratory report LA-12979-MS,1996
    [27] Farrar CR, Jauregui DV. Damage detection algorithms applied to experimental and numerical modal data from the I-40 bridge. Los Alamos National Laboratory report LA-13074-MS,1996
    [28] Farrar CR, Doebling SW, Cornwell PJ, and Straser EG. Variability of modal parameters measured on the Alamosa Canyon bridge. Proceedings of the 15th International Modal Analysis Conference, 1997:257-263
    [29] Doebling SW, Farrar CR, and Goodman R. Effects of measurement statistics on the detection on damage in the Alamosa Canyon bridge. Proceedings of the 15th International Modal Analysis Conference, 1997: 919-929
    [30] Doebling SW, Farrar CR, and Comwell PJ. A statistical comparison of impact and ambient testing results from the Alamosa Canyon bridge. Proceedings of the 15th International Modal Analysis Conference, 1997: 264-270
    [31] 秦权.桥梁结构的健康监测.中国公路学报,2000,13(2):37-42
    [32] 李戈,秦权,董聪.用遗传算法选择悬索桥检测系统中传感器的最优布点.工程力学,2000,17(1):25-34
    [33] 李惠彬,秦权,钱良忠.青马悬索桥的时域模态识别,土木工程学报,2001,34(5):52-56
    [34] Murphy LM. San Fernando, California, Earthquake of February 9,1971. U.S. Dept. Of Commerce, National Oceanic and Atmospheric Administration(NOAA), Washington, D.C.,1973
    [35] McVerry GH. Structural identification in the frequency domain from earthquake records. Earthquake Engineering & structural dynamics, 1980,8:161-180
    [36] Uang CM, Maarouf A. Estimating seismic drifts of multistory reinforced-concrete frames. Structural design of tall buildings, 1995,4(1): 61-70
    [37] Maison BF, Kasai K. Analysis of Northridge damaged 13-story WSMF building. Earthquake Spectra-EERI, 1997,13 (3):451-473
    [38] Petroski H J, Glazik JL. Effects of cracks on the response of circular cylindrical shells. Nuclear Technology, 1980,5:303-316
    [39] Hearn G, Testa RB. Modal analysis for damage detection in structures. Journal of structural
    
    Engineering, 1991,117(10):3042-3063
    [40] Lam HF, Ko JM, and Wong CW. Detection of damage location based on sensitivity analysis. Proceedings of the 13th International Modal Analysis Conference, 1995:1499-1505
    [41] 王常新,易伟建.带刚臂梁-柱特征值分析及损伤识别研究.湖南大学学报,1995,22(4):110-115
    [42] Skjaerbaek PS, Nielsen SRK, and Cakmak AS. Assessment of damage in seismically excited RC-structures from a single measured response. Proceedings of the 14th International Modal Analysis Conference, 1996: 133-139
    [43] Prion HGL, Ventura CE, and Rezai M. Damage detection of steel frame by modal testing. Proceedings of the 14th International Modal Analysis Conference, 1996: 1430-1436
    [44] Koh CG, See LM, and Balendra T. Damage detection of buildings: numerical and experimental studies. Journal of Structural Engineering, 1995,121(8): 1155-1160
    [45] Straser EG, Kiremidjian AS. Monitoring and evaluating civil structures using measured vibration. Proceedings 14th International Modal Analysis Conference, 1996:84-90
    [46] 王云剑.振动反问题在工程中的应用.地震工程与工程振动,1995,15(3):59-68
    [47] 李洪泉,欧进萍.剪切型钢筋混凝土结构的地震损伤识别方法.哈尔滨建筑大学学报,1996,29(2):8-12
    [48] 李国强,郝坤超,陆烨.弯剪型悬臂结构损伤识别的柔度法.地震工程与工程振动,1999,19(1):31-37
    [49] 綦宝晖,邬瑞锋,李桂华,李志国.基于柔度阵的悬臂弯剪型建筑结构损伤识别方法.工业建筑,2000,30(4):64-65
    [50] Hashimoto PS, Steet LK, Johnson JJ, and Mensing RW. Review of structure damping values for elastic seismic analysis of nuclear power plants. NUREG/CR-6011, U.S. Nuclear Regulatory Commission, 1993
    [51] Housner GW, Bergman LA et. Structural control: past, present, and future. Journal of Engineering Mechanics, 1997,123(9):897-971
    [52] 吉洪诺夫 AH,阿尔先宁 BH.不适定问题的解法.北京:地质出版社,1979
    [53] 黄光远,刘小军.数学物理反问题.济南:山东科学技术出版社,1993
    [54] Tatantola A. Inverse problem theory: methods for data fitting and model parameter estimation. Elsevier Science Publishers, 1987
    [55] 杨慧珠,张远高,鲁小蓉.固体动力学中的反问题.见:黄克智,徐秉业.固体力学发展趋势.北京:北京理工大学出版社,1995,55-73
    [56] 杨文采.地球物理反演理论和方法.北京:地质出版社,1997
    [57] 王家映.地球物理反演理论,武汉:中国地址大学出版社,1998
    [58] 刘迎曦,王登刚,李守巨,王海芳.识别混凝土重力坝弹性模量的一种新方法.大连理工大学学报,2000,40(2):144-147
    [59] 刘勇,康立山,陈毓屏.非数值并行算法,Ⅰ:遗传算法.北京:科学出版社,1998
    [60] 康立山,谢云,尤矢勇,罗祖华.非数值并行算法,Ⅱ:模拟退火算法.北京:科学出版社,1998
    
    
    [61] 姚姚.蒙特卡洛非线性反演方法.北京:冶金出版社,1997
    [62] 石林珂,孙铭心,王广国,赵盛华.地球物理遗传反演方法.北京:地震出版社,2000
    [63] 王登刚.非线性反演算法极其应用研究.大连理工大学博士学位论文,2001
    [64] Cawley P, Adams RD. The location of defects in structures from measurements of natural frequencies. Journal of strain analysis, 1979,14(2): 49-57
    [65] Ismail F, Ibrahim A, and Martin HR. Identification of fatigue cracks from vibration testing. Journal of Sound and Vibration, 1990,140: 305-317
    [66] Choedhury MR, Ramirez M. A comparison of the modal responses for defective versus nondestructive concrete test beams. Proceedings of the 10th International Modal Analysis Conference, 1992:508-515
    [67] Brincker R, Anderson P, Kirkegaard PH, and Ulfkjaer JP. Damage detection in laboratory concrete beams. Proceedings of the 13th International Modal Analysis Conference, 1995:668-674
    [68] Penny JET, Wilson DAL, and Friswell MI. Damage location in structures using vibration data. Proceedings of the 11th International Modal Analysis Conference, 1993:861-867
    [69] Fox CHJ. The location of defects in structures: a comparison of the use natural frequency and mode shape data. Proceedings of the 10th International Modal Analysis Conference,1992:522-528
    [70] Friswell MI, Penny JET, Wilson DAL. Using vibration data and statistical measures to locate damage in structures. The International Journal of Analytical and Experimental Modal Analysis, 1994,9(4): 239-254
    [71] Adams RD, Cawley P, Pye CJ, and Stone BJ. A vibration technique for non-destructively assessing the integrity of structures. Journal of Mechanical Engineering Science, 1978,20:93-100
    [72] Nariks Y. Identification of crack location in vibrating simply supported beams. Journal of Sound and Vibration, 1994,167(2):549-558
    [73] Wang W, Zhang A. Sensitivity analysis in fault vibration diagnosis of structures. Proceedings of the 5th International Modal Analysis Conference, 1987:496-501
    [74] Stubbs N, Broome TH, and Osegueda R. Nondestructive construction error detection in large space structures. AIAA Journal, 1990,28(1): 146-152
    [75] Stubbs N, Osegueda R. Global non-destructive damage evaluation in solids. The International Journal of Analytical and Experimental Modal Analysis, 1990,5(2):67-79
    [76] Stubbs N, Osegueda R. Global damage detection in solids-experimental verification. The International Journal of Analytical and Experimental Modal Analysis, 1990,5(2):81-97
    [77] Sanders D, Kim YI, and Stubbs RN. Nondestructive evaluation of damage in composite structures using modal parameters. Experimental Mechanics, 1992,32:240-241
    [78] Bails Crema, Castellani LA, and Coppotelli G. Generalization of non-destructive detection and localization in aeronautical structures. Proceedings of the 13th International Modal Analysis Conference, 191995:428-431
    [79] West WM. Illustration of the use of modal assurance criterion to detect structural changes in an
    
    orbiter test specimen. Proceedings of Air Force Conference on Aircraft Structural Integrity, 1984:1-6
    [80] Ko JM, Wong CW, and Lam HF. Damage detection in steel flamed structures by vibration measurement approach. Proceedings of the 12th International Modal Analysis Conference, 1994: 280-286
    [81] Salawu OS, Williams C. Damage location using vibration mode shapes. Proceedings of the 12th International Modal Analysis Conference, 1994: 933-939
    [82] Salawu OS, Williams C. Bridge assessment using forced-vibration testing. Journnal of Engineering Mechanics, 1995,121(2): 161-173
    [83] Yuen MMF. A numerical study of eigenparameters of a damaged cantilever> Journal of Sound and Vibration, 1985,103:301-310
    [84] Mayes RL. Error localization using mode shapes-an application to a two link robot arm. Proceedings of the 10th International Modal Analysis Conference, 1992:886-891
    [85] Rizos PF, Aspragathos N, and Dimarogonas AD. Identification of crack location and magnitude in a cantilever beam from the vibration modes. Journal of Sound and Vibration, 1990,138(3): 381-388
    [86] Kam TY, Lee TY. Detection of cracks in structures using modal test data. Engineering Fracture Mechanics, 1992,42(2):381-387
    [87] Sheena Z, Unger A, and Zalmanovich A. Theoretical stiffness matrix correction by using static test resutts. Isarel Journal of Technology, 1982,20:245-253
    [88] Sanayei M, Scampoli SF. Structural element stiffness identification from static test data. Journal of Engineering Mechanics, 1991,117(5): 1021-1036
    [89] Sanayei M, Onipede O. Assessment of structures using static test data. AIAA Journal, 1991, 29(7):1156-1179
    [90] Hejala P, Soeiro FJ. Recent development in damage detection based on system identification methods. Structural Optimization, 1990, 2:1-10
    [91] Banan MR, Banan MR, and Hjelmstad KD. Parameter estimation of structures from static response, Ⅰ: computational aspects. Journal of Structural Engineering, 1994,120(11):3243-3258
    [92] Banan MR, Banan MR, and Hjelmstad KD. Parameter estimation of structures from static response, Ⅱ: numerical simulation studies. Journal of Structural Engineering, 1994,120(11): 3259-3283
    [93] Hjelmstad KD, Wood SL, and Clark SJ. Mutual residual energy method for parameter estimation in structures. Journal of Engineering Mechanics, 1992,118(1):223-242
    [94] Hjelmstad KD, Shin S. Damage detection and assessment of structures from static response. Journal of Structural Engineering, 1997,123(11):568-576
    [95] Wang X, Hu N, Fukunaga H,and Yao Z H. Structural damage identification using static test data and changes in frequencies. Engineering. Structure,2001,23:610-621
    [96] 崔飞,袁万城,史家钧.基于静态应变及位移测量的结构损伤识别法.同济大学学报(自然科
    
    学版),2001,28(1):5-8
    [97] 孙钧,蒋树屏,袁勇,黄宏伟.岩土力学反演问题的随机理论和方法.汕头:汕头大学出版社,1996
    [98] 刘迎曦,李守巨,陈昌林等.丰满混凝土重力坝材料参数识别研究.水利学报,1999(9):38-44
    [99] Caravani P, Easton ML, and WT. Recursive least-squares time domain identification of structural parameters. Journal of Applied Mechamics, 1977,44(2): 135-140
    [100] Kung DN, Yang JCS, Bedewi NE, and Tsai WH. Time domain system identification technique based on impulsive loading for damage detection. Proceedings of 8th Symposium on Offshore Mechanics and Arctic Engineering, 1989(1):307-317
    [101] Kozin F, Natke HG. System identification techniques. Structure Safety, 1986,3(3/4):216-316
    [102] Hoshiya M, Satio E. Structural identification by extended Kalman filter. Journal of Engineering Mechanics, 1984,110(12): 1757-1770
    [103] Udwadia FE. Some uniqueness results to soil and structural identification. Journal of Applied Mathmatics, 1985,45(4):674-685
    [104] Torkamani MAM, Ahmadi AK. Stiffness identification of two and three dimensional frames. Journal of Earthquake Engineering and Structural Dymanics, 1988,16(8): 1157-1176
    [105] Safak E. Adaptive modelling, identification and control of dynamic structural system: Ⅰ: Theory. Journal of Engineering Mechamics, 1989,115(11): 2386-2405
    [106] Safak E. Adaptive modelling, identification and control of dynamic structural system: Ⅱ: Applications. Journal of Engineering Mechamics, 1989,115 (11): 2406-2429
    [107] Ibrahim SR. Random decrement technique for modal identification of structures. Journal of Spacecra. Rockets., 1977,14(11): 696-700
    [108] Kozin F. Estimation of parameters for system driven by white noise excitation. Proceedings of IUTAM Symposium on Random Vibrations and Reliability, Frankfurt/Oder, Germany, 1983:163-173
    [109] Cole HJ. On-line failure detection and damping measurement of aerospace structures by random decrement signatures. NASA Cr-2205, National Aeronautics and Space Administration, Washington, D.C.
    [110] Wang D, Haldar A. Element-level system identification with unknown input. Journal of Engineering Mechanics, 1994,120(1):159-176
    [111] Wang D, Halda A. System identification with limited observations and without input. Journal of Engineering Mechanics, 1997,123(5):504-511
    [112] 李杰,陈隽.结构参数未知条件下的地震动反演研究.地震工程与工程振动,1997,17(3):27-35
    [113] 李国强,陆烨.弯曲型结构层间物理参数识别的子结构法.世界地震工程,2000,16(1):1-9
    [114] Pandey AK, Biswas M, and Samman MM. Damage detection from changes in curvature mode
    
    shapes. Journal of Sound and Vibration, 1991,145(2):321-332
    [115] Chance J, Tomlinson GR, and Worden K. A simplified approach to the numerical and experimental modeling of the dynamics of a cracked beam. Proceedings of the 12th International Modal Analysis Conference, 1994:778-785
    [116] Nwosu DI, Swamidas Asj, Guigne JY, and Olowokere Do. Studies on influence of cracks on the dynumic response of tubular T-joints for nondestructive evaluation. Proceedings of the 13th International Modal Analysis Conference, 1995:1122-1128
    [117] Dong C, Zhang PQ, Feng WQ, and Huang TC. The sensitivity study of the modal parameters of a cracked beam. Proceedings of the 12th International Modal Analysis Conference, 1994:98-104
    [118] Sanayei M, Saletnik M J. Parameter estimation of structure from static strain measurements Ⅰ: Formulation. Journal of structural engineering, 1996,122(5): 555-562
    [119] Sanayei M, Saletnik M J. Parameter estimation of structure from static strain measurements Ⅱ: Error sensitivity analysis. Journal of structural engineering, 1996,122(5): 563-572
    [120] Pandey AK, Biswas M. Damage detection from changes in flexibility. Journal of Sound and Vibration, 1994,169(1):3-17
    [121] Denoyer KK, Peterson LD. Method for structural model update using dynamically measured static flexibility matrices. AIAA Journal, 1997,35(2):362-368
    [122] Denoyer KK, Peterson LD. Model update using modal contribution to static flexibility error. AIAA Journal, 1997,35(11): 1739-1745
    [123] Lin CS. Location of modelling errors using modal test data. AIAA Journal, 1990,28(9):1650-1654
    [124] Baruch H, Bar Itzhack IY. Optimum weighted orthogonalization of measured modes. AIAA Journal, 1978,16(4):346-351
    [125] Berman A, Nagy Ej. Improvement of large analytical model using test data. AIAA Journal, 1983,21(8), 1168-1173
    [126] Kabe AM. Stiffness matrix adjustment using mode data. AIAA Journal, 1985,23(9):1431-1436
    [127] Kammer DC. Optimum approximation for residual stiffness in linear system identification. AIAA Journal, 1988,26(9): 104-112
    [128] Smith SW, Beanie CA. Secant-method matrix adjustment for structural models. AIAA Journal, 1991, 29(1): 119-126
    [129] Lira TW. Submatrix approach to stiffness matrix correction using modal test data. AIAA Journal, 1990, 28(6): 1123-1130
    [130] Chen JC, Garba JA. ON-orbit damage assessment for large space structures. AIAA Journal, 1988,26(9): 1119-1126
    [131] Kim HM, Bartkowicz TJ. Damage detection and health montoring of large space structures. Sound and Vibration, 1993,27(6): 12-17
    [132] Liu PL. Identification and damage detection of trusses using modal data. Journal of Structural Engineering, 1995,121 (4):599-608
    
    
    [133] Abdalla MO, Grigoriadis KM, and Zimmerman DC. Enhanceed structural damage detection using alternating projection methods. AIAA Journal, 1998,36(7): 1305-1311
    [134] Zimmerman DC, Kaouk M. Structural damage detecction using a minimum rank update theory. Journal of Vibration and Accoustics, 1994,116:222-230
    [135] Kaouk M, Zimmerman DC. Structural damage assessment using a generalized minimum rank perturbation theory. AIAA Journal, 1994,32(4):836-842
    [136] Kaouk M, Zimmerman DC. Structural damage assessment using measured modal data and No original analytical model. Proceedings of the 12th International Modal Analysis Conference, 1994:731-737
    [137] Kaouk M, Zimrnerman DC. Structural health assessment using a partition model update technique. Proceedings of the 13th International Modal Analysis Conference, 1995: 1673-1679
    [138] Zimmerman DC, Simmermacher T. Model correction using multi static load and vibration tests. AIAA Journal, 1995,33(11): 2182-2188
    [139] Zimmerman DC, Kaouk M, and Simmermacher T. Structual damage detection using freuency response functions. Proceedings of the 13th International Modal Analysis Conference, 1995:179-184
    [140] Doebling SW. Minimum-Rank optimal update of elemental stiffness parameters for structural damage identification. AIAA Journal, 1996,34(12):2615-2621
    [141] James G, Zimmerman DC, and Cao T. Development of a coupled approach for structural damage detection with incomplete measurements. AIAA Journal, 1998,36(12): 2209-2217
    [142] Chen GC, Karba JA. Analytical model improvement using modal test results. AIAA Journal, 1980,18(6): 684-690
    [143] Haug EF, Choi KK. Structural design sensitivity analysis with generalized global stiffness and mass matrices. AIAA Journal, 1984,22(9): 1299-1303
    [144] Norris MA, Meirovitch L. On the problem of modeling for parameter identification in distributed structures. International Journal for Numerical Methods in Engineering, 1989,28:2451-2463
    [145] Ricles JM. Nondestructive structural damage detection in flexible space structures using vibration characterization. NASA report CR-185670
    [146] Lam KF, Ko MJ, and Wong CW. Localization of damaged structural connections based on experimental modal and sensitivity analysis. Journal of Sound and Vibration, 1998,210(1):91-115
    [147] Messina A, Williams EJ, and Contursi T. Structural damage detection by a sensitivity and statistical-based method. Journal of Sound and Vibration, 1998,216(5):791-808
    [148] Hemez FM. Practical guide to high accuracy identification via a finite element model update methodology. The International Journal of Analytical and Experimental Modal Analysis, 1995,10(3):152-166
    [149] Alvin KF. Finite element model update via Bayesian estimation and minimization of dynamic
    
    residuals. AIAA, 1997,35(5):879-886
    [150] Cherki A, Lallemand B, Tison T, and Level P. Improvement of analytical model using uncertain test data. AIAA Journal, 1999,37(4):489-495
    [151] Lim TW, Kashangaki TA-L. Structural damage detection of space truss structure using best achievable eigenvectors. AIAA Journal, 1994,32(5): 1049-1057
    [152] Lim TW. Structural damage detection using constrained eigenstructure assignment. Journal of Guidance, Control, and Dynamics, 1995,18(3):411-418
    [153] Zimmerman DC, Kaouk M. Eigenstructure assignment approach for structural damage detection. AIAA Journal, 1992,30(7): 1848-1855
    [154] Lindner DK, Goff R. Damage detection, location and estimation for space trusses. SPIE Smart structures and Intelligent Systems, 1993:1028-1039
    [155] Schulz MJ, Pai PF, and Abdelnaser AS. Frequency response function assignment technique for structural damage identification. Proceedings of the 14th International Modal Analysis Conference, 1996:1285-1291
    [156] Cobb RG, Liebst BS. Structural damage identification using assigned partial eigenstructure. AIAA Journal, 1997,35(1): 152-158
    [157] Kim HM, Bartkowicz TJ. A two-step structural damage detection approach with limited instrumentation. Journal of Vibration and Accoustics, 1997,119(2):258-264
    [158] Kim HM, Bartkowicz TJ, Smith SW, and Zimmerman DC. Structural health monitoring of large structures. Proceedings of the 49th Meeting of the Society for Machinery Failure Prevention Techonology, 1995:403-412
    [159] Li C, Smith SW. A hybrid approach for damage detection in flexible structures. Proceedings of the 35th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Material Conference, 1994,285-295
    [160] Li C, Smith SW. Hybrid approach for damage detection in flexible structures. Journal of Guidance, Control and Dynamics, 1995,18(3): 419-425
    [161] Smith SW. Iterative use of direct matrix updates: connectivity and convergence. Proceedings of 33rd AIAA Structures, Structural Dynamics and Materials Conference, 1992:1797-1806
    [162] Dos Santos JMC, Zimmerman DC. Damage detection in complex structures using component mode synthesis and residual modal force vector. Proceedings of the 14th International Modal Analysis Conference, 1996:1299-1305
    [163] Dos Santos JMC, Zimmerman DC. Structural damage detection using minimum rank update theory and parameter estimation. Proceedings of the AIAA/ASME/AHS Adaptive Structures Forum, 1996:168-175
    [164] Doebling SW, Hemez FM, Peterson LD, and Farhat C. Improved damage location accuracy using strain energy-based mode selection criteria. AIAA Journal, 1997,35(4):693-699
    [165] Cobb RG, Liebst BS. Sensor placement and structural damage identification from minimal sensor information. AIAA Joumal, 1997,35(1): 152-158
    
    
    [166] Shi ZY, Law SS, and Zhang LM. Structural damage detection from modal strain energy changes. Joumal of Engineering Mechanics,2000,126(12): 1216-1223
    [167] Chiang DY, Lai WY. Structural damage detection using the simulated evolution method. AIAA Joumal, 1999,37(10): 1331-1333
    [168] Law SS, Shi ZY, and Zhang LM. Structural damage detection from incomplete and noisy modal test data. Journal of Engineering Mechanics, 1998,124(11): 1280-1288
    [169] Shi ZY, Law SS, and Zhang LM. Damage localization by directly using incomplete mode shapes. Journal of Engineering Mechanics,2000,126(6):656-660
    [170] Wu X, Ghaboussi J, and Garrett JH. Use of neural networks in detection of structural damage. Computers and Structures, 1992,42(4):649-659
    [171] Barai SV, Pandey PC. Vibration signature analysis using artificial neural networks. Journal of Computing in Civil Engineering, 1995,9(4):259-265
    [172] Elkordy MF, Chang KC, and Lee GC. Neural networks trained by analytical simulated damage states. Journal of Computeing in Civil Engineering, 1993,7(2): 130-145
    [173] 王柏生,倪一清,高赞明,框架结构连接损伤识别神经网络输入参数的确定.振动工程学报,2000,13(1):137-142
    [174] 徐宜桂,史铁林,杨叔子.基于神经网络的结构动力模型修改和破损诊断.振动工程学报,1997,10(1):8-12
    [175] Luo H, Hanagud S. Dynamic learning rate neural network training and composite structural damage detection. AIAA Journal, 1997,35(9): 1522-1527
    [176] Szewczyk ASJ, Hajela P. Damage detection in structures based on feature-sensitive neural networks. Journal of Computing in Civil Engineering, 1994,8(2): 163-178

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700