用户名: 密码: 验证码:
新型肝素-紫杉醇药物输送系统的制备及生物学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
抗癌药物紫杉醇其抗癌机理独特,对卵巢癌、乳腺癌、肺癌和头颈部癌均有良好的效果,是治疗晚期卵巢癌的一线药物之一。但由于其水溶性差,而其助溶剂易产生严重毒副作用,大大限制了其临床应用,为此开发具有良好水溶性的新型载药系统受到了广泛关注。
     近年来,生物大分子由于其良好的生物相容性、生物降解性,在医药领域应用广泛,特别是生物大分子在肿瘤组织中具有提高渗透和滞留作用(EPR)的特点,将生物大分子作为载体与抗癌药物结合,形成新的药物输送系统,可以改善药物水溶性、控制药物释放速度、延长小分子药物在体内的循环周期,提高药物利用率、增加药物稳定性和降低毒副作用等,这种药物系统成为研究热点,具有广阔的应用前景。
     肝素是一种天然生物大分子,广泛地存在于动物组织和器官中,具有良好的水溶性、生物相容性和生物降解性,并且具有多种生物学功能。由于以上优点,本论文选用肝素作为药物载体与抗癌药物紫杉醇结合,设计新型的药物体系。本论文进行了深入性的研究工作,首先设计、制备一种直接化学键连接的三元化肝素衍生物模拟应用于抗癌药物输送系统。同时利用该模型反应过程,分别制备出以直接化学键结合的肝素-紫杉醇药物输送系统(HD1),以及用氨基酸为连接臂的肝素-紫杉醇药物系统(HD2),并在此基础上设计出一种具有自组装性能的肝素-紫杉醇前药系统(Prodrugs)。在核磁共振(NMR)、红外光谱(FT-IR)及凝胶渗透色谱(GPC)对药物系统结构表征的基础上,开展了药物输送系统的水解动力学、药物体系的抗凝活性研究,考察了药物系统对人乳腺癌细胞MCF-7的体外抗癌抑制活性,通过应用细胞形态学和流式细胞仪分析药物系统的抗肿瘤作用机理,以及进行了体内动物实验。主要研究结果如下:
     1.抗癌药物模型输送系统
     在抗癌药物模型药物系统中分别应用乙酰化,苄氧基化和正丁胺化对肝素进行修饰,形成了一元化,二元化和三元化肝素模型药物系统。利用O-乙酰化反应对肝素进行化学修饰,得到重要活性中间体混酐,药物分子模型苄醇与肝素通过相对较易水解的酯键进行连接,靶因子模型正丁胺与肝素之间以酰胺键进行连接,形成“药物分子模型苄醇-乙酰化肝素-靶因子模型正丁胺”的三元化模型药物输送系统。
     研究表明活性中间体混酐对二元化肝素衍生物有较大的影响,且乙酰基取代度(重量百分数)为8.5 %,苄氧基为3.21 %,正丁胺为1.3 %,是一种理想的模型体系。引入基团重量呈下降趋势,符合实际药物体系中,要求药物分子含量大于靶因子的含量特点。
     抗凝活性表明模型抗癌药物系统的抗凝血活性有不同程度地降低,说明该系统能够成为一种安全,有效的药物系统,避免临床使用中的出血现象,该模型体系具有应用前景,为接下来的工作奠定了研究基础。
     2.直接化学键连接的肝素-紫杉醇药物输送系统(HD1)和以氨基酸连接臂连接的肝素-紫杉醇药物输送系统(HD2)
     应用模型反应过程,制备了两种药物输送系统:以直接化学键酯键连接的肝素-紫杉醇药物输送系统(HD1),和以缬氨酸、亮氨酸和苯丙基酸为连接臂连接的肝素-紫杉醇药物输送系统(HD2a,HD2b,HD2c)。
     通过测定直接化学键相连的药物体系(HD1)中,载药量为25.4 %,用氨基酸为连接臂的药物系统(HD2a,HD2b,HD2c)中,载药量分别为16.3 %,18.4 %,16.1 %。
     讨论了两种体系的体外药物释放作用,表明没有连接臂连接的肝素-紫杉醇药物输送系统(HD1)在中性和酸性磷酸盐缓冲液以及酶催化条件下,具有很高的稳定性很难释放出活性药物,说明该肝素-紫杉醇药物输送系统(HD1)并不适合于进一步的研究。
     而带有氨基酸连接臂的肝素-紫杉醇药物输送系统(HD2)具有一定的水解释放速度,随着磷酸盐缓冲液pH值下降,三种药物系统水解速度均变缓慢;而在类似体内条件酶催化下,三种体系水解速度大大增加,以缬氨酸和亮氨酸为连接臂的药物体系HD2a和HD2b能够释放出较多的活性药物,且后者快于前者;总体来说,带有氨基酸连接臂的药物系统具有较好的应用前景。
     抗凝活性表明两种药物体系的抗凝活性较肝素均有较大的下降,说明制备的抗癌药物系统具有较好的安全性,具有进一步应用研究的可能性。
     通过MTT法考察药物系统对人乳腺癌细胞MCF-7的体外抗癌抑制活性,检测表明,HD1的半数抑制浓度IC50为3.09μg/mL,高于原药紫杉醇,而以氨基酸为连接臂的肝素-紫杉醇药物输送系统的半数抑制浓度IC50分别为0.97μg/mL,0.48μg/mL,0.43μg/mL,相比较原药紫杉醇IC50低2~3倍,说明该体系能够释放出活性药物,具有良好的抑制肿瘤细胞活性。综合以上理化性质,以缬氨酸和亮氨酸为连接臂的药物体系HD2a和HD2b,具有较好的应用前景。3.自组装肝素-紫杉醇前药系统(Prodrugs)
     鉴于纳米尺寸的药物系统具有一定的“被动靶向性”作用,本章在前面工作基础上,设计制备具有纳米尺寸的肝素-紫杉醇前药系统。应用丁二酸酐对肝素进行化学修饰,引入更多的羧酸根,将药物分子与载体通过三种氨基酸缬氨酸、亮氨酸和苯丙氨酸为连接臂进行化学键合,形成前药体系(Prodrug1,Prodrug2,Prodrug3)。
     定量分析表明,前药体系中引入丁二酰基的重量百分数为8.5 %,连接紫杉醇重量百分数分别为35.4 %,37.8 %,39.1 %。该结果表明由于更多羧酸根的引入增加了连接紫杉醇的含量,较前一章的药物体系有很大的提高。
     经动态光散射(DLS)和扫描电镜(SEM)检测,这种前药体系能够在水溶性条件下,自组装形成载体在外而药物分子在内的稳定的不规则球形纳米颗粒,平均粒径140~180 nm之间,经测定电位在-20 mV左右。
     水解动力学表明前药系统在中性和酸性磷酸盐缓冲液以及血浆中均能释放出活性药物分子,并随着pH值的降低,体系释放活性药物的能力下降;而整个前药系统在血浆中具有较快的释放速度,且大鼠血浆中的稳定性低于在人血浆中的稳定性,Prodrug2对酶催化条件更为敏感,总体上来说,在两种水解条件下,Prodrug2是值得期待药物输送系统。
     抗凝活性表明两种药物体系的抗凝活性较载体肝素均有较大的下降,说明一定的化学修饰能够降低肝素的抗凝活性,避免用药过程中出现的出血现象,该抗癌药物系统具有较好的安全性,具有进一步应用研究的可能性。
     通过MTT法考察药物系统对人乳腺癌细胞MCF-7的体外抗癌抑制活性,检测表明,自组装功能的肝素-紫杉醇前药系统的半数抑制浓度IC50分别为0.10μg/mL,0.058μg/mL,0.06μg/mL,相比较原药紫杉醇IC50更低,制备的前药系统的抑癌活性均表现出高于紫杉醇的抑癌活性。建立人卵巢癌SKOV3裸鼠模型体内试验表明紫杉醇和Prodrugs单独治疗组均能抑制肿瘤生长,实验组与模型组相比差异有统计学意义( P < 0. 05),与紫杉醇组相比,模型组与Prodrugs组裸鼠体重变化较大,差异有统计学意义( P < 0. 05),而模型组与Prodrugs组裸鼠体重变化不大,差异没有统计学意义( P > 0. 05),说明相比较紫杉醇组,Prodrugs组的对裸鼠毒性不大,是一种较好的药物输送系统。综合分析,Prodrug2组对裸鼠毒性不大,能够达到类似于紫杉醇组的治疗效果,具有广泛地应用前景。
Paclitaxel is a taxoid that has aroused considerable interest on account of its promising antitumor activity. It is in clinical use for treating a variety of malignancies, including ovarian, breast, and non-small-cell lung cancers. It was observed that the side effects were caused by Cremophor EL used in the paclitaxel formulation. Therefore, it is urgent to develop a novel drug delivery system. Recent years, the use of macromolecules for the targeted delivery of anticancer agents has generated considerable interest regarding their enhanced permeability and retention (EPR) effect in tumor tissues. Macromolecules with good solubility, non-toxicity, biocompatibility, biodegradability, have been employed as carriers to deliver active drugs towards intracellular compartments. It can improve water solubility, control the release hydrolysis rate and extend in vivo half life of active drugs. The novel drug delivery systems have shown a bright future for the development of anticancer therapy.
     Heparin is a biocompatible, biodegradable and water-soluble natural polysaccharide and is rich in animal tissues. Heparin has attracted intense attention because it demonstrates a variety of biological activities. According to this, we design and prepare a variety of drug delivery systems, in which heparin as carrier conjugates with paclitaxel.
     We first develop a model ternary heparin conjugate by direct covalent bond strategy applied to the drug delivery system. Based on the model procedure, we design and synthesis two drug delivery systems (HD) by the strategy, in which O-acetylated heparin as carrier conjugates with paclitaxel by direct ester bond (HD1) and by inserting amino acids as spacers (HD2). We further investigate amphiphilic heparin-paclitaxel conjugates as a type of novel prodrug, which can self-assemble to form nanoparticles due to the different hydrophilic/hydrophobic nature of the carrier and drug compound in aqueous solution. The structures of drug delivery systems have been characterized by 1H NMR, FT-IR, and GPC. The kinetics of hydrolysis for drug delivery system has been investigated under chemical and enzymatic conditions. The anticoagulant activity, in vitro cell inhibition and in vivo antitumor activity in drug delivery system are measured. In addition, we try to examine the apoptotic mechanism of these drug delivery systems by Flow Cytometry and Cytomorphology.
     1. A model ternary heparin conjugate by direct covalent bond strategy applied to drug delivery system
     In this study, we have developed a model ternary heparin conjugate by direct covalent bond strategy, in which modified heparin using active mix anhydride as intermediate conjugate with model drug molecule (benzyl alcohol) and model specific ligand (butylamine), respectively. Ester bonds linked model drug and carrier facilitate the release of drug from carrier. In contrast, amido bonds between model specific ligand and heparin show greater stability.
     It is demonstrated that the activating mixed anhydride groups largely improved the activity and selectivity toward the following esterification. It has been found that the optimal weight percentages of introduced functional groups are 8.8 % of acetyl, 3.21 % of benzyloxy and 1.3 % in ternary heparin conjugate, respectively. The decreased trend on degree of substitution (DS) is consistent with that of introduced anticancer drug and specific ligand in drug delivery system.
     Their anticoagulant activity has been investigated. The results show that model ternary heparin conjugate with reduced anticoagulant activity may avoid the risk of severe hemorrhagic complication during the administration and is potential to develop a safe and effective drug delivery system on anticancer research.
     2. Heparin conjugates with paclitaxel by direct ester bond and by amino acid as spacers According to the model procedure, two types of heparin-paclitaxel conjugates (HD) have been developed, in which O-acetylated heparin as carrier conjugates with paclitaxel, by direct ester bond (HD1) and by inserting amino acids with differentα-substituted group as spacers (HD2), including valine, leucine, and phenylalanine (HD2a, HD2b, and HD2c), respectively.
     The content of drug conjugate to O-acetylated heparin has been quantified by UV absorbance. The weight percentages of HD conjugates contained 16~25% paclitaxel. HD conjugates have been disposed to chemical and enzymatic hydrolysis to test the drug release at pH 7.4 and pH 5.0, respectively. The HD1 is highly stable under physiological and enzyme conditions. It is demonstrated that direct ester bond between carrier and drug is difficultly hydrolyzed under physiological and enzymatic condition. In the PBS, the amount of paclitaxel, which can be liberated from HD2, increased as pH increased. It is observed the hydrolysis rate of HD2a and HD2b conjugates is greatly increased under enzymatic condition.
     The anticoagulant activities of HD conjugates have been investigated by APTT. The anticoagulant activities of HD1 and HD2 both decreased to some extent as compared to that of heparin (150 U/mg). As a consequence, HD conjugates with reduced anticoagulant activity could be safe and effective prodrugs to further investigate.
     Cytotoxicity has been studied by using an MTT assay to identify cells still active in respiration. HD1 exhibites lower cytotoxicity (IC50: 3.09μg/mL) than free paclitaxel. Specifically, IC50 values of HD2a, HD2b and HD2c for MCF-7 are about 0.97μg/mL, 0.48μg/mL and 0.43μg/mL, respectively, which are about 2~3 fold lower than that of free paclitaxel. HD2 therefore demonstrated significant anticancer activity.
     3. Heparin-paclitaxel drug delivery system with self-assembly property In this study, we have synthesized amphiphilic heparin-paclitaxel conjugates as a type of novel prodrug, which can self-assemble to form nanoparticles due to the different hydrophilic/hydrophobic nature of the carrier and drug compound in aqueous solution. The goal to select succinylated-heparin as a carrier is to increase drug loading capacity in which hydroxyl groups of heparin react with succinic anhydride under classical acylation conditions. Amino acids are ideal linkers, which can provide a reactive carboxyl group to conjugate with paclitaxel via an ester bond and an amino group that could be easily reacted with the carboxyl groups of the carrier via N-acylation reaction.
     It has been found that the weight percentage of succinylated group is about 8.5 %. The content of drug conjugate to Prodrugs is 35.4 %, 37.8 % and 39.1 %, respectively. Their morphology has been investigated by SEM and DLS. The Prodrugs have a negative surface charge ( -20 mV) and their mean diameters are about 140~180 nm measured by DLS. The results demonstrate that self-assembled nanoparticles have a narrow size distribution and form an approximately spherical shape composed of a paclitaxel core and carrier shell.
     Prodrugs have been subjected to chemical and plasma hydrolysis to test the paclitaxel release. In the PBS, the amount of paclitaxel, which can be liberated from Prodrugs, increased as pH increased. The stability of Prodrugs in mouse plasma is lower than that in human plasma. Under physiological condition, the amount of released paclitaxel is lower than that in plasma. Apparently, Prodrug2 using leucine as spacer is appropriate to facilitate the release of pacitaxel from the carrier.
     The anticoagulant activity of Prodrugs has been investigated by APTT. The results show that Prodrugs with reduced anticoagulant activity may avoid the risk of severe hemorrhagic complication during the administration and is potential to develop a safe and effective drug delivery system on anticancer research.
     It shows that the Prodrugs exhibit higher cytotoxicity than free paclitaxel in MCF-7 cell after 48 h by using an MTT assay. IC50 values of Prodrug1, Prodrug2 and Prodrug3 were about 0.19μg/mL, 0.058μg/mL and 0.06μg/mL, respectively. In in vivo experiments, prodrug2 shows a similar ovarian tumor growth inhibition as the parent drug while inducing no obvious body weight loss. As a whole, Prodrug2 shows not only proper hydrolysis rate, but also better anticancer inhibition. It is demonstrate that Prodrug2 with self-assembled property offers promising potential for further clinical applications.
引文
[1] Noble R L. The discovery of the vinca alkaloids-chemotherapeutic agents against cancer. Biochemistry and Cell Biology, 1990, 68: 1344-1351
    [2] DeVita V T J, Serpick A A, Carbone P O. Combination chemotherapy in the treatment of advanced Hodgkin’s disease. Annals of Internal Medicine,1970, 73: 881-895
    [3] St?helin H. Activity of a new glycosidic ligand derivative (VP-16-213) related to podophyllotoxin in experimental tumors. European Journal of Cancer, 1973, 9: 215-221
    [4] Harvey A L. Medicines from nature: are natural products still relevant to drug discovery. Trends in Pharmacological Sciences, 1999, 20: 196-198
    [5] Wani M C, Taylor H L, Wall M E, et al. Plant antitumor agent IV. The isolation and structure of taxol, a novel anti-leukemia and anti-tumor agent from Taxus brevifolia. Journal of American Chemical Society, 1971, 93: 2325-2327
    [6] Chauvière G, Guénard D, Picot F, et al. Structural analysis and biochemical study of isolated products of the yew. Taxus baccata Séances Acad Sci Paris, 1981, 293: 501-505
    [7] Schiff P B, Fant J, Horwita S B. Promotion of microtubule assembly in vitro by taxol. Nature, 1979, 277: 665-66
    [8] Diergarten K, Dreps A. Taxol: A new antieoplastic agent. Onkologie, 1993, 16(5): 329-337
    [9] Singla A K, Garg A, Aggarwal D. Paclitaxel and its formulations. International Journal of Pharmaceutics, 2002, 235: 179-192
    [10] Ding A H, Porteu F, Sanchez E, et al. Shared actions of endotoxin and taxol on TNF receptors and TNF release. Science, 1990, 248: 370-373
    [11] Bogdan C, Ding A. Taxol, a microtubule-stabilizing antineoplastic agent, induces expression of tumor necrosis factor alpha and interleukin-1 in macrophages. Journal of leukocyte biology. 1992, 52: 119-125
    [12] Bottex-Gauthier C, Condemine F, Picot F, et al. Effects of taxol on the macrophage function interactions with some immunological parameters. Immunopharmacology and immunotoxicology, 1992, 14: 39-44
    [13] Brugg B, Matus A. Phosphorylation determines the binding of microtubule- associated protein 2 (MAP2) to microtubules in living cells. Journal of CellBiology, 1991, 114: 735-737
    [14] Carboni J, Singh C, Tepper M. Cancer Institute Workshop on Taxol and Taxus. National Cancer Institute Workshop, 1992
    [15] Stearns M E, Wang M. Type IV Collagenase (Mr 72,000) Expression in Human Prostate: Benign and Malignant Tissue. Cancer Research, 1992, 52: 3776-3779
    [16] Ireland C M, Pittman S M. Tubulin alterations in taxol-induced apoptosis parallel those observed with other drugs. Biochemical Pharmacology, 1995, 49(10): 1191-1194
    [17] Zhang W D, Zhang J, Wang C J. Life Chemistry, 1998, 18(6): 35-39
    [18] Woo D D L, Miao S Y P, Pelayo J C, et al. Taxol inhibits progression of congenital polycystic kidney disease. Nature, 1994, 368: 750-753
    [19] Vyas D M, Wong H, Crosswell A R, et al. Synthesis and antitumor evaluation of water soluble taxol phosphates. Bioorganic & Medicinal Chemistry Letters, 1993, 3: 1357-1360
    [20] Tarr B D, Yalkowsky S H. A new parenteral vehicle for the administration of some poorly woluble anti-cancer drugs. Journal of Parenteral Science and Technology, 1987, 41(1): 31-33
    [21] Bethasda M D. Annual Report to the FDA, Division of Cancer Treatment. National Cancer Institute Workshop, 1989
    [22] Horwitz S. Mechanism of action of taxol. Trends in Parmacological Sciences, 1992, 13: 134-136
    [23] Rowinsky E, Donehower R C. Paclitaxel (Taxol). New England Journal of Medicine, 1995, 332: 1004-1014
    [24] Waugh W N, Trissel L A, Stella V J. Stability, compatibility, and plasticizer extraction of taxol (NSC-125973) injection diluted in infusion solutions and stored in various containers. American Journal of Health-System Pharmacy, 1991, 48(7): 1520-1524
    [25] Xu Q A, Trissel L A, Zhang Y. Pacitaxel compatibility with the IV express filter unit. International Journal of Pharmaceutical, 1998, 2: 243-245
    [26] Weiss R B, Donehower R C, Wiernik P H, et al. Hypersensitivity reactions from taxol. Journal of Clinical Oncology, 1990, 8(7): 1263-1268
    [27] Dorr R T. Pharmacology and toxicology of Cremophor EL diluent. The Annals of Pharmacotherapy, 1994, 28(5): 11-14
    [28] Deutsch H, Glinski J A, Hernandz M., et al. Synthesis of congeners and prodrugs. 3.water-soluble prodrugs of taxol with potent antitumor activity.Journal of Medicinal Chemistry, 1989, 32: 788-792
    [29] Zhao Z ,Kingston D G I, Crosswell A R. Modified Taxols. 6. Preperation of water-soluble prodrugs of Taxol. Journal of Natural Products, 1991, 54: 1607- 1611
    [30] Mathew A E, Mejillano M R, Nath J P, et al. Synthesis and evaluation of some water-soluble prodrugs and derivatives of taxol with antitumor activity. Journal of Medicinal Chemistry, 1992, 35(1): 145-151
    [31] Nicolaou R K,Guy R K, Pitsinos E N, et al. A water-soluble prodrug of Taxol with self-assembly properties. Angewandte Chemie International Edition in English, 1994, 33: 1583- 1587
    [32] Ueda Y, Mikkilineni A B, Knipe J O, et al. Novel water soluble phosphate prodrugs of taxol possessing in vivo antitumor activity. Bioorganic & Medicinal Chemistry Letters, 1993, 3: 1761-1766
    [33] Amsberry K L, Gerstenberger A E, Borchardt R T. Amine prodrugs which utilize hydroxy amide lactonization. II. A potential esterase-sensitive amide prodrug. Pharmaceutical Research, 1991, 8(4): 455-461
    [34] Amsberry K L, Borchardt R T. The lactonization of 2'-hydroxyhydrocinnamic acid amides: a potential prodrug for amines. The Journal of Organic Chemistry, 1990, 55(23):5867-5877
    [35]Sharma A, Mayhew E, Straubinger R M. Antitumor effect of taxol containing liposomes in a taxol-resistantm arinetumor model. Cancer Research,1993, 53: 58-77
    [36] Roman P S, Gabriel L B, Julio L, et al. Phase I clinical and pharmacological study of liposome-entrapped cis-bis-neodecanoatotrans-R, R-1, 2-diaminocyclo hexane platinum ( I1). Cancer Research, 1990, 50: 4254-4259
    [37]Hara K, Mikunni K, Hara K, et al. Glycosylated taxoid derivatives as water soluble anticancer agents and their manufacture with transglycosidase. Japanese Patent, 97241293, 1997
    [38] Kaufuman R J, Richarh T J, Fuhrhop R W, Stable oil-in-water emulsions in corporating a taxine(taxol)and method of making them.United Kindom Patent. 9602247. 1996
    [39] Lundberg B B. Preparation of drug-carrier emulsions stabilized with phosphatidylcholine-surfactant mixtures. Journal of Pharmaceutical Sciences, 1994, 83: 72-75
    [40] Lundberg B B, Mortimer B C, Redgrave T G. Submicron lipid emulsionscontaining amphithetic polyethylene glycol for use as drug-carrier with prolonged circulation time. International Journal of Pharmaceutics, 1996, 134: 119-127
    [41] Lundberg B B. A submicron lipid emulsion coated with amphithetic polyethylene glycol for parenteral administration of paclitaxel (Taxol). Journal of Pharmacy and Pharmacology, 1997, 49: 16-21
    [42]张海茹,顾茂健,万建胜.紫杉醇水溶性粉针剂及其制备方法.中国专利. 1148957, 1997
    [43] Seymour L W, Ulbrich K, Steyger P S, et al. Tumor tropism and anti-cancer efficacy of polymer-based doxorubicin prodrugs in the treatment of subcutaneous murine B16F10 melanoma. British Journal of Cancer, 1994, 70: 636-641
    [44] Zunino F, Pratesi G, Pezzoni G. Increased therapeutic efficacy and reduced toxicity of doxorubicin linked to pyran copolymer via the side chain of the drug. Cancer Treat Rep, 1987, 71: 367-373
    [45] Trouet A, Jolles G. Targeting of daunorubicin by association with DNA or proteins: a review. Seminars in Oncology, 1984, 11: 64-73
    [46] Seymour L W. Passive tumor targeting of soluble macromolecules and drug conjugates. Critical Reviews in Therapeutic Drug Carrier Systems, 1992, 9(2): 135-187
    [47] Cassidy J, Duncan R, Morrison G J, et al. Activity of N-(2-hydroxypropyl) methacrylamide copolymers containing daunomycin against a rat tumor model. Biochemical Pharmacology, 1989, 38: 875-880
    [48] Greenwald R B, Pendri A, Bolikal D, et al. Highly water soluble taxol derivatives:2’-polyethylene glycol esters as potential prodrugs. Bioorganic & Medicinal Chemistry Letters, 1994, 4: 2465-2470
    [49] Feng X, Yuan Y J, Wu J C. Synthesis and evaluation of water-soluble paclitaxel prodrugs. Bioorganic & Medicinal Chemistry Letters, 2002, 12: 3301-3303
    [50] Li C, Yu D F, Newman R A, et al. Complete regression of well-established tumors using a novel water-soluble poly(L-glutamine acid)-paclitaxel conjugate. Cancer Research, 1998, 58: 2404-2409
    [51] Li C, Price J E, Milas L, et al. Antitumor activity of poly(L-glutamic acid)-paclitaxel on syngeneic and xenografted tumors. Clinic Cancer Research, 1999, 5: 891-897
    [52] Luo Y, Prestwich G D. Synthesis and selective cytotoxicity of a hyaluronicacid-antitumor bioconjugate. Bioconjugate Chemistry, 1999, 10: 755-763
    [53] Luo Y, Ziebell M R, Prestwich G D. A hyaluronic acid-Taxol antitumor bioconjugate targeted to cancer cells. Biomacromoleclues, 2000, 1: 208-218
    [54] Rihova B, Kubackova K. Clinical implications of N-(2-hydroxy-propyl) methacrylamide copolymers. Current Pharmaceutical Biotechnology, 2003, 4: 311-322
    [55] Duncan R, Gac-Breton S, Keane R, et al. Polymer-drug conjugates: Polymer -directed enzyme prodrug therapy (PDEPT) and (polymer-enzyme liposome therapy) PELT: basic principles for design and transfer from the laboratory to clinic. Journal of Controlled Release, 2001, 74: 135-146
    [56] Meerum T, Jetske M, Ten B H, et al. Phase I clinical and pharmacokinetic study of PNU166945, a novel water soluble polymer-conjugated prodrug of paclitaxtel. Anti-Cancer Drugs, 2001, 12(4): 315-323
    [57] Sugahara S, Kajiki M, Kuriyama H, et al. Paclitaxel delivery systems: the use of amino acid linkers in the conjugation of paclitaxl with carboxymethyldextran to create prodrugs. Biological & Pharmaceutical Bulletin, 2002, 5: 632-641
    [58] Boas U, Heegaard P M H. Dendrimers in drug research. Chemical Society Reviews, 2004, 33: 43-63
    [59] De Groot F M H, Albrecht C, Koekkoek R, et al.“Cascade-release dendrimers”liberate all end groups upon a single triggering event in the dendritic core. Angewandte Chemie International Edition, 2003, 42: 4490-4494
    [60]杨珉.纳米技术在临床医学中的应用研究.四川医学, 2005, 26(4): 357-359
    [61]张阳德.纳米生物技术在医学上的研究现状及应用前景.临床外科杂志, 2005, 13(1): 40-41
    [62]肖延龄,李伯.载药纳米微粒的临床应用研究进展.国外医学生物医学工程分册, 2002, 25(4): 174-179
    [63]陈小莺,郭立玮.纳米控释系统及其在中药领域的应用前景.时珍国医国药, 2005, 16(2): 147-148
    [64] Sha J, Kaiming Y. Nanoparitlce-mediated drug delivery and gene therapy. Biotechnology Progress, 2007, 23: 32-41
    [65] Win K Y, Feng S S. In Vitro and in ViVo studies on vitamin ETPGS-emulsified poly(D,L-lactic-co-glycolic acid) nanoparticles for paclitaxel formulation. Biomaterials, 2006, 27: 2285-2291
    [66] Birnbaum D, Kosmala J. Controlled release ofβ-estradiol from PLGA microparticles:the effect of organic phase solvent on encapsulation and release.新型肝素-紫杉醇药物输送系统制备及生物学性能研究Journal of Controlled Release, 2000, 65: 375-377
    [67] Maeda H, Sawa T, Konno T. Mechanism of tumor-targeted delivery of macromolecular drugs, including EPReffect in solid tumor and clinical overview of the prototype polymeric drug SMANCS. Journal of Controlled Release, 2001, 74: 47-61
    [68]陈大兵,吕万良,杨天智,等.紫杉醇表面修饰脂质纳米粒的制备和性质.北京大学学报, 2002, 34(1): 57-60
    [69]景遐斌,张雪飞,陈学思,等.载有紫杉醇的可生物降解高分子纳米微球及制备方法.中国专利. 1561987A, 2005-1-12
    [70] Yan Y L, Xi G C, Cheng S L, et al. Effect of the molecular mass and degree of substitution of oleoylchitosan on the structure, rheological properties, and formation of nanoparticles. Journal of Agricultural and Food Chemistry, 2007, 55: 4842-4847
    [71] Chen-Guang L, Kashappa G H D, Xi-Guang C, et al. Linolenic acid-modified chitosan for formation of self-assembled nanoparticles. Journal of Agricultural and Food Chemistry, 2005, 53: 437-441
    [72]李亚平,阎州,黄君,等.一种抗肿瘤控释组合物及其制备方法.中国专利. 1631362A, 2005-6-29
    [73]原续波,蒲佩玉,康春生,等.拥有胶质瘤靶向化疗的表面含转铁蛋白载药微粒制备方法.中国专利. 1683016A, 2005-10-19
    [74] Nyman D W, Campbell K J, Hersh E, et al. Phase I and pharmacokinetics trial of ABI-007, a novel nanoparticle formulation of paclitaxel in patients with advanced nonohematologic malignancies. Journal of Clinical Oncology, 2005, 23(31): 7785-7793
    [75] Gradishar W J, Tjulandin S, Davidson N, et al. Phase III trial of nanoparticle albumin-bound paclitaxel compared with polyethylated castor oil-based paclitaxle in women with breast cancer. Journal of Clinical Oncology. 2005, 23 (31): 7794-7803
    [76] Hsiang-Fa L, Sung-Ching C, Mei-Chin C, et al. Paclitaxel-loaded poly(γ- glutamic acid)-poly(lactide) nanoparticles as a targeted drug delivery system against cultured HepG2 cells. Bioconjugate Chemistry, 2006, 17: 291-299
    [77] Ki H B, Yuhan L, Tae G P. Oil-encapsulating PEO-PPO-PEO/PEG shell cross-linked nanocapsules for target-specific delivery of paclitaxel. Biomacromolecules, 2007, 8: 650-656
    [78] Hyun J L, Hye Y N, Byung H L, et al. A novel technique for loading of paclitaxel-PLGA nanoparticles onto ePTFE vascular grafts. Biotechnology Progress, 2007, 23: 693-697
    [79] Xintao S, Thomas M, Andreas K S, et al. Core-cross-linked polymeric micelles as paclitaxel carriers. Bioconjugate Chemistry, 2004, 15: 441-448
    [80] Shuliang L, Belinda B, JoEllen W, et al. Self-assembled poly(butadiene)-b- poly(ethylene oxide) polymersomes as paclitaxel carriers. Biotechnology Progress, 2007, 23: 278-285
    [81] Jian Y, Fu-Qiang H, Yong Z D, et al. Polymeric micelles with glycolipid-like structure and multiple hydrophobic domains for mediating molecular target delivery of paclitaxel. Biomacromolecules, 2007, 8: 2450-2456
    [82] Sanjeeb K S, Vinod L. Enhanced antiproliferative activity of transferrin- conjugated paclitaxel-loaded nanoparticles is mediated via sustained intracellular drug retention. Molecular Pharmaceutics, 2005, 5: 373-383
    [83] Yuhan L, Sung Y P, Hyejung M, et al. Synthesis, characterization, antitumor activity of pluronic mimicking copolymer micelles conjugated with doxorubicin via acid-cleavable linkage. Bioconjugate Chemistry, 2008, 19: 525-531
    [84] Litzinger D C, Buiting A M J, Rooijen N, et al. Effect of liposomes size on the circulation time and intraorgan distribution of amphipathic poly (ethylene glycol)-containing liposomes. Biochimica et Biophysica Acta, 1994, 1190: 99-107
    [85] Casu B. Structure and biological activity of heparin. Advances in Carbohydrate Chemistry and Biochemistry, 1985, 43: 51- 58
    [86]张万忠,王云山,马润宇,等.肝素降解和低分子量肝素的制备.中国生化药物杂志, 2001, 22(1): 48-51
    [87] Robert J L. Heparin: structure and activity. Journal of Medicinal Chemistry, 2003, 46(13): 2551-2564
    [88]徐丽琴,尚德静,李庆伟,等.林蛙头多糖抗凝活性的研究.中药新药与临床药理, 2006, 17(2): 110-112
    [89] Maurice P, Jean-Pascal H, Andre B, et al. Synthesis of thrombin-inhibiting heparin mimetics without side effects. Nature, 1999, 398: 417-422
    [90]阳元娥,罗发兴.壳聚糖及其衍生物在医药中的应用.中国医药工业杂志, 2002, 33(8): 408-411
    [91]金艳,崔慧斐,凌沛学,等.电导法测定多硫酸肝素钠中硫酸基含量.药学实践杂志, 2006, 24(4): 205-206
    [92]蒋珍菊.壳聚糖类肝素衍生物的合成及其抗凝血性能研究: [西南石油学院博士学位论文].四川:西南石油学院, 2003
    [93] Sang K K, Bagalkot V, Eunhye L, et al. Oral delivery of chemical conjugates of heparin and deoxycholic acid in aqueous formulation. Thrombosis Research, 2006, 117(4): 419-427
    [94] Hari G G, Charles A H, Lunyin Y, et al. Increase in the growth inhibition of bovine pulmonary artery smooth muscle cells by an O-hexanoyl low-molecular -weight heparin derivative. Carbohydrate Research, 2006, 341(5): 607-2612
    [95] Takehisa M, Tomoko M, Shinya K, et al. Terminally alkylated heparin.2. potent antiproliferative agent for vascular smooth muscle cells. Biomacromolecules, 2001, 2(4): 1178-1183
    [96] France L, Kevin H, Lun L, et al Chemical modifications of heparin that diminish its anticoagulant but preserve its heparanase-inhibitory, angiostatic, anti-tumor and anti-metastatic properties. Glycobiology, 1996, 4: 355-366
    [97] Benito C, Annamaria N. Antiangiogenic heparin-derived heparan sulfate mimics. Pure and Applied Chemistry, 2003, 75:157-166
    [98] Ono K, Ishihara M, Ishikawa K, et al. Periodate-treated, non-anticoagulant heparin-carrying polystyrene(NAC-HCPS) affects angiogenesis and inhibits subcutaneous induced tumour growth and metastasis to the lung. British Journal of Cancer, 2002, 86:1803-1812
    [99] Capila I, Linhardt R J. Heparin-Protein interacton. Angewandte Chemie International Edition, 2002, 41: 390-412
    [100] Casu B, Guerrini M, Guglieri S, et al. Undersulfated and glycol-split heparins endowed with antiangiogenic activity. Journal of Medicinal Chemistry, 2004, 47: 838-848
    [101] Castellot J J, Hoover R L, Harper P A, et al. Heparin and glomerular epithelial cell-secreted heparin-like species inhibit mesangial-cell proliferation. American Journal of Pathology, 1985, 120: 427-435
    [102] Castellot J J, Hoover R L, Karnovsky M J, et al. Dietary cholesterol-induced changes in macrophage characteristics. Relationship to atherosclerosis. American Journal of Pathology, 1986, 125: 284-291
    [103] Floege J, Eng E, Young B A, et al. Cellular events in the evolution of experimental diabetic nephropathy. Kidney International, 1993, 47(3): 935-944
    [104] Rix D A, Douglas M S, Talbot D, et al. Examination of the mechanism by which heparin antagonizes activation of a model endothelium by interferon-gamma.Clinical and Experimental Immunology, 1996, 104: 60-65
    [105] Sadir R, Forest E, Hugues L-J. The Heparan sulfate binding sequence of interferon-γincreased the on rate of the interferon-γ-interferon-γreceptor. Journal of Biological Chemistry, 1998, 273: 10919-10925
    [106] Fath M A ,Wu X, Hileman R E, et al. Interaction of secretory leukocyte protease inhibitor with heparin inhibits proteases involved in asthma. Journal of Biological Chemistry, 1998, 273: 13563- 13569
    [107] Ermolieff J, Duranton J, Petitou M, et al. Heparin accelerates the inhibition of cathepsin G by mucus proteinase inhibitor: potent effect of O-butyrylated heparin. Biochemical Journal, 1998, 330: 1369-1374
    [108]高宁国,程秀兰,杨敬,等.肝素结构与功能的研究进展.生物工程进展, 1999, 19(5): 4-13
    [109]张天民,王凤山,凌沛学.低分子肝素研究进展.中国生化药物杂志, 1998, 19(4): 72-76
    [110]李晓祥.低分子量肝素及其临床应用.国外医药, 1994, 15(3): 83-86
    [111] Kevin R H, Arthur S P. Chitosan N-sulfate. A water-soluble polyelectrolyte. Carbohydrate Research, 1997, 302: 7-12
    [112] Hanno B, Volker F. Concepts for improved regioselective placement of O-sulfo, N-sulfo, N-acetyl, and N-carboxymethyl groups in chitosan derivatives. Carbohydrate Research, 2001, 331: 41-57
    [113]郑化,杜予民,余家会,等. N-酰基壳聚糖的制备及取代度控制的研究.武汉大学学报, 2000, 46(6): 685-688
    [114]赵峡,吕志华,徐家敏.几种O-羧甲基壳聚糖硫酸酯的制备.中国海洋药物, 2003, 1: 13-16
    [115]张迎庆,干信,邹群,等.魔芋普甘低聚糖硫酸酯化衍生物的制备及结构分析.药物生物技术, 2001, 8(4): 200-203
    [116] Ricardo L, Jesus A, Pedro M, et al. Synthesis and structural study of two new heparin-like hexasaccharides. Organic & Biomolecular Chemistry, 2003, 1: 2253-2266
    [117] Kyoung S J, Hyung D P, Ki D P, et al. Heparin conjugated polyactide as a blood compatible material. Biomacromolecules, 2004, 5(5): 1877-1881
    [118]王兆梅,李琳,郭祀远,等.β-1,4-葡聚糖硫酸酯的制备及其抗凝血活性.林产化学与工业, 2006, 26(4): 1-5
    [119]王兆梅,李琳,胡松青,等.纤维素硫酸钠的取代度与抗凝活性的关系.华南理工大学学报(自然科学版), 2004, 32(10): 80-84
    [120]蒋珍菊,王周玉,胡星琪.硫酸/氯磺酸混酸酯化壳聚糖的研究.化学研究与应用, 2005, 17(3): 347-349
    [121] Yong-kyu L, Hyun T M, Youngro B. Preparation of slightly hydrophobic heparin derivatives which can be used for solvent casting in polymeric formation. Thrombosis Research, 1998, 92: 149-156
    [122] Kyengsoon P, Kwangmeyung K, Ick C K, et al. Preparation and characterization of self-assembled nanoparticles of heparin-deoxycholic acid conjugates. Langmuir, 2004, 20: 11726-11731
    [123] Tereza B, Michel L, Maurice P, et al. Preparation and anti-HIV activity of O-acylated heparin and dermatan sulfate derivatives with low anticoagulant effect. Journal of Medicinal Chemistry, 1993, 36: 3546-3555
    [124] Peniche C, Arguelles-Monal W, Davidenko N, et al. Self-curing membranes of chitosan/PAA IPNs obtained by radical polymerization: preparation, characterization and interpolymer complexation, Biomaterials, 1999, 20, 1869-1871
    [125] Maurice P, Philippe D, Guy J, et al. Synthesis and pharmacological properties of a close analogue of an antithrombotic pentasaccharide (SR 90107A/ORG 31540). Journal of Medicinal Chemistry, 1997, 40(11): 1600-1607
    [126] Richard B G, Hong Z, Prasanna R. Synthesis, isolation, and characterization of 2’-paclitaxel glycinate: an application of the bsmoc protecting group. Jounarl of Oragnic Chemistry, 2003, 68: 4894-4896
    [127] Andrea G, Mirta C, Piero O, et al. Synthesis, characterization, and preliminary in vivo tests of new poly(ethylene glycol) conjugates of the antitumor agent 10-amino-7-ethylcamptothecin. Journal of Medicinal Chemistry, 2004, 47: 1280-1289
    [128] Chun L, Sidney W, Dong-Feng Y, et al. Water soluble paclitaxel prodrugs. United State Patent. 5977163, 1999-11-2
    [129] Michele M, Roger B, Andre T. Amino acid and dipeptide derivatives of daunorubicin. 1. Synthesis, physicochemical properties, and lysosomal digestion. Journal of Medicinal Chemistry, 1980, 23: 1166-1170
    [130] Yasuo Y, Hayao N, Yuri K, et al. Inhibition of experimental lung metastases of Lewis lung carcinoma cells by chemically modified heparin with reduced anticoagulant activity. Cancer Letters, 2004, 207: 165-174
    [131]司徒镇强,吴正军.细胞培养.第3版.西安:世界图书出版西安公司, 2000,
    [132]鄂征.组织培养技术.第2版.北京:人民卫生出版社, 1993, 107-178
    [133] Carmichael J, De Graf W C, Gazdar A F, et al. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of Chemosensitivity. Testing Cancer Research, 1984, 47: 936- 942
    [134]韩锐.肿瘤化学预防及药物治疗.第1版.北京:北京医科大学中国协和医科大学联合出版社, 1991, 16-22
    [135]张志斌,付晓光.紫杉醇对人胰腺癌细胞株BxPC-3增殖抑制作用的研究.中华肿瘤防治杂志, 2007, 4(22): 1694-1697
    [136]李莉,董频,万夷,等.人喉癌紫杉醇耐药细胞株的建立及其生物学特性.临床耳鼻咽喉头颈外科杂志, 2007, 21(18): 843-847
    [137]周晓燕,许良中,何开玲,等.紫杉醇诱导Jurkat细胞凋亡及其机制探讨.中华血液学杂志, 2000, 21(6): 298-300
    [138]林宜先,江曼,刘铭球,等.紫杉醇对Lewis肺癌抑制作用及其机理的研究.中国肺癌杂志, 2000, 3(3):205-207
    [139] Xiaoyuan C, Carmen P, Yingping H, et al. Synthesis and Biological Evaluation of Dimeric RGD Peptide-Paclitaxel Conjugate as a Model for Integrin-Targeted Drug Delivery. Journal of Medicinal Chemistry, 2005, 48: 1098-1106
    [140]韩锐.抗癌药物研究与实验技术.第1版.北京:北京医科大学中国协和医科大学联合出版社, 1997
    [141]董朝霞,林梅钦,李明远,等.光散射技术在研究高分子溶液和凝胶方面的应用.高分子通报, 2001, 5: 25-32
    [142]董学仁,岳云龙,王少青,等.纳米微粒尺寸测量方法的研究.硅酸盐通报, 2001, (5): 59-62
    [143]郑刚,申晋,孙国强,等.对动态光散射颗粒测量技术中几个问题的讨论.上海理工大学学报, 2002, 24(4): 313-318
    [144]郑刚,申晋.用动态光散射法测量纳米、亚微米颗粒研究的新进展.山东工程学院学报, 2002, 16(4): 49-54

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700