用户名: 密码: 验证码:
天然小分子化合物小檗胺抗慢性粒细胞白血病作用靶分子鉴定及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     慢性粒细胞白血病(chronic myeloid leukemia, CML)是一种发生于造血干细胞水平的血液系统恶性克隆增生性疾病,在我国CML占总白血病发病率的20%左右。CML患者的骨髓细胞中可检测到特异性的Ph染色体,它是由于t(9;22)(q34;q11)染色体易位形成的,从而导致BCR-ABL基因融合并表达210KD的BCR-ABL融合蛋白。BCR-ABL蛋白在慢性粒细胞白血病细胞恶性增殖过程中发挥着重要作用,因而成为Ph+慢性粒细胞白血病的重要治疗靶点。第一代以BCR-ABL蛋白为靶标的分子靶向药物--伊马替尼(Imatinib,IM)已成为治疗CML的一线药物。然而,令人遗憾的是,伊马替尼类分子靶向药物不能完全清除患者体内BCR-ABL阳性白血病细胞克隆,并不能使多数CML患者获得长期缓解,停药后很快复发,其中一些患者对伊马替尼类分子靶向药物产生耐药。并且,越来越多的临床和实验研究资料显示,单用分子靶向药物只能控制慢性期CML,而对加速期和急变期CML基本无效,更不能治愈CML。随着近年来不断深入的研究.揭示白血病干细胞(leukemia stem cell, LSC)是白血病复发和耐药的主要根源,而伊马替尼类分子靶向药物对白血病干细胞无效。因为白血病干细胞通常处在休眠状态,很难被伊马替尼类分子靶向药物和经典化疗药物清除,从而留下白血病复发根源。CML患者要获得长期缓解和治愈,不仅需要杀死快速增殖的白血病细胞,而且还要清除处在休眠期的白血病干细胞。已有研究表明很多蛋白,如β-catenin, NF-κB等分子,与白血病干细胞的存活、自我更新和凋亡抵抗有关。但是这些分子在正常造血干细胞中也起着相似的作用,没有明显的特异性。因此,鉴定白血病干细胞特异性的蛋白靶标,并继而研发新型分子靶向药物就显得十分迫切。
     小檗胺(Berbamine, BBM)是从我国中草药小檗属植物中提取的一种双苄基异喹啉类生物碱药物。多年来一直广泛应用于临床,如抗炎和白细胞减少的治疗。我们前期研究结果显示,在体外小檗胺可以有效抑制对伊马替尼耐药的CML细胞的增殖,但对正常造血细胞增殖没有明显抑制作用。这表明小檗胺很可能对CML干细胞具有特异性杀伤作用,这将对CML的根治具有重要的临床意义。因此本研究将对其具体作用机制进行初步探讨。
     研究目的:
     1、研究天然小分子化合物小檗胺(BBM)对裸鼠慢性粒细胞白血病细胞移植瘤的清除作用。
     2、筛选并鉴定BBM抗慢性粒细胞白血病作用的靶分子。
     3、阐明该靶分子调控慢性粒细胞白血病干细胞存活、自我更新和凋亡抵抗的分子机制,从而明确BBM对慢性粒细胞白血病细胞清除作用的内在分子机制。
     研究内容:
     1天然小分子化合物小檗胺(BBM)对裸鼠慢性粒细胞白血病细胞移植瘤的清除作用研究
     我们分别用急变期CML细胞敏感株K562-S和耐受伊马替尼(IM)的耐药株K562-R(经流式细胞仪测定含1-2% CD34+白血病干细胞)建立裸鼠荷瘤模型。结果显示,荷瘤裸鼠连续口服小檗胺(150mg/kg,每天1次)10天后,70%(14/20)K562-S白血病细胞异种移植瘤完全消退;荷瘤裸鼠连续口服小檗胺(100mg/kg,每天3次)10天后,其体内伊马替尼耐药的K562-R白血病细胞移植瘤抑制率达到90.91%(10/11)。而且在实验观察期间没有发现明显的药物毒副作用。
     2小檗胺抗慢性粒细胞白血病作用靶分子CaMKIIγ激酶的鉴定
     本部分联合应用小檗胺亲和基质,蛋白质谱和Western blot技术方法发现并证实:BBM能与活化的钙离子/钙调素依赖的蛋白激酶Ⅱγ(Calcium/calmodulin-dependent protein kinase IIγ,简称CaMKIIγ)发生特异性作用。进一步应用计算机分子对接模型(molecular docking model)模拟显示小檗胺主要以范德华力(van der Waals forces)与CaMKII y激酶P44, V47,164, V93, P109, V112和L162氨基酸残基结合,并且其位置正好位于CaMKIIγ激酶的ATP结合袋(ATPbinding pocket)。而Western blot结果显示BBM处理白血病细胞后,CaMKIIγ的磷酸化水平(pCaMKIIγ)显著降低,而CaMKIIγ总蛋白水平没有明显变化。这提示小檗胺很可能通过与ATP竞争性结合CaMKIIγ激酶而抑制其磷酸化水平。
     3 CaMKIIγ激酶调控慢性粒细胞白血病干细胞存活、自我更新和凋
     亡抵抗的分子机制研究
     3.1 CaMKIIγ激酶在CD34+白血病细胞中特异性异常激活
     应用流式细胞分选技术分选出CML干细胞,用Western blot技术对其CaMKIIγ激酶表达水平进行检测和分析。并检测CaMKIIγ激酶在CML干细胞与正常造血干细胞中的表达水平。发现CaMKIIγ激酶在CD34+的CML干细胞中呈特异性高表达,并且其磷酸化水平也较高,而在相应CD34-的CML细胞和正常造血干细胞中表达水平很低。
     3.2 CaMKIIγ激酶与CML干细胞的存活密切相关,且促进LSC的自我更新
     应用特异性反义核酸下调K562细胞CaMKIIγ激酶表达水平,观察对细胞增殖的影响,结果显示,下调CaMKIIγ激酶表达水平后,白血病克隆形成能力被明显抑制。利用细胞转染技术上调K562细胞CaMKIIγ激酶表达水平,观察CD34+的干细胞数目,以及对克隆形成能力的影响。发现上调CaMKIIγ激酶表达水平可以增加CD34+的干细胞比例以及增强细胞克隆形成能力。
     3.3 CaMKIIγ激酶促进裸鼠CML异种移植瘤的成瘤能力
     将稳定转染pcDNA3.1-EGFP和pcDNA3.1-CaMKIIγ-EGFP的K562细胞分别接种至同一只裸鼠两侧皮下。通过比较两侧异种移植瘤的大小来观察上调CaMKIIγγ激酶水平对白血病细胞增殖能力的影响。结果显示CaMKIIγ激酶高表达可以增强K562细胞裸鼠异种移植瘤成瘤能力。且发现稳定转染CaMKIIγ的K562细胞裸鼠异种移植肿瘤中,干细胞样的原始肿瘤细胞数量显著高于对照组。
     3.4 CaMKIIγ激酶促进慢性粒细胞白血病干细胞存活,自我更新和凋亡抵抗的机制
     通过Western blot技术检测,CaMKIIγ激酶高表达对与LSC存活、自我更新和凋亡抵抗密切相关的重要信号分子蛋白β-catenin、GSK3β和Caspase-2等表达水平的影响。结果显示,稳定高表达CaMKIIγ的K562细胞中,p-GSK和β-catenin的蛋白表达水平显著升高,Caspase-2的表达水平明显下降。而且流式分选结果显示CML患者骨髓细胞中CD34+的CML干细胞内β-catenin蛋白高表达。提示CaMKIIγ激酶可能通过磷酸化GSK3导致其活性被抑制,进而解除GSK3对P-catenin的抑制作用,最终实现对Wnt/β-Catenin信号通路正调控,促进LSC存活和自我更新;另一方面可能通过抑制Caspase-2活性,使细胞产生凋亡抵抗。
     3.5 CaMKIIγ激酶可能是调控GSK3/Wnt/β-catenin和线粒体(?)Caspase-2信号通路的重要分子开关,且能与GSK3分子形成信号转导复合体
     本部分实验通过免疫共沉淀的方法,进一步鉴定及证实慢性粒细胞白血病干细胞内CaMKIIγ激酶主要信号转导复合体的核心组分。结果显示,应用CaMKIIγ激酶特异性抗体进行免疫共沉淀CaMKIIγ激酶相关信号转导复合体,用Westernblot技术验证出在该复合体中存在β-catenin, GSK3/β和Caspase-2蛋白。应用GSK3/β特异性抗体进行免疫共沉淀,并用Western blot技术验证出CaMKIIγ蛋白能和GSK3/γ结合。以上结果表明CaMKIIγ激酶可能是调控GSK3/Wnt/β-catenin和线粒体/Caspase-2信号通路的重要分子开关,且能与GSK3分子形成信号转导复合体。
     3.6 CaMKIIγ激酶抑制剂BBM对K562-R细胞中干细胞相关重要分子β-catenin表达水平的抑制作用
     采用Western blot技术检测BBM作为CaMKIIγ激酶抑制剂,是否可以抑制LSC中与存活,自我更新和凋亡抵抗密切相关的重要信号分子β-catenin蛋白表达水平。结果显示,BBM可以显著抑制慢性粒细胞白血病细胞K562-R的β-catenin蛋白表达水平。
     研究结论:
     1、小檗胺不仅杀灭裸鼠体内增殖活跃的人慢性粒细胞白血病细胞,还可能清除处在休眠状态的慢性粒细胞白血病干细胞,并且在治疗剂量下小檗胺对裸鼠没有明显的毒副作用。
     2. CaMKIIγ激酶是小檗胺抗慢性粒细胞白血病作用的靶分子。小檗胺能特异性结合CaMKIIγ激酶的ATP结合袋结构域,并抑制CaMKIIγ的磷酸化。
     3. CaMKIIγ激酶可能是调控GSK3/Wnt/p-catenin和线粒体/Caspase-2信号通路的重要分子开关。CaMKIIγ通过磷酸化GSK3导致其活性被抑制,进而解除GSK3对β-catenin的抑制作用,最终实现对Wnt/β-Catenin信号通路正调控,促进LSC存活和自我更新;另一方面可能通过抑制Caspase-2活性,使细胞产生凋亡抵抗。
     4、小檗胺可能通过直接结合于CaMKIIy激酶的ATP结合袋,从而抑制CaMKIIy激酶磷酸化,导致其活性下调,进而抑制GSK3/Wnt/β-Catenin信号通路,激活Caspase-2,使CML干细胞死亡。
Background:
     Chronic myeloid leukemia (CML), which accounts for approximately 20% of all adult leukemias, is characterized by the presence of the Philadelphia (Ph) chromosome derived from the juxtaposition of Abelson TK gene (Abl) on chromosome 9 to the break point cluster region (Bcr) gene on chromosome 22. The resultant oncogenic Bcr-Abl kinase is essential for the growth of CML cells and has become an attractive target for treatment of Ph+ CML cases. Inhibition of Bcr-Abl with Abl tyrosine kinase inhibitors (TKIs). such as imatinib(IM), is highly effective in controlling but not curing the disease. This is largely due to the inability of these kinase inhibitors to kill leukemia stem cell (LSC) (also known as leukemia-initiating cell) responsible for tumor initiation, drug resistance and relapse in myeloid leukemia. Therefore, eradication of LSCs is required for developing curative therapies for CML, which relies on identification of specific targets in leukemia stem cells. A number of targets, such asβ-catenin, Hedgehog, NF-κB, have been shown to be involved in survival, self-renewal and apoptosis resistance of leukemia stem cells, but they also play similar roles in regulating normal hematopoietic stem cells(HSCs). Currently, it is very challenging to identify LSC-specific therapeutic targets involved in the key functional regulation of LSCs but not normal HSCs.
     Berbamine, a plant natural compound produced by Berberis amurensis, is a traditional Chinese medicine (TCM) that has been widely used to treat leucopenia and inflammation for decades in China. Our previous studies showed that berbamine and its derivatives potently inhibited the growth of imatinib-resistant CML cells but not normal hematopoietic cells. These data suggested that berbamine might have potential to target leukemia stem cells of chronic myeloid leukemia.
     Objects:
     1、To determine the in vivo anti-leukemia activity of the berbamine.
     2、To identify the specific protein target of Berbamine in leukemia, and understand the interaction between Berbamine and the specific target.
     3、To investigate the role of the identified target in survival, self-renewal and apoptosis resistance of LSCs, and eventually discover the molecular mechanism underlying the anti-leukemia activity of berbamine.
     Contents:
     1 The anti-chronic myeloid leukemia activity of the berbamine in vivo.
     To determine the in vivo anti-leukemia activity of the berbamine, we evaluated the effects of this compound on human CML cells K562 xenografts in nude mice by oral administration. We investigated the in vivo anti-leukemia activity of berbamine against IM sensitive-K562 (K562-S) leukemia cells in nude mice. The body weights in control and berbamine-treated groups were 16.69±2.92g and 17.61±1.70g, respectively. K562-R
     2 Berbamine could specifically interact with the CaMKII-y kinase in chronic myeloid leukemia
     We used berbamine as the bait to identify the putative targets that specifically regulate LSCs. The results shows that berbamine directly interacted with CaMKII y kinase in leukemia cells and inhibit its kinase activity. The phosphorylation level of CaMKII y decreased prominently in the CML cells with the berbamine treatment, while the total CaMKII y protein do not change. To gain an insight into the mechanism by which berbamine inhibited CaMKIIγactivity, we built a model of the CaMKIIγin complex with calmodulin by using Modeller based on the X-ray crystal of CaMKIIδ/calmodulin complex. And the result shows that Berbamine molecule is located in the ATP binding pocket of CaMKIIγkinase.
     3 CaMKII y kinase regulates survival, self-renewal and apoptosis resistance of LSCs through GSK3/Wnt/p-catenin and mitochondrial/Caspase-2 pathways
     3.1 CaMKII y kinase is aberrantly activated in LSCs.
     To understand whether CaMKII y kinase expression is related with CML, we evaluated both total and phosphorylated CaMKII y protein levels in CD34+leukemia stem cells and normal hematopoietic stem cells. To detect CaMKII y levels in rare LSCs and HSCs, we sorted both CD34+leukemia stem cells and HSCs.We observed that CaMKII y kinase is aberrantly activated in LSCs.
     3.2 CaMKII y kinase is essential for survival of LSC and promotes self-renewal of LSCs
     We evaluated the effect of CaMKII y expression inhibition on the growth of leukemia colonies using a colony forming assay, and observed that down-regulation of CaMKII y expression markedly inhibited the growth of CML cells in vitro, suggesting that down-regulation of CaMKII y expression diminishes the oncogenic potential of leukemia cells.
     To assess the effects of enhanced expression of CaMKII y on the self-renewal of tumor stem/progenitor cells of CML, we established a stable CML cell line with high CaMKII y expression using human CML K562 cells transfected with the CaMKII y-EGFP expression plasmid and G418 selection. We found that enhanced expression of CaMKII y led to an increase in the number of colonies. More importantly, the size of the colonies was larger in the cells stably transfected with CaMKII y-EGFP than that in the control. These results indicate that CaMKII y enhances the colony-forming ability and proliferative capacity of leukemia cells through promoting the survival and self-renewal of leukemia stem cells.
     3.3 CaMKIIγkinase promotes survival and self-renewal of LSCs in vivo
     We investigated the proliferation and differentiation of enhanced CaMKIIγexpression leukemia cells in vivo. Enhanced CaMKIIγ-EGFP expression K562 leukemia cells were transplanted into nude mice and EGFP expression leukemia cells were used as the control. As expected, the size of K562 leukemia xenograft tumors with enhanced CaMKIIγ-EGFP expression was larger than that of control K562 xenograft tumors at day 15. Unexpectedly, morphologically undifferentiated stem-like blast cells that highly express CaMKIIγmarkedly increased in the tumor of enhanced CaMKIIγ-EGFP expression K562 xenografts as compared to control K562 xenografts.
     3.4 CaMKII y kinase regulates the expression level of phosphorylated GSK3-β,β-catenin and Caspase-2 protein.
     We examinedβ-catenin expression level, and found that enhanced expression of CaMKIIγkinase greatly upregulatedβ-catenin protein level as compared to control with a concomitant increase of phosphorylated GSK3-βprotein. These results suggest that CaMKIIγupregulatesβ-catenin protein via inhibiting phosphorylation of GSK-3/βresulting in survival and self-renewal of LSCs. We also observed that enhanced expression of CaMKIIγmarkedly reduced Caspase-2 protein level in leukemia cells. CaMKIIγmay also maintain apoptosis-resistance through inhibition of Caspase-2.
     3.5 CaMKIIγkinase is an important molecular to GSK3/Wnt/β-catenin and mitochondrial/Caspase-2 signaling way.
     To obtain biochemical evidence for this signaling axis, co-immunoprecipitation experiments were carried out. Leukemia cell lysates were incubated with CaMKIIγantibody or GSK3βantibody, and the immune complexes were then purified, separated by SDS-PAGE, and immunoblotted with GSK3βor CaMKIIγorβ-catenin antibody. We observed that GSK3p.β-catenin and Caspase-2 were present in the complex immunoprecipitated by the CaMKII y antibody. As expected, CaMKII y was also present in the complex in a reciprocal immunoprecipitate using GSK3βantibody. Neither CaMKII y nor GSK3P was detected in the immune complex associated with control IgG, validating the specificity of the observed co-association and the presence of CaMKII y/GSK3β/β-catenin signaling axis.
     3.6 CaMKII y inhibitor berbamine caused a decrease ofβ-catenin protein
     P-catenin has been shown to be essential for survival and self-renewal of leukemia stem cells. We demonstrated that treatment of K562 leukemia cells with CaMKII y inhibitor berbamine caused a decrease of P-catenin protein.
     Conclusions:
     1、Berbamine eliminates both imatinib-sensitive and-resistant CML xenografts in nude mice. Berbamine showes significant retardation in tumor growth without obvious toxicity in all animal groups.
     2. Berbamine selectively interacts with CaMKII-y kinase in leukemia cells and directly targets the ATP binding site of CaMKII y kinase.
     3、CaMKII y kinase is an important molecular to GSK3/Wnt/p-catenin and mitochondrial/Caspase-2 signaling axis. CaMKIIγupregulatesβ-catenin via inhibitory phosphorylation of GSK-3/βof leukemia stem cells. CaMKIIγmay also maintain apoptosis-resistance through inhibitin of Caspase-2.
     4、Berbamine directly targets the ATP binding site of CaMKII y kinase and inhibits the expression of phosphorylated CaMKIIy kinase. Thereby. Berbamine inhibits Wnt/β-Catenin signaling pathway, activates Caspase-2, and eventually causes the death of leukemia stem cell.
引文
[1]Sloma I, Jiang X, Eaves AC, Eaves CJ. Insights into the stem cells of chronic myeloid leukemia. Leukemia.2010; 24:1823-33.
    [2]Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest.2010; 120:2254-64.
    [3]Chen Y, Peng C, Sullivan C, Li D, Li S. Critical molecular pathways in cancer stem cells of chronic myeloid leukemia. Leukemia.2010; 24:1545-54.
    [4]Jiang X, Forrest D, Nicolini F, Turhan A, Guilhot J, Yip C, Holyoake T, Jorgenscn H, Lambie K, Saw KM, Pang E, Vukovic R, Lehn P, Ringrose A, Yu M, Brinkman RR, Smith C, Eaves A, Eaves C.Properties of CD34+CML stem/progenitor cells that correlate with different clinical responses to imatinib mesylate. Blood.2010; 116:2112-21.
    [5]Giles FJ.New directions in the treatment of imatinib failure and/or resistance. Semin Hematol.2009; 46:S27-33.
    [6]Hughes T, Saglio G, Branford S, Soverini S, Kim DW, Muller MC, Martinelli G, Cortes J, Beppu L, Gottardi E, Kim D, Erben P, Shou Y, Haque A, Gallagher N, Radich J, Hochhaus A.Impact of baseline BCR-ABL mutations on response to nilotinib in patients with chronic myeloid leukemia in chronic phase. J Clin Oncol.2009; 27:4204-10.
    [7]O'Hare T, Eide CA, Tyner JW, Corbin AS, Wong MJ, Buchanan S, Holme K, Jessen KA, Tang C, Lewis HA, Romero RD, Burley SK, Deininger MW.SGX393 inhibits the CML mutant Bcr-AblT315I and preempts in vitro resistance when combined with nilotinib or dasatinib. Proc Natl Acad Sci U S A.2008; 105:5507-12.
    [8]Roumiantsev S, Shah NP, Gorre ME, Nicoll J, Brasher BB, Sawyers CL, Van Etten RA. Clinical resistance to the kinase inhibitor STI-571 in chronic myeloid leukemia by mutation of Tyr-253 in the Abl kinase domain P-loop. Proc Natl Acad Sci U S A.2002; 99:10700-5.
    [9]Abrahamsson AE, Geron I, Gotlib J, Dao KH, Barroga CF, Newton IG, Giles FJ, Durocher J, Creusot RS, Karimi M, Jones C, Zehnder JL, Keating A, Negrin RS, Weissman IL, Jamieson CH. Glycogen synthase kinase 3beta missplicing contributes to leukemia stem cell generation. Proc Natl Acad Sci U S A.2009; 106:3925-9.
    [10]Hu Y, Chen Y, Douglas L, Li S. beta-Catenin is essential for survival of leukemic stem cells insensitive to kinase inhibition in mice with BCR-ABL-induced chronic myeloid leukemia. Leukemia.2009; 23:109-16.
    [11]Ysebaert L, Chicanne G, Demur C, De Toni F, Prade-Houdellier N, Ruidavets JB, Mansat-De Mas V, Rigal-Huguet F, Laurent G, Payrastre B, Manenti S, Racaud-Sultan C.Expression of beta-catenin by acute myeloid leukemia cells predicts enhanced clonogenic capacities and poor prognosis. Leukemia.2006; 20:1211-6.
    [12]Minami Y, Stuart SA, Ikawa T, Jiang Y, Banno A, Hunton IC, Young DJ, Naoe T, Murre C, Jamieson CH, Wang JY.BCR-ABL-transformed GMP as myeloid leukemic stem cells. Proc Natl Acad Sci U S A.2008; 105:17967-72.
    [13]Chen Y, Hu Y, Zhang H, Peng C, Li S.Loss of the Alox5 gene impairs leukemia stem cells and prevents chronic myeloid leukemia. Nat Genet.2009; 41:783-792.
    [14]Chen Y, Li D, Li S.The Alox5 gene is a novel therapeutic target in cancer stem cells of chronic myeloid leukemia. Cell Cycle.2009; 8:3488-92.
    [15]Zhao C, Blum J, Chen A, Kwon HY, Jung SH, Cook JM, Lagoo A, Reya T. Loss of beta-catenin impairs the renewal of normal and CML stem cells in vivo. Cancer Cell 2007; 12:528-541.
    [16]Jagani Z, Dorsch M, Warmuth M.Hedgehog pathway activation in chronic myeloid leukemia. Cell Cycle.2010; 9:3449-56.
    [17]Kobune M, Takimoto R, Murase K, Iyama S, Sato T, Kikuchi S, Kawano Y, Miyanishi K, Sato Y, Niitsu Y, Kato J. Drug resistance is dramatically restored by hedgehog inhibitors in CD34+leukemic cells. Cancer Sci.2009; 100:948-55.
    [18]Chumsri S, Matsui W, Burger AM.Therapeutic implications of leukemic stem cell pathways. Clin Cancer Res.2007; 13:6549-54.
    [19]Lauret E, Catelain C, Titeux M, Poirault S, Dando JS, Dorsch M, Villeval JL, Groseil A, Vainchenker W, Sainteny F, Bennaceur-Griscelli A. Membrane-bound delta-4 notch ligand reduces the proliferative activity of primitive human hematopoietic CD34+CD381ow cells while maintaining their LTC-IC potential. Leukemia.2004; 18:788-97.
    [20]Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature 2003; 423:255-260.
    [21]Park IK, Qian D, Kiel M, Becker MW, Pihalja M, Weissman IL, Morrison SJ, Clarke MF. Bmi-1 is required for maintenance of adult self-renewing haematopoietic stem cells. Nature 2003; 423:302-305.
    [22]Misaghian N, Ligresti G, Steelman LS, Bertrand FE, Basecke J, Libra M, Nicoletti F, Stivala F, Milella M, Tafuri A, Cervello M, Martelli AM, McCubrey JA. Targeting the leukemic stem cell:the Holy Grail of leukemia therapy. Leukemia.2009; 23:25-42.
    [23]Jin L, Hope KJ, Zhai Q, Smadja-Joffe F, Dick JE. Targeting of CD44 eradicates human acute myeloid leukemic stem cells. Nat Med.2006; 12:1167-74.
    [24]Krause DS, Lazarides K, von Andrian UH, Van Etten RA. Requirement for CD44 in homing and engraftment of BCR-ABL-expressing leukemic stem cells. Nat Med.2006; 12:1175-80.
    [25]Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R, Traver D, van Rooijen N, Weissman IL. CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell.2009; 138:271-85.
    [26]Majeti R.Monoclonal antibody therapy directed against human acute myeloid leukemia stem cells. Oncogene.2010 Nov 15.
    [27]Zhao, X.Y., He, Z.W., Wu, D. and Xu, R.Z. Berbamine selectively induces apoptosis of human acute promyelocytic leukemia cells via survivin-mediated pathway. Chin Med J (Engl),2007,120:802-6.
    [28]Wu, D., Lin, M.F. and Zhao, X.Y. Effects of berbamine on K562 cells and its mechanisms in vitro and in vivo. Zhongguo Shi Yan Xue Ye Xue Za Zhi, 2005,13:373-8.
    [29]黄志煜,董庆华.小檗胺诱导人白血病Jurkat细胞凋亡的实验研究.中国肿瘤,2007,16:722-724.
    [30]Xu, R., Dong, Q., Yu, Y., Zhao, X., Gan, X., Wu, D., Lu, Q., Xu, X. and Yu, X.F. Berbamine:a novel inhibitor of bcr/abl fusion gene with potent anti-leukemia activity. Leuk Res,2006,30:17-23.
    [31]Sun, J.R., Zhang, X.H., He, Z.W., Gu, Y., Yu, Y.Z., Fang, Y.M., Lu, Q.H., Dong, Q.H. and Xu, R.Z. The mechanism of apoptosis of chronic myeloid leukemia cells induced by the novel p210 bcr/abl inhibitor berbamine. Zhonghua Yi Xue Za Zhi,2006,86:2246-51.
    [32]Xie J, Ma T, Gu Y, Zhang X, Qiu X, Zhang L, Xu R, Yu Y. Berbamine derivatives:a novel class of compounds for anti-leukemia activity. Eur J Med Chem.2009; 44:3293-8.
    [33]Si J, Collins SJ. Activated Ca2+/calmodulin-dependent protein kinase Ilgamma is a critical regulator of myeloid leukemia cell proliferation. Cancer Res.2008; 68:3733-42.
    [34]Si J, Mueller L, Collins SJ. CaMKII regulates retinoic acid receptor transcriptional activity and the differentiation of myeloid leukemia cells. J Clin Invest.2007; 117:1412-21.
    [35]Gharahdaghi F, Weinberg CR,Meagher DA et al. Mass spectrometric identification of proteins from silver-stained poly-acrylamide gel:a methed for the removal of silver ions to enhance sensitivity. Electrophoresis,1999, 20:601-605.
    [36]Pear WS, Miller JP, Xu L. Efficient and rapid induction of a chronic myelogenous leukemia-like myeloproliferative disease in mice receiving P210 bcr/abl-transduced bone marrow. Blood.1998; 92:3780-3792.
    [37]Xenaki D, Pierce A, Underhill-Day N. Bcr-Abl-mediated molecular mechanism for apoptotic suppression in multipotent haemopoietic cells:a role for PKC beta Ⅱ. Cell Signal.2004; 16:145-56.
    [38]Jaiswal S, Traver D, Miyamoto T. Expression of BCR/ABL and BCL-2 in myeloid progenitors leads to myeloid leukemias. Proc Natl Acad Sci U S A. 2003; 100:10002-7.
    [39]Steelman LS, Pohnert SC, Shelton JG. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia.2004; 18:189-218.
    [40]Yu C, Dasmahapatra G, Dent P. Synergistic interactions between MEK1/2 and histone deacetylase inhibitors in BCR/ABL+human leukemia cells. Leukemia. 2005; 19:1579-89.
    [41]Druker BJ, Talpaz M, Resta DJ. Efficacy and safety of a specific inhibitor of the BCR-ABL tyrosine kinase in chronic myeloid leukemia. N Engl J Med. 2001,344:1038-1042.
    [42]Graham SM, Jφrgensen HG, Allan E. Primitive, quiescent, Philadelphia-positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood.2002; 99:319-25.
    [43]Marley SB, Deininger MW, Davidson RJ. The tyrosine kinase inhibitor STI571, like interferon-alpha, preferentially reduces the capacity for amplification of granulocyte-macrophage progenitors from patients with chronic myeloid leukemia. Exp Hematol.2000; 28:551-7.
    [44]Hu Y, Liu Y, Pelletier S. Requirement of Src kinases Lyn, Hck and Fgr for BCR-ABL1-induced B-lymphoblastic leukemia but not chronic myeloid leukemia. Nat Genet.2004; 36:453-61.
    [45]Talpaz M, Shah NP, Kantarjian H. Dasatinib in imatinib-resistant Philadelphia chromosome-positive leukemias. N Engl J Med.2006; 354:2531-41.
    [46]Ottmann O, Dombret H, Martinelli G. Dasatinib induces rapid hematologic and cytogenetic responses in adult patients with Philadelphia chromosome positive acute lymphoblastic leukemia with resistance or intolerance to imatinib:interim results of a phase 2 study. Blood.2007; 110:2309-15.
    [47]Jiang X, Zhao Y, Smith C. Chronic myeloid leukemia stem cells possess multiple unique features of resistance to BCR-ABL targeted therapies. Leukemia.2007; 21:926-35.
    [48]Xu R, Yu Y, Zheng S, Zhao X, Dong Q, He Z, Liang Y, Lu Q, Fang Y, Gan X, Xu X, Zhang S, Dong Q, Zhang X, Feng GS.Overexpression of Shp2 tyrosine phosphatase is implicated in leukemogenesis in adult human leukemia. Blood. 2005; 106:3142-9.
    [49]Xu R. Shp2, a novel oncogenic tyrosine phosphatase and potential therapeutic target for human leukemia. Cell Res.2007; 17:295-297.
    [50]Scherr M, Chaturvedi A, Battmer K, Dallmann I, Schultheis B, Ganser A, Eder M. Enhanced sensitivity to inhibition of SHP2, STAT5, and Gab2 expression in chronic myeloid leukemia (CML). Blood.2006; 107:3279-87.
    [51]Campbell CJ, Lee JB, Levadoux-Martin M, Wynder T, Xenocostas A, Leber B, Bhatia M.The human stem cell hierarchy is defined by a functional dependence on Mcl-1 for self-renewal capacity. Blood.2010; 116:1433-42.
    [52]Campbell KJ, Bath ML, Turner ML, Vandenberg CJ, Bouillet P, Metcalf D, Scott CL, Cory S.Elevated Mcl-1 perturbs lymphopoiesis, promotes transformation of hematopoietic stem/progenitor cells, and enhances drug resistance. Blood.2010; 116:3197-207.
    [53]Nutt LK, Margolis SS, Jensen M, Herman CE, Dunphy WG, Rathmell JC, Kornbluth S. Metabolic regulation of oocyte cell death through the CaMKII-mediated phosphorylation of caspase-2. Cell.2005; 123:89-103.
    [54]Song B, Lai B, Zheng Z, Zhang Y, Luo J, Wang C, Chen Y, Woodgett JR, Li M.Inhibitory phosphorylation of GSK-3 by CaMKII couples depolarization to neuronal survival. J Biol Chem.2010; 285:41122-34.
    [55]Maurer U, Charvet C, Wagman AS, Dejardin E, Green DR. Glycogen synthase kinase-3 regulates mitochondrial outer membrane permeabilization and apoptosis by destabilization of MCL-1. Mol Cell.2006; 21:749-60.
    [56]Linseman DA, Butts BD, Precht TA, Phelps RA, Le SS, Laessig TA, Bouchard RJ, Florez-McClure ML, Heidenreich KA.Glycogen synthase kinase-3beta phosphorylates Bax and promotes its mitochondrial localization during neuronal apoptosis. J Neurosci.2004; 24:9993-10002.
    [1]DickJE. Stem cells:se lf-renewalwrit in blood. Nature.2003;423:231-3.
    [2]Warner JK,Wang JC, Hope KJ, Jin L, Dick JE. Concepts of human leukemic development. Oncogene 2004;23:7164-77.
    [3]ReyaT, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature.2001;414:105-11.
    [4]Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med.1997; 3:730-7.
    [5]Hope KJ, Jin L, Dick JE. Acute myeloid leukemia originates from a hierarchy of leukemic stem cell classes that differ in self-renewal capacity. Nat Immunol. 2004; 5:738-43.
    [6]Jamieson CH, Allies LE, Dylla SJ. Granulocytemacrophage progenitors as candidate leukemic stem cells in blast-crisis CML. N Engl J Med 2004; 351:657-67.
    [7]Korbling M, Estrov Z. Adult stem cells for tissue repair Da new therapeutic concept? N Engl J Med.2003; 349:570-82.
    [8]Cozzio A, Passegue E, Ayton PM, Karsunky H, Cleary ML,Weissman IL. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev.2003; 17:3029-35.
    [9]Bennett JM, Catovsky D, Daniel MT. Proposed revised criteria for the classification of acute myeloid leukemia. A report of the French-American-British CooperativeGroup. Ann InternMed.1985; 103:620-5.
    [10]Vardiman JW, Harris NL, Brunning RD. The World Health Organization (WHO) classification of themyeloid neoplasms. Blood 2002; 100:2292-302.
    [11]Park CH, BergsagelDE, McCulloch EA. Mousemyeloma tumor stem cell:a primary cell culture assay. J N atl Cancer Inst.1971; 46:411-422.
    [12]BruceWR, Van Der Gaag H. Aquantitative assay for the number of murine lymphoma cells capable of proliferation in vivo. Nature.1963; 199:79-80.
    [13]Griffin J, Lowenberg B. Clonogenic cells in acute myeloblastic leukemia. Blood.1986; 68:1185-1195.
    [14]Lapidot T, Sirard C, Vormoor J. A cell initiating human acutemyeloid leukemia after transplantation into SCID mice. Nature.1994; 367:645-648.
    [15]Huntly BJP, Gilliland DG. Leukemia stem cells and the evolution of cancer stem cell research. Nature Rev Cane.2005; 5:311-321.
    [16]Domen J, Weissman IL. Self-renewal, differentiation or death regulation and manipulation of hematopoietic stem cell fate. Mol Med Today.1999; 5:201-8.
    [17]Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science.2000; 287:1442-6.
    [18]Blair A, Hogge DE, Allies LE, Lansdorp PM, Sutherland HJ. Lack of expression of Thy-l(CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood.1997; 89:3104-12.
    [19]Blair A, Sutherland HJ. Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol.2000; 28:660-71.
    [20]Jordan CT, Upchurch D, Szilvassy SJ. The interleukin-3 receptor a chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 2000; 14:1777-84.
    [21]Brendel C, Mohr B, Schimmelpfennig C. Detection of cytogenetic aberrations both in CD90 (Thy-1)-positive and (Thy-1)-negative stem cell (CD34) subfractions of patients with acute and chronic myeloid leukemias. Leukemia. 1999; 13:1770-5.
    [22]Reya T, Duncan AW, Ailles L. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature.2003; 423:409-14.
    [23]Terpstra W, Prins A, Ploemacher RE. Long term leukemia-initiating capacity of a CD34 subpopulation of acute myeloid leukemia. Blood.1996; 87:2187-94.
    [24]Grimwade D, Enver T. Acute promyelocytic leukemia:where does it stem from? Leukemia.2004; 18:375-84.
    [25]Begley CG, Green AR. The SCL gene:from case report to critical hematopoietic regulator. Blood.1999; 93:2760-70.
    [26]Licht JD. AML-1 and the AML1-ETO fusion protein in the pathogenesis of t(8;21) AML. Oncogene.2001; 20:5660-79.
    [27]Mulloy JC, Cammenga J, MacKenzie KL, Berguido FJ, Moore MA, Nimer SD. The AML1-ETO fusion protein promotes the expansion of human hematopoietic stem cells. Blood.2002; 99:15-23.
    [28]Guzman CG, Warren AJ, Zhang Z. Hematopoietic stem cell expansion and distinct myeloid developmental abnormalities in a murine model of the AML1-ETO translocation. Mol Cell Biol.2002; 22:5506-17.
    [29]Pui JC, Allman D, Xu L. Notch 1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity.1999; 11:299-308.
    [30]Reya T, Duncan AW, Ailles L. A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature.2003; 423:409-14.
    [31]Zhu J, Giannola DM, Zhang Y, Rivera AJ, Emerson SG. NF-Yco operates with USF1/2 to induce the hematopoietic expression of HOXB4. Blood.2003; 102:2420-7.
    [32]Sauvageau G, Thorsteinsdottir U, Eaves CJ. Overexpression of HOXB4 in hematopoietic cells causes the selective expansion of more primitive populations in vitro and in vivo. Genes Dev.1995; 9:1753-65.
    [33]Golub TR, Slonim DK, Tamayo P. Molecular classification of cancerc lass discovery and class prediction by gene expression monitoring. Science.1999; 286:531-7.
    [34]Lawrence HJ, Rozenfeld S, Cruz C. Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in human myeloid leukemias. Leukemia.1999; 13:1993-9.
    [35]Staal FJ, Clevers HC. WNT signalling and haematopoiesis:a WNT-WNT situation. Nat Rev Immunol.2005; 5:21-30.
    [36]Lessard J, Baban S, Sauvageau G. Stage-specific expression of polycomb group genes in human bone marrow cells. Blood.1998; 91:1216-24.
    [37]Park IK, Qian D, Kiel M. Bmi-lis required for maintenance of adult self-renewing haematopoietic stem cells. Nature.2003; 423:302-5.
    [38]Lessard J, Sauvageau G. Bmi-1 determines the proliferative capacity of normal and leukaemic stem cells. Nature.2003; 423:255-60.
    [39]Bhardwaj G, Murdoch B,Wu D. Sonic hedgehog induces the proliferation of primitive human hematopoietic cells via BMP regulation. Nat Immunol.2001; 2:172-80.
    [40]Griffin JD. Leukemia stem cells and constitutive activation of NF-kappaB. Blood.2001,98:229-12.
    [41]Guzman ML, Swiderski CF, Howard DS. Preferential induction of apoptosis for primary human leukemic stem cells. Proc Natl Acad Sci USA.2002, 99:16220-16225.
    [42]Guzman ML, Neering SJ, Upchurch D. Nuclear factor-nBis constitutively activated in primitive human acute myelogenous leukemia cells. Blood.2001; 98:2301-7.
    [43]Guzman ML, Rossi RM, Karnischky L. The sesquiterpene lactone parthenolide induces apoptosis of human acute myelogenous leukemia stem and progenitor cells. Blood.2005; 105:4163-9.
    [44]Wang GG, Pasillas MP, Kamps MP. Meis 1 programs transcription of FLT3 and cancer stem cell character, using a mechanism that requires interaction with Pbx and a novel function of the Meisl C-ter-minus. Blood.2005; 106:254-264.
    [45]Frohling S, Schlenk RF, Breit ruck J. Prognostic significance of activating FLT3 mutations in younger adults (16 to 60 years) with acute myeloid leukemia and normal cytogenetics:a study of the AML Study Group Ulm. Blood.2002; 100:4372-4380.
    [46]Kiyoi H, Ohno R, Ueda R. Mechanism of constitutive activation of FLT3 with internal tandem duplication in the juxtamem-brane domain. Oncogene.2002, 21:2555-2563.
    [47]Xu Q, Simpson SE, SciallaTJ, Bagg A, Carroll M. Survival of acute myeloid leukemia cells requires PI3 kinase activation. Blood.2003; 102:972-80.
    [48]Dean M, Fojo T, Bates S. Tumour stem cells and drug resistance. Nat Rev Cancer.2005; 5:275-84.
    [49]Konopleva M, Zhao S,Hu W.The anti-apoptotic genes Bcl-X(L) and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+cells. Br J Haematol.2002;118:521-34.
    [50]Graham SM, Jorgensen HG, Allan E. Primitive, quiescent, Philadelphia positive stem cells from patients with chronic myeloid leukemia are insensitive to STI571 in vitro. Blood.2002; 99:319-325.
    [51]Bhatia R, Holtzm, Nium. Persistence of malignant hematopoietic progenitors in chronic myelogenous leukemia patients in complete cytogenetic remission following imatinib mesylate treatment. Blood.2003; 101:4701-4707.
    [52]Wicha MS, SLiu, G Dontu. Cancer stem cells:an old idea-a paradigm shift. Cancer Res.2006; 66:1883-1890.
    [53]Hill RP. Identifying cancer stem cells in solid tumors:case not proven. Cancer Res.2006; 66:1891-1895.
    [1]Deininger MW, Goldman JM, Melo JV. The molecular biology of chronic myeloid leukemia. Blood.2000; 96:3343-3356.
    [2]Bedi A, Zehnbauer BA, Barber JP. Inhibition of apoptosis by BCR-ABL in chronic myeloidleukemia. Blood.1994; 83:2038-2044.
    [3]Druker BJ, Tamura S, Buchdunger E. Effects of a selective inhibitor of the Abl tyrosine kinase on the growth of Bcr-Abl positive cells. Nat Med.1996; 2:561-566.
    [4]Okuda K, Weisberg E, Gilliland DG. ARG tyrosine kinase activity is inhibited by STI571. Blood.2001; 97:2440-2448.
    [5]Deininger MW, Goldman JM, Lydon N. The tyrosine kinase inhibitor CGP57148B selectively inhibits the growth of BCR-ABL-positive cells. Blood. 1997:90:3691-3698.
    [6]Blagosklonny MV. STI-571 mu t select for drug-resistant cells but no cell breathes fire out of its nostrils like a dragon'. Leukemia.2002; 16:570-572.
    [7]Luzzatto L, Frassoni F, Melo JV. Imatinib:can one outwit chronic myeloid leukemia? Haematologica.2002; 87:898-901.
    [8]Hochhaus A, La Rosee P. Imatinib therapy in chronic myelogenous leukemia: strategies to avoid and overcome resistance. Leukemia.2004; 18:1321-1331.
    [9]Cortes J, Kantarjian H. New targeted approaches in chronic myeloid leukemia. J Clin Oncol.2005; 23:6316-6324.
    [10]Gadzicki D, von Neuhoff N, Steinemann D. BCR-ABI gene amplification and overexpression in a patient with chronic myeloid leukemia treated with imatinib. Cancer Genet Cytogenet.2005; 159:164-167.
    [11]Gorre ME, Mohammed M, Ellwood K. Clinical resistance to STI-571 cancer therapy caused by BCR-ABL gene mutation or amplification. Science.2001; 293:876-880.
    [12]Walz C, Sattler M. Novel targeted therapies to overcome imatinib mesylate resistance in chronic myeloid leukemia (CML). Crit Rev Oncol Hematol.2006; 57(2):145-164.
    [13]Burgess MR,Skaggs BI, Shah NP. Comparative analysis of two clinically active BCR-ABL kinase inhibitors reveals the role of conformation-specific binding in resistance. Proc Natl Acad Sci USA.2005; 102:3395-3400.
    [14]Shah NP, Tran C, Lee FY, et al. Overriding imatinib resistance with a novel ABL kinase inhibitor. Science.2004; 305:399-401.
    [15]Weisberg E, Manley PW. Breitenstein W. Characterization of AMN107, a selective inhibitor of native and mutant Bcr-Abl.Cancer Cell.2005; 7:129-141.
    [16]O'hare T, Pollock R, Stoffregen EP. Inhibition of wild-type and mutant Bcr-Abl by AP23464, a potent ATP-based oncogenic protein kinase inhibitor: implications for CML.Blood.2004; 104:2532-2539.
    [17]Cowan-Jacob SW, Guez V, Fendrich G. Imatinib (STI571) resistance in chronic myelogenous leukemia:molecular basis of the underlying mechanisms and potential strategies for treatment. M ini Rev Med Chem.2004; 4:285-299.
    [18]Schindler T, Bornmann W, Pellicena P. Structural mechanism for STI-571 inhibition of abelson tyrosine kinase. Science.2000; 289:1938-1942.
    [19]La Rosee P, Corbin AS, Stoffregen EP. Activity of the Bcr-Abl kinase inhibitor PD 180970 against clinically relevant Bcr-Abl isoforms that cause resistance to imatinib mesylate (Gleevec, ST1571). Cancer Res.2002; 62:7149-7153.
    [20]Von Bubnoff N, Schneller F, Pesehel C. BCR-ABL gene mutations in relation to clinical resistance of Philadelphia-chromosome-positive leukemia to ST1571:a prospective study. Lancet.2002; 359:487-491.
    [21]Shah NP, Nicoll JM, Nagar B. Multiple BCR-ABL kinase domain mutations confer polyclonal resistance to the tyrosine kinase inhibitor imatinib(ST1571) in chronic phase and blast crisis chronic myeloid leukemia. Cancer Cell.2002; 2:117-125.
    [22]Deininger M, Buchdunger E, Druker BJ. The development of imatinib as a therapeutic agent for chronic myeloid leukemia. Blood.2005; 105:2640-2653.
    [23]Nowicki MO, Falinski R, Koptyra M. BCR/ABL oncogenic kinase promotes unfaithful repair of the reactive oxygen species-dependent DNA double-strand breaks. Blood.2004; 104:3746-3753.
    [24]Dai Y, Rahmani M, Corey SJ. A Bcr/Abl-independent, Lyn-dependent form of imatinib mesylate(STI-571) resistance is associated with altered expression of Bcl-2. J Biol Chem.2004; 279:34227-34239.
    [25]Debiee-Rychter M, Cools J, Dumez H. Mechanisms of resistance to imatinib mesylate in gastrointestinal stromal tumors and activity of the PKC412 inhibitor against imatinib-resistant mutants. Gastroenterology.2005; 128:270-279.
    [26]Holyoake TL, Jiang X, Jorgensen HG. Primitive quiescent leukemic cells from patients with chronic myeloid leukemia spontaneously initiate factor independent growth in vitro in association with up-regulation of expression of interleukin-3. Blood.2001; 97:720-728.
    [271 Hughes TP, Kaeda J, Branford S. Frequency of major molecular responses to imatinib or interferon alfa plus cytarabine in newly diagnosed chronic myeloid leukemia. N Eng J Med.2003; 349:1423-1432.
    [28]Wolff NC, Veach DR, Tong WP. PD166326, a novel tyrosine kinase inhibitor, has greater antileukemiac activity than imatinib mesylate in a murine model of chronic myeloid leukemia. Blood.2005; 105:3995-4003.
    [29]Golemovi c M, Verstovsek S, Giles F. AMN107, a novel aminopyrimidine inhibitor of Bcr-abl, has in vitro activity against imatinib-resistant chronic myeloid leukemia. Clin Cancer Res.2005; 11:4941-4947.
    [30]Wu J, Meng F, Lu H. Lyn regulates BCR-ABL and Gab2 tyrosine phosphorylation and c-Cbl protein stability in imatinib-resistant chronic myelogenous leukemia cells. Blood.2008; 111:3821-3829.
    [31]Warmuth M, Simon N, Mitina O. Dual-specific Src and Abl kinase inhibitors, PP1 and CGP76030, inhibit growth and survival of cells expressing imatinib mesylate-resistant Bcr-Abl kinases. Blood.2003; 101:664-672.
    [32]Lombardo LJ, Lee WV, Chen P. Discovery of (2-chloro-6-methyl-phenyl)-2-(6-(4-(2-hydroxyethy 1)-piperazin-1-y1)-2-methylpyrimidin-4-ylami no)thiazole-5-carboxamide(BMS-354825), a dual Src/Abl kinase inhibitor with potent antitumor activity in preclinical assays. J Med Chem.2004; 47:6658-6661.
    [331 Tokarski JS, Newitt JA, Chang CY. The structure of Dasatinib (BMS-354825) bound to activated ABL kinase domain elucidates its inhibitory activity against imatinib-resistant ABL mutants. Cancer Res.2006; 66:5790-5797.
    [34]Grafone T, Mancini M, Ottaviani E. A novel 4-anilino-3-quinolinecarbonitrile dual Src and Abl kinase inhibitor (SKI-606) has in vitro activity on CML Ph+ Blast cells resistant to imatinib. Proc Am Assoc Cancer Res.2005; 46:1408.
    [35]Kimura S, Naito H, Segawa H. NS-187, a potent and selective dual Bcr-Abl/Lyn tyrosine kinase inhibitor, is a novel agent for imatinib-resistant leukemia. Blood.2005; 106:3948-3954.
    [36]Naito H, Kimura S, Nakaya Y. In vivo antiproliferative effect of NS-187, a dual Bcr-Abl/Lyn tyrosine kinase inhibitor, on leukemic cells harbouring Abl kinase domain mutations. Leuk Res.2006; 30:1443-1446.
    [37]Gumireddy K, Baker SJ, Cosenza SC. A non-ATP-competitive inhibitor of BCR-ABL overrides imatinib resistance. Proc Natl Acad Sci USA.2005; 102:5635.
    [38]Fancelli D, Moll J, Varasi M. l,4,5,6-tetrahy-dropyrrolo[3,4-c]pyrazoles: identification of a potent Aurora kinase inhibitor with a favorable antitumor kinase inhibition profile. J Med Chem.2006; 49:7247-7251.
    [39]Weisberg E, Manley PW, Cowan-Jacob SW. Second generation inhibitors of BCR-ABL for the treatment of imatinib-resistant chronic myeloid leukaemia. Nat Rev Cancer.2007; 7:345-356.
    [40]Gontarewicz A, Balabanov S, Keller G. Simultaneousb targeting of Aurora kinases and Bcr-Abl kinase by the small molecule inhibitor PHA-739358 is effective against imatinib-resistant BCR-ABL mutations including T315I. Blood.2008; 111:4355-4364.
    [41]Gatto S, Scappini B, Pham L. The proteasome inhibitor PS-341 inhibits growth and induces apoptosis in Bcr/Abl-positive cell lines sensitive and resistant to imatinib mesylate. Haematologica.2003; 88:853-863.
    [42]Mitsiades N, Mitsiades CS, Richardson PG. The proteasome inhibitor PS-341 potentiates sensitivity of multiple myeloma cells to conventional chemotherapeutic agents:therapeutic applications. Blood.2003; 101:2377-2380.
    [43]Servida F, Soligo D, Delia D. Sensitivity of human multiple myelomas and myeloid leukemias to the proteasome inhibitor I. Leukemia.2005; 19:2324-2331.
    [44]Nimmanapalli R, Bali P, O'Bryan E. Arsenic tri-oxide inhibits translation of mRNA of bcr-abl, resulting in attenuation of Bcr-Abl levels and apoptosis of human leukemia cells. Cancer Res.2003; 63:7950-7958.
    [45]Prabhu S, Saadat D, Zhang M. A novel mechanism for Bcr-Abl action: Bcr-Abl-mediated induction of the eIF4F translation initiation complex and mRNA translation. Oncogene.2007; 26:1188-1200.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700