用户名: 密码: 验证码:
内加劲环对圆钢管相贯节点性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,钢管结构在国内外得到了广泛的应用。在钢管结构中,节点是至关重要的构件之一,其破坏往往导致与之相连的若干杆件的失效,从而使整个结构破坏。目前钢管结构常用的节点形式为相贯节点,但在实际工程中常常遇到简单相贯节点无法满足节点强度要求的情况,为了提高节点的承载力和疲劳寿命,往往采用不同的加强构造措施对相贯节点进行加强,在主管内设置内加劲环是应用较多的加强措施。加劲环相贯节点在节点区域内的应力分布十分复杂,准确掌握其应力、应变分布情况对节点的设计、制作尤为重要,因此加劲环相贯节点的研究对钢管结构的发展有着极其重要的理论价值和广泛的应用前景。本文以主管内设置双加劲环的相贯节点(包括X型和空间相贯节点)为研究对象,研究工作主要包括:
     在查阅国内外相关文献的基础上,介绍了钢管结构的发展现状及相贯节点的相关知识,回顾了加劲环相贯节点的发展历史,简述了国内外加劲环相贯节点的研究现状及目前亟待解决的问题,并提出本文的主要研究内容。
     基于国内外学者关于加劲环相贯节点的理论分析方法,介绍了本文所采用的理论分析方法,并简要概括了有限元法的相关知识及大型通用有限元分析软件ANSYS的相关内容。
     应用ANSYS软件对X型加劲环相贯节点建立了有限元计算模型,并对内加劲环设置情况各不相同的4种X型相贯节点进行了非线性有限元分析及试验研究,分别将理论计算得到的节点应变、位移、极限承载力及破坏模式与试验结果相对比,验证了有限元模型的正确性,进而对内加劲环各参数(包括加劲环厚度、宽度、间距等)对X型相贯节点承载力的影响做了系统分析,拟合得到了X型加劲环相贯节点承载力提高倍数的公式,结合钢结构设计规范,得到了X型加劲环相贯节点承载力的计算公式。
     以大连国际会议中心为工程背景,应用ANSYS软件对屋盖结构中受力较大、如未设置内加劲环时节点强度较差的空间相贯节点进行了非线性有限元分析。简要介绍了相贯节点有限元计算模型各关键参数的设置,系统分析了在其他参数不变的前提下内加劲环间距对节点强度、刚度及破坏模式等性能的影响,提出了在空间相贯节点主管内设置加劲环合理的构造要求,并对空间相贯节点进行了内加劲环相关参数的系统分析,为该工程的设计提供了理论依据。
     最后,总结了本文的主要研究成果,对今后关于加劲环相贯节点的研究进行了展望。
In recent years, hollow section structure has been widely used at home and abroad. In hollow section structure, joint is one of crucial components. Its damage often leads to failure of members which connect with it, even the whole structure. At present, simple joints are widely used in hollow section structures and can not satisfy the strength requirement in some cases. To improve the bearing capacity and fatigue life of simple joints, commonly we use different methods as enhancing measure, and mostly the solution we choose is setting ring-stiffener in main tube. The distribution of stress in stiffened joint is very complex. It is important to control the stress and strain of joints in designing and manufacture, therefore the research of ring-stiffened joint has important theoretic value and broad application prospect in the development of hollow section structures.
     Ring-stiffened joints (including X-joints and multiplanar stiffened joints) were investigated in this thesis, work mainly included:
     Based on references of domestic and abroad, the research achievements of hollow section structures and relevant knowledge of simple joints were introduced. At the same time, the development history of internally ring-stiffened joints was reviewed, the research status and present problems were expounded, and the main research contents of this thesis were put forward.
     Based on the theoretical analysis methods about internally ring-stiffened joint of domestic and overseas scholars, the theoretical analysis method used in this study was introduced, and finite element method and related contents of ANSYS were summarized briefly.
     A finite element model of ring-stiffened X joint was established with ANSYS, and four X joints which had different settings of stiffener was tested and analysed with nonlinear finite element method. And then, theoretical results were compared with test results respectively, including strain, displacement, the ultimate load capacity and failure mode. In this way, the finite element modal was validated. After that, the effect of the parameters of ring-stiffener (including ring-stiffener thickness, width, spacing and so on) to ultimate load capacity of stiffened X joint was analysed, and the formula of ultimate load capacity reinforcing multiples of ring-stiffened X joint was proposed using regression techniques.
     Based on Dalian international conference center project, the multiplanar joint which bears heavy loads and has poor strength without ring-stiffener was analysed using ANSYS non-linear finite element analysis method. The setting of each key parameter in finite element model was briefly introduced, and the effects of ring-stiffened spacing on strength, stiffness and failure modes of stiffened joints were systematically analyzed while keeping other parameters constant. Then, some reasonable detailed requirements of internal stiffeners were given, which provided some theoretical basis for designing of this project.
     In the end, the main achievement of this study was summarized. At the same time, some directions for future research in ring-stiffened joints were suggested.
引文
[1] Packer JA, Henderson JE,曹俊杰.空心管结构连接设计指南[M].北京:科学出版社, 1997.
    [2]陈以一,陈扬骥.钢管结构相贯节点的研究现状[J].建筑结构, 2002, 32(7): 52~55.
    [3]日本建筑学会.钢结构设计施工指南及解说[M].丸善株式会社, 1990.
    [4] Packer JA, Wardenier J, Kurobane Y, et al. Design guide for rectangular hollow section (RHS) joints under predominantly static loading[M]. Koln (Germany): Verlag TUV Rheinland, 1992.
    [5] Wardenier J, Kurobane Y, Packer JA, et al. Design guide for circular hollow section (CHS) joints under predominantly static loading[M]. Koln (Germany): Verlag TUV Rheinland, 1991.
    [6]沃登尼尔.钢管截面的结构运用[M].上海:同济大学出版社. 2004: 5~13.
    [7]钢结构设计规范(GB50017-2003)[S].北京:中国计划出版社, 2003.
    [8]吴昌栋,陈云波.钢管结构在建筑工程中的运用[J].工业建筑, 1997.
    [9]鹫尾健三,黑雨启明.トヲマ节点の研究[A].日本建筑学会论文报告集[C], 1961.
    [10]金谷弘.钢管接合部の局部变形ぃ关ょゐ试验的研究[A].日本建筑学会论文报告集[C], 1961.
    [11]鹫尾健三,东乡武,三井宜之.钢管トヲマ节点弦材管の关ょゐ试验的研究.日本建筑学会论文报告集[M], 1967.
    [12] Gibstein M B. The Static Strength of T-joints Subjected to in-plane Bending[J]. Det Norske Veritas Report, 1976: 76~137.
    [13] Sparrow K D, Stamenkovic A. Experimental Determination of the Ultimate Static Strength of T-joints in Circular Hollow Steel Sections Subjects to Axial and Moment[J]. Proc.Int.Conf. , Joints in Structural Steel Work, Teeside, 1981.
    [14] Wardenier J. Hollow Section Joints [M]. Delft University Press, 1982
    [15] Kurobane Y. Ultimate Resistance of Unstiffened Tubular Joints [J]. J.Struct.Engrg, ASCE, 1984, 110(2): 385~400.
    [16] CEN. Eurocode3: Design of Steel Structures [M]. ENV, 1993.
    [17] Zhao X L, Hancock G J. Square and Rectangular Hollow Sections Subject to Combined Actions [J]. J.Struct. Engrg., ASCE, 1991, 117(8): 2258~2277.
    [18] Morgan M R, LEE M.M.K. Stress Concentration Factors in Tubular K-Joints under Inplane Moment Loading [J]. J. Struct. Engrg., ASCE, 1998, 124(4): 382~390.
    [19] Soh C K, Chan T K, Yu S K. Limit Analysis of Ultimate Strength of Tubular X-Joints[J]. J.Struct. Engrg., ASCE, 2000, 126(7): 790~797.
    [20] Cofer W f, et al. Analysis of Welded Tubular Connection Using Continum damage Mechanics [J]. J. Struct. Engrg., ASCE, 1994, 118(3): 828~845.
    [21] Makino Y. Experimental Study on Ultimate Capacity and Deformation for Tubular Joints. Doctoral Dissertation, Osaka University, 1984.
    [22] Scolla J, Redwood R G. Behaviour of Axially Loaded Tubular V-joints [J]. J.Construct Steel Research, 1990, 16
    [23] Paul J C. Ultimate Resistance of Unstiffened Multiplanar Tubular TT and Joint [J]. ASCE, 1994.120(10).
    [24] LEE M.M.K., S.R. Wilmshurst. Parametric Study of Strength of Tubular Multiplanar KK-Joints. J. Struct. Engrg [J]. ASCE, 1996, 122(8): 893~904.
    [25] LEE M.M.K., S.R. Wilmshurst. Strength of Multiplanar Tubular KK-Joints under Antisymmetrical Axial Loading [J]. J.Struct.Engrg., ASCE, 1997, 123(6): 755~764.
    [26] Makino Y, Kurobane Y, Ochi K, Vegte G J, Wilmshurst S.R. Database of Test and Numerical Analysis Results of Unstiffened Tubular Joints[J].ⅡW Doc. XC-E-96-220, 1996.
    [27] C.T.Kang, D.G.Moil, J.Mistry. Strength of TT Tubular joints with Brace and Chord Compression [J]. J.Struct.Engrg. ASCE, 1998, 124(7): 775~783.
    [28] G.J.vander Vegte, J.Wardenier. The Static Strength of Multiplanar TX-Joints under Axial Loading Excluding the Effects of Overall Chord Bending Moments [J]. Journal of Constructional Steel Research, 1998, 47: 141~168.
    [29]杨国贤,陈延国.受拉T型管节点静承载力分析的实用计算法[J].大连工学院学报, 1987, 26(2): 101~106.
    [30]窦润福,李华明.海上平台大尺度T型焊接管节点的静力与疲劳试验研究[J].中国海洋平台, 1994, 21.
    [31]陈继祖,陆化普.焊接管节点设计承载力公式研究[J].大连工学院学报, 1996, 25(2): 47-52.
    [32]陈铁云,朱正宏,吴水云.塑性节点法的研究及其在薄壳结构中的应用[J].计算结构力学及其应用, 1991, 8(3): 342~348.
    [33]陈铁云,王德禹,刘普. T型和X型管接头在轴压下极限强度的半经验公式[J].上海交通大学学报, 1996, 30(1): 56~59.
    [34]王德禹,陈铁云.基于圆环模型的空间XX管接头轴压极限强度分析[J].上海交通大学学报, 1997, 31(11):116~120.
    [35]王德禹,陈铁云.近海平台X和XX型管接头极限分析的圆环模型[J].工程力学, 1997, 14(2): 9~15.
    [36]陈以一,沈祖炎,詹深等.直接汇交节点三重屈服线模型及试验验证[J].土木工程学报,1999, 32(6): 26~31.
    [37]詹深.空间直接焊接圆钢管节点足尺试验研究[D].上海:同济大学, 2000.
    [38]陈以一,王伟,赵宪忠等.圆钢管相贯节点抗弯刚度和承载力实验[J].建筑结构学报, 2001, 22(6): 25~30.
    [39]陈以一,陈扬骥,詹深等.圆钢管空间相贯节点的实验研究[J].土木工程学报, 2003, 36(8): 24~30.
    [40]翟红,赵宪忠,陈以一等.大直径圆钢管空间KK型相贯节点试验研究[J].《工程力学》增刊,2002: 481~484.
    [41]刘建平,郭彦林,陈国栋.圆管相贯节点极限承载力有限元分析[J].建筑结构, 2002, 32(7): 56~59.
    [42]朱邵宁,舒兴平.空间KK型圆钢管相贯节点极限承载力非线性有限元分析[J].湖南大学学报, 2003, 30(3): 63~67.
    [43]舒兴平,朱邵宁,夏心红等.长沙贺龙体育场钢屋盖圆管相贯节点足尺试验研究[J].建筑结构学报, 2004, 25(3): 8-13.
    [44]祝磊,石永久,王元清. TX型圆管相贯节点空间作用下的极限承载力分析[J].钢结构, 2004, 19(2): 20~23.
    [45]张君,武秀丽.空间XK型圆钢管相贯节点极限承载力非线性有限元分析.石家庄铁道学院学报, 2005, 18(2): 64~68.
    [46]张寒冰,龚景海,梁新华等.圆管结构相贯节点静力强度的一种实用验算方法[J].钢结构, 2005, 20(6): 19~22.
    [47]张君,武秀丽,自桂南.空间XK型圆钢管相贯节点极限承载力非线性有限元分析.钢结构, 2005, 20(4):18~21.
    [48]赵宪忠,陈誉,陈以一等.平面K型圆钢管搭接节点静力性能的试验研究[J].建筑结构学报, 2006, 27(4): 23~29.
    [49] H. Fessler, BSc, et al. The Static Strength of Tubular T and Y Joints under Combined Bending and Axial Loading [R]. Structural and Building Board Structural Panel, 10724: 29~43.
    [50] Raghavan G, Madhava Rao A.G, Ramachandra Murthy DS. Studies on Unstiffened and Stiffened Steel Tubular Joints. Proceedings of the First (1990) European Offshore Mechanics Symposium, 1990, 3: 189~197.
    [51] T.S. Thandavanmoothy, Madava Rao AG. Probabilistic Fatigue Assessment of Internally Ring-Stiffened Tubular Joints: A Critical Review. Fatigue and Fracture in Steel an Concrete Structures, 1991,1487~1497.
    [52] Ramachandrs DS, Madhava AG, Gandhi P. Structural Efficiency of Internally Ring-Stiffened Steel Tubular Joints. Journal of Structural Engineering, 1992, 118(11):3016~3035.
    [53] Dharmavasan S, Aaghaakouchak AA. Estimation of Stress Concentration Factors in A Stiffened Tubular Joint Using a Shear Flow Model. Proc Inc Offshore Mech Arct Eng Symp, 1992, 3: 585~592.
    [54] Seetharaman S, Sreedhar DS, Rao AG Madhava. Effect of Internal Ring Stiffeners on the Stress Distribution in Tubular T-Joints. 1992, 7: 14~19.
    [55] K. Rama Raju and M.N. Keshava Rao. Elastoplastic Behavior of Unstiffened and Stiffened Steel Tubular T-Joints [J]. Computers &Structures, 1995, 55 (5): 907~914.
    [56] Nwosu DI, Swamidas ASJ, Munaswamy K. Numerical Stress Analysis of Internal Ring- Stiffened Tubular T-Joints. Journal of Offshore Mechanics and Arctic Engineering, 1995, 117(5): 113~125.
    [57] Stacey A, Sharp JV, Nichols NW. Uncertainties in the Fatigue Assessment of Ring-Stiffened Joints. Proc Int Conf Offshore Mech Arct Eng, 1995, 3: 27~40.
    [58] Ai-Kah Soh, Chee-Kiong Soh. Stress Analysis of Axially Loaded T Tubular Joints Reinforced with Doubler Plates [J]. Computers & Structures, 1995, 55(1): 141~149.
    [59] Lee M.M.K., BSc, PhD, CEng, MICE, MIStruct E, and A.L leweyn-Parry, BEng. A Theoretical Model for Predicting the Strength of Ring-Stiffened Tubular T-Joints in Offshore Structures [J]. EngrsStructs & Bldgs, 1999, 134(2): 19~31.
    [60] Lee M.M.K, Llewelyn-Parry. Strength of Ring-Stiffened Tubular T-joints in Offshore Structures- A Numerical Parametric Study. Journal of Constructional Steel Research, 1999, 51(3): 239~264.
    [61] Willibald Silke, Herion Stefan, Puthli Ram S. Static Strength of Ring-Stiffened Tubular Joints. Proc Int Conf Offshore Mesh Arch Eng., 1999, 4: 18~23.
    [62] Munaswamy K, Swamidas ASJ, Mohaupt U. Effect of Stress Distribution ov Fafigue Behavior of Stiffened Tubular T-Joints: Experimental Investigation. Proc Int Conf Offshore Mech Arct Eng, 1999, 9: 195~200.
    [63] P.Gandhi, G. Raghava, D.S. Ramachandrs Murthy. Fatigue Behavior of Internally Ring-Stiffened Welded Steel Tubular [J]. Journal of Structural Engineering, 2000, 126(7): 809~815.
    [64] P.Gandhi, D.S. Ramach and Murthy, G. Raghava, A.G. Madhava Rao. Fatigue Crack Growth in Stiffened Steel Tubular Joints in Seawater Environment [J]. Engineering Structures, 2000, 22: 1390~1401.
    [65] Kay-Hiang Hoon, Looi-Kian Wong, Ai-Kah Soh. Experimental Investgation of A Doubler-Plate Reinforced Tubular T-Joint Subjecte to Combined Loadings [J]. Journal of Constructional Steel Research, 2001, 57: 1015~1039.
    [66] Y S Choo, J X Liann, J Y R Liew. Static Strength of Doubler Plate Reinforced X-Joints under In-Plate Bending [A]. Procceding of the Twelfth International Offshore and Polar Engineering Conferences[C], 2002: 48~52.
    [67] Y S Choo, J X Liang, J Y R Liew. Static Strength of Doubler Plate Reinforced X-Joints under Out-of-plane Bending [A]. Proceeding of the twelfth International Offshore and Polar Engineering Conference[C], 2003: 250~254.
    [68] Lee Marcus MK, Llewelyn-Parry Arwel. Strength Prediction for Ring-Stiffened DT-Joints in Offshore Jacket Structures. Engineering Structures, 2005, 27(2): 421~430.
    [69]王秀丽,李强,殷战忠.薄壁圆管相贯加强环节点承载力性能研究[J].建筑科学, 2006, 22(2): 1-7
    [70]赵宏康,戴雅萍,吕西林.内加劲肋加强的K形圆钢管相贯节点研究及设计建议[J].建筑结构, 2009, 39(6): 56~60.
    [71]童乐为,顾敏,陈以一等.具有内加劲肋的空间多支管的圆管节点性能研究[J].建筑结构. 2009, 39(1): 69~72.
    [72]宋彧,李丽娟,张贵文.建筑结构试验[M].重庆:重庆大学出版社,2001: 14~19.
    [73]王勖成,邵敏.有限单元法基本原理和数值计算方法.北京:清华大学出版社. 1997.
    [74]王勖成.有限单元法.北京:清华大学出版社. 2003.7.
    [75]王焕定,吴德伦.有限单元法及计算程序.北京:中国建筑工业出版社. 1997.
    [76]林畛.变分法与最优控制.哈尔滨:哈尔滨工业大学出版社. 1998.5.
    [77]钱伟长.变分法及有限元.北京:科学出版社. 1979.3.
    [78]王焕定,王伟.有限单元法教程.哈尔滨:哈尔滨工业大学出版社. 2003.10.
    [79]蒋友谅.非线性有限元法.北京:北京工业学院出版社. 1988.
    [80] ANSYS非线性分析指南.美国: ANSYS公司北京办事处, 1998:34-41
    [81] A. S. Karamanos, A. Romeijn, J. Wardenier. Stress Concentrations in Tubular Gap K-joints Mechanics and Fatigue Design. Engineering Structures, 2000, 24(2): 36-42
    [82]赖永标,胡仁喜,黄书珍. Ansys 11.0土木工程有限元分析典型范例[M].北京:电子工业出版社. 2007.
    [83]张力,孟春玲,张扬.有限元法及ANSYS程序应用基础[M].北京:科学出版社. 2008.
    [84]王立长,曲鑫蕃,龚景海等.大连国际会议中心——多支撑筒不规则大跨悬挑空间组合结构[A].第九届全国现代结构工程学术研讨会论文集[C]. 2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700