用户名: 密码: 验证码:
非理想条件下地震面波的性质及压制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
面波是地震勘探中广泛存在的一种规则干扰波,它通过形成的高倾角(低速)和强振幅污染地震记录,并且在近地表地震记录中占主导地位。它存在于地震记录中,会大大降低资料的信噪比,在地震记录中,面波的表现形式比较复杂,对于资料的后续处理非常不利。因此,地震记录中面波剔除与压制方法的研究是非常必要的。为寻求更好的压制面波的方法对非理想条件下的面波的性质进行研究势在必行。
     瑞雷面波是一类低频、低速、能量较强的次生波,且主要沿着介质的分界面传播,其振幅随着与界面距离的增加迅速衰减,几个波长的深度之后位移小到几乎可以忽略。本文从瑞雷波传播的基本理论、波动方程入手,逐步讨论了瑞雷面波在常速度梯度、上覆疏松覆盖层、上覆空气情况、粘弹性介质中的传播特征,瑞雷面波传播速度与泊松比、品质因子、横波速度等地球物理参数的关系,并对其频散方程进行了推导及模型试算。根据粘弹性介质中瑞雷波的传播特征,建立数值算例,并对数值算例进行了去面波试验,验证后续去除面波方法的可行、有效性。
     在对多种压制面波方法(S-变换压制面波方法、非线性滤波方法、f-k滤波压制面波方法、小波变换压制面波方法)的实现中,总结了各种方法的优缺点。为克服面波压制方法的缺点,使用联合滤波方法对面波进行压制,并提出了f-k滤波的参数选取改进算法-频率-视速度滤波方法。经过实际资料的验证,一维小波变换压制面波经过三次压制可以在不增加运算量的前提下得到最佳的去面波效果。二维小波变换、一维小波变换联合去面波和基于能量分析的参数选取f-k滤波压制面波方法克服了原有的缺点和不足,直接应用于实际资料的处理可行、有效。
Surface wave is a regular noise wave existing widely in seismic data. It can be defined as a group of events that contaminates seismic data by forming a high dip (low velocity) and high amplitude cone, which can dominate near-surface events on the seismic records, and it is normally found in land seismic surveys. However, it is the pivotal question in how to remove or pick-up this kind of noise in seismic data. In order to find a better way to suppress surface wave, the characteristics under non-ideal conditions must be researched.
     Rayleigh wave is sort of sub-wave, which is low-frequency, low-speed, propagates along the surface of the earth, and its amplitude is only significant down to the depth of a few wave lengths. Below that depth, the displacement is negligible. In this paper,the basic theory and wave equation are studied, then the propagation features , overlying air (liquid) , unconsolidated overburden,in the constant gradient velocity and viscoelastic medium, are discussed. Including the relations between Rayleigh wave propagation velocity and the geophysical parameters, such as Poisson's ratio, quality factors, S-wave velocity. Their dispersion equations are derived and the models are established, depending on the propagation features under viscoelastic medium. The suppression methods are verified effective and viable.
     After implementing a variety of methods ( such as S-transform、nonlinear filtering、frequency-wave number domain filter、one-dimension and two-dimension wavelet transforms decompose) to suppress surface wave, the advantages and disadvantages of those methods are summed up. Using the united methods to suppress surface waves, to overcome the disadvantages. In addition, a improvement F-K filter method velocity filtering method (frequency- apparent velocity filter) is proposed. Compared with the original methods, the above methods overcome the shortcomings and deficiencies to some extent. After those methods being used to suppress surface of the actual seismic data, the united methods (one-dimension and two-dimension wavelet transforms, f-k filter and two-dimension wavelet transforms) and frequency-apparent velocity filter are verified to be effective. The above methods can be directly used in the practical work. They have special value in seismic data processing.
引文
[1] Rayleigh L.On waves propagated a1ong the p1ane surface of ane1astic solid [J]. Proceedings of the London Mathematic Society, 1887, 17: 4-11
    [2] Haskell N. A. The Dispersion of surface Waves on Mu1ti1ayered Media [J]. Bull. Seism. Soc.Am, 1953, 43: 17-34
    [3] Damien M, Leslie, Brian Evans.The cause and effects of multilayer-generated guided-waves [J]. The Bulletin of the Australian Society of Exploration Gephysics, 2000, 31(4): 543-551
    [4] Wilson J. T. Surface Waves in a Heterogeneous Medium [J]. Bull. Seism. Soc. Am, 1942, 32: 297-304
    [5] Newlands M. Rayleigh Waves in a Two-Layer Heterogeneous Medium [J]. Monthly Notice of the Royal Astron. Society, Geophysical Suppl, 1950, 6: 109-124
    [6] Dobrin M. B., Lawrence P. L. and Sengbush R. L., Surface and near surface waves in the Delaware Basin [J]. Geophysics, 1954, 19: 695-715
    [7] Stoneley R. The propagation of surface elastic waves in a cubic crystal [A]. Proc. Roy. Soc. Lond, 1955, 232: 447-458
    [8] Synge J. L. Elastic waves in the anisotropic media [J]. J. of Math. & Phys, 1957, 35: 323-334
    [9] Miller G. F., Pursey H. On the partition of energy between elastic waves in a semi- infinite solid [J]. Proc R Soc London A, 1955, 233(1192): 55-69
    [10] Carcione. Rayleigh waves in isotropic visco-elastic media [J]. Geophysical 1992, 108: 453-464
    [11] Born W. T. The attenuation costant of earth material [J]. Geophysics, 1941, 9: 132-148
    [12] Horton C.W. On the propagation of Rayleigh waves on the surface of a visco- elastic solid [J]. Geophys, 1953, 18: 70-74
    [13] King P. J., Sheard F. W. Viscosity tensor approach to the damping of Rayleigh waves [C]. J. Appl. Phys., 1969, 40: 5189-5190
    [14] Borcherdt R. D. Rayleigh-type surface wave on a linear viscoelastic half-space [J]. Acoust. Sco. Am., 1973, 54: 1651-1653
    [15] Carcione. Modeling anelastic singular surface waves in the earth [J]. Geophysical,1992, 57(6): 781-792
    [16] Thomson W. T. Transmission of e1astic waves through a stratif1ed so1id medium [J]. Jour. Appl. Phys, 1950, 21: 89-93
    [17] Haskell N. A. The Dispersion of surface Waves on Mu1ti1ayered Media. Bull [J]. Seism. Soc. Am., 1953, 43: 17-34
    [18] Knopoff L. A matrix method for e1astic wave prob1ems [J]. Bu11etin of the Seismologica1 Society of America, 1964, 54(1): 431-435
    [19] Thrower E N. The computation of e1astic wave in 1ayered media [J]. J Sound Vib. 1965, 2: 210-226
    [20] Waston H T. A note on fast computation of Ray1eigh wave dispersion in Multi- layered half-space [J]. Bull seism Soc Am., 1970, 60: 161-166
    [21] Anas Abo-Zena. Dispersion function computations for unlimited frequency values [J]. Geophys. J. R. astr. Soc, 1979, 58: 91-105
    [22] Anas-Zena., William Menke. Comment on Dispersion function computations for unlimited frequency values [J]. Geophys, 1979, 59: 315-323
    [23] Stokoell K. H., Wright G.W., Bay J. A. et al. Characterization of geo-technical sites by SASW method in woods R D. Geophysical characterization of sites [M]. Oxford publidshers. 1994
    [24] Kennett B L N. Reflection rays and reverberations [J]. Bull seism soc Am., 1974, 64: 1685-1696
    [25] Kennett B. L. N., Kerry N. J. Seismic waves in astratified ha1f space [J]. 1979. GeoPhys. J. R. astr. Soc., 1972, 57: 557-583
    [26] Kerry N. J. Synthesis of seismic and efficient method of computing morma1 Modes for multi layered half-space [J]. Geophys. J. Int, 1993, 115(2): 391-409
    [27] Currie P .K. Viscoelastic surface waves on a stardandard linear solid [J]. Q. Appl. Math., 1979, 37: 332-336
    [28]张雅纯,唐文榜.τ? p变换压制线性干扰的应用[J].石油物探, 1994, 33(2): 102-106
    [29]吴喜尊.τ? p变换在煤田地震勘探资料处理中的应用[J].中国煤田地质. 1994, 6(2): 70-76
    [30]付强,岳继光,萧蕴诗. Karhunen-Loeve变换在地震数据滤波中的应用[J].计算机辅助工程, 2007, 16(2): 56-61
    [31]刘洪林,张春堂等. K-L变换在地震资料去噪声的应用[J].大庆石油学院学报,2007, 31(4): 19-24
    [32]陈爱萍,邹文.基于S-变换的面波压制技术[J].世界地质, 2005, 24(1): 82-86
    [33]廉桂辉,张小路,段天友.频率-波数域面波衰减[J].内蒙古石油化工, 2007, 2:121-124
    [34]闫立志,景新义,李刚. F-K滤波在噪音减去法中的作用[J].海洋地质动态. 2006, 22(10): 28-32
    [35]张碧星,鲁来玉.用频率-波数分析瑞雷波频散曲线[J].工程地球物理学报, 2005, 2(4): 245-255
    [36]张霖斌,何樵登.频率-波数域预测和减去法压制多次波[J].吉林大学学报(地球科学版). 2002, 32(1): 96-99
    [37]丁连靖,冉伟彦.天然源面波频率-波数法的应用.物探与化探[J]. 2005, 9(2): 138-145
    [38]冉启文,谭立英.小波分析与分数傅立叶变换及应用[M].北京:国防工业出版社, 2002
    [39]付燕.基于二次小波变换的地震信号去噪方法[J].石油地球物理勘探, 2005, 40(2): l54-157
    [40]张铁强,牛滨华.小波去除随机噪声方法的MATLAB应用[J].西部探矿工程. 2007, 4:90-91
    [41]钟凌云.小波变换方法在地震资料噪声消除中的应用[J].物探与化探. 2001, 31(3): 245-249
    [42]李媛媛.小波变换去面波的方法研究[D].西安:长安大学. 2004, 6
    [43]孙成禹.地震波理论与方法[M].中国石油大学出版社, 2007: 92-100
    [44]孙成禹,李胜军,林庆.对地震波频散问题的讨论[A].仝兆岐.储层地震技术新进展[C].山东东营:石油大学出版社, 2004. 258-265
    [45] Nazarian S., Stokoell K H., Hudson W R.Use of spectra lanalysis of surface waves method for determination of modu1i and thicknesses of pavement systems[J]. Transport Research Record, 1983, 930: 38-45
    [46] Jen-Kuang Chung, Yeong Tein Yeh. Shallow crustal structure from shor-period rayleigh-wave dispersion data in southwestern Taiwan [J]. Bulletin of the seis-mological society of America, 1997, 87(2): 370-382
    [47] Jahnke, Eugene and Fritz Emde. Table of Functions with Formulae and Curves[M]. Dover Publications, New York, 1945: 146-147, 156-163, 190-197
    [48] Scholte J. G. On Rayleigh waves in visco-elastic media [J]. Physica., 1947, 13: 245-250
    [49] Currie P .K., Hayes, M. A. & O’Leary, P. M., Viscoelastic Rayleigh waves. Q. Appl. Math. 1977. 35. 35~53
    [50] Currie P .K., O’Leary P. M. Viscoelastic Rayleigh waves II [J]. Q. Appl. Math. 1978, 35: 445-454
    [51]李晶.面波在地震波场中的地震特性研究及其应用[D].四川成都:成都理工大学, 2006
    [52]牛滨华,孙春岩等.用SVD与MCC结合法压制地震波场的随机噪音[J].现代地质, 1999, 13(3): 334-338
    [53]聂守平,魏晓燕.数字图像的奇异值分解[J].南京师大学报(自然科学版), 2001, 4(1): 59-61
    [54]刘献栋,潘存治,杨绍普.基于奇异值分解的信号处理方法及其频谱特征[J].石家庄铁道学院报, 2001, 14(1): 29-32
    [55]吴亚东,符溪等.奇异值分解压制随机噪音的方法及应用[J].新疆石油地质, 2003, 24(1): 144-145
    [56]牛滨华,吕景责,孙春岩等.叠前面波干扰压制方法的研究与应用[J].现代地质, 2001, 15(3): 326-332
    [57]周竹生,张赛民,崔志忠.面波勘探新技术综述[J].湖南省地球物理论丛. 2001: 62-65
    [58]王振东.双源面波勘探构想[J].中国地质, 1998, 4: 47-48
    [59]姚姚.地震波场与地震勘探[M].北京:地质出版社, 2006: 265-270
    [60]王赞文.瑞雷面波法正反演及应用研究[D].西安:长安大学, 2005
    [61]肖柏勋.高模式瑞雷面波及其正反演研究[D].长沙:中南大学, 2000
    [62]凡友华,刘家琦.层状介质中瑞雷面波的频散研究[J].哈尔滨工业大学学报, 2001, 33(5): 577-581
    [63]刘喜亮.基于波动方程的瑞利面波有限差分法正演模拟[D].长沙:中南大学, 2006
    [64]冯德益.地震波理论与应用[M].地震出版社, 1988: 72-83
    [65] Zhang Hai-ming(张海明), CHEN Xiao-fei(陈晓非). Studies on Seismic waves .Acta Seismologica Sinica [J]. Sept, 2003, 16(5): 492-502 .
    [66]朱元清,胡天跃,郭自强.地震波在粘弹性介质中的传播及地形效应[J].地震学报, 1991, 13(4): 442-449
    [67] D.Jongmans等.研究面波的重要意义及其在土动力特征评价中的应用[J].国外地质勘探技术, 1994, 4: 11-17
    [68]刘康和,魏树等.瞬态面波勘探及应用[J].水利水电工程设计, 2001, 20(2): 31-33
    [69]赵明杰,刘宾,张桂玉.瑞雷面波在防渗墙施工质量检测中的应用[J].华北地震科学, 2005, 23(4): 57-58
    [70]鲁来玉,王文,张碧星等.层状介质半空间中的多模问题和瑞利波勘探[J].物探化探计算技术, 2001, 23(3): 215-221
    [71]何樵登,熊维纲.应用地球物理教程_地震勘探[M].北京:地质出版社. 1991: 25-27
    [72]戈革.地震波动力学基础[M].北京:石油工业出版社, 1983: 239-242
    [73]杜世通,俞康胤.地震波动力学理论讲义[M].山东东营:华东石油学院物探教研室,1985, 174-177

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700