用户名: 密码: 验证码:
准噶尔盆地准东—乌伦古地区石炭系烃源岩综合研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
准东-乌伦古地区位于准噶尔盆地东北部,前人已在这一地区开展了20多年的勘探工作,在准东地区发现了可观的石油地质储量。然而从勘探程度来看,准东-乌伦古的广大地区,基本还处于区域勘探阶段。由于该区复杂的石油地质特征及可获得烃源岩样品的限制,准东-乌伦古地区油气地球化学研究非常薄弱,严重制约了对这一地区的总体评价及勘探决策。
     本文利用Rock-eval、干酪根镜鉴等技术对研究区石炭系烃源岩的有机质丰度、类型、热演化程度进行分析和评价,并通过饱和烃气相色谱、色谱-质谱分析技术讨论了烃源岩的沉积环境和有机质来源,同时结合烃源岩沉积相分析,确定了研究区石炭系烃源岩的生烃特征、生烃潜力、空间展布等特点,主要认识如下:
     准噶尔地区在石炭纪时的古构造环境十分复杂,此时中亚-蒙古地槽正趋于削闭时期,褶皱运动十分频繁,火山活动亦较多。地块区周围在形成一系列褶皱山系的同时,形成了众多的小型山间坳陷与断陷。海水在逐渐缩退时,由于山系的不断上升,一些地区形成了面积不大的封闭性陆间海、残留海湾或泻湖,这时隆起区转为剥蚀区,低凹区开始接受沉积,形成了该区在石炭纪时主要为海相沉积伴随海相火山岩,同时亦有海陆过渡相及陆相沉积。下石炭统为一套碎屑岩-火山岩建造,以海相为主,局部见陆相,厚度变化大,1000-3000m,为准东的主要组成部分。
     早石炭世早期,克拉美丽洋壳持续向北俯冲,于阿尔曼太缝合带南侧形成一些水下岛弧,乌伦古坳陷与五彩湾处于这些水下岛弧的两侧,属于滨-浅海相、海陆过渡相环境。早石炭世晚期,克拉美丽洋盆晚期闭合,早石炭世晚期至晚石炭世陆间残余海盆堆积物不整合覆盖于蛇绿岩之上,约300Ma的石炭纪晚期花岗质岩基侵入,下石炭统山梁砾石组(C1sl)厚达1600m的砾石沉积在克拉美丽蛇绿岩带南侧被动陆缘沉积岩系之上,形成克拉美丽缝合带,其北侧乌伦古坳陷发育滨海相沉积。从沉积演化特征来看,在早石炭世,乌伦古地区可能沉积滨-浅海相碎屑岩。
     通过有机地球化学分析方法,得知姜巴斯套组样品主要为一般-很好的烃源岩,塔木岗组泥岩样品为较好的烃源岩,巴塔玛依内山组基本以火成岩为主,为差-一般烃源岩。姜巴斯套组和巴塔玛依内山组烃源岩干酪根类型基本上为Ⅲ1-Ⅲ2型,仅个别为Ⅱ1型,塔木岗组烃源岩类型为Ⅱ2-Ⅲ2型。该区石炭系已经进入了成熟-高成熟阶段,姜巴斯套组的部分烃源岩已达到过成熟阶段。
     准东-乌伦古地区石炭系岩心有机地球化学特征研究表明,塔木岗组烃源岩的有机质已经成熟,但还没有达到高成熟度阶段。在滴水泉剖面自下而上,烃源岩沉积环境还原性增强,有机质输入为浮游生物或底栖藻类与陆源有机质。泉1井巴塔玛依内山组泥岩CPI介于1.47-1.94,OEP介于0.91~1.66,泉2井CPI介于1.5~1.59,OEP介于1.44-1.48。依据生物标志物成熟度判断,烃源岩应处于低成熟-成熟阶段。泉1井和泉2井的烃源岩姥植比均大于2,Pr/nC17=0.77-1.0。因此,认为有机质形成的古环境应该为海陆过渡相偏氧化性环境。
     油源对比结果表明,滴北1井和伦5井的油气与石炭系烃源岩亲缘。而构造演化分析认为三叠纪末期索索泉凹陷与五彩湾凹陷分异,陆梁隆起已有雏形,五彩湾凹陷的油气成藏期主要为燕山期,大量的油气不可能越过陆梁隆起倒灌入乌伦古坳陷,因此滴北1井的油气不可能来自五彩湾凹陷。近南北方向构造演化表明,三叠纪以后红岩断阶已经处于隆起高部位,因此,伦5井油砂也不应来自北边。而乌伦古坳陷在演化过程中所经历的多期构造运动,为油气的运移提供了理想的场所,三叠纪晚期-侏罗纪早期滴北1井区所发育的河流和三角洲过渡相砂体也能形成油气运移的良好储集层。因此综合以上分析认为滴北1井的油气与伦5井的油砂应该来自乌伦古坳陷。
     彩27井、彩201井石炭系原油的生物标志物地球化学特征与彩深1井石炭系塔木岗组泥岩相似度较高,分析认为彩27井、彩201井原油应主要来源于塔木岗组烃源岩。石炭系巴塔玛依内山组储集层覆盖于塔木岗组烃源岩之上,烃源岩生成的油气在地温增加及烃类生成等引起的热膨胀产生的压力差下,直接向石炭系内部储集层运移,在具有裂缝和溶蚀孔隙的巴塔玛依内山组形成自生自储型的成藏模式。
Zhundong and Wulungu location in the northeastern Junggar basin, in which predecessors had been carried out over 20 years of exploration work. In Zhundong location we had found a considerable geological oil reserves. However, from the exploration of the extent that the vast areas of the Zhundong and Wulungu is still in the regional exploration stage. As the complex geological features and the restrictions on availability of hydrocarbon source rocks in this area, oil and gas geochemistry is very weak, which severely restricted to the region's overall evaluation and exploration decision.
     In this paper, we have a lot of organizing and collecting information on previous studies, including the spread of hydrocarbon source rocks, geochemical analysis information, logging information and so on. At the same time we use the geochemical analytical techniques to analyse and evaluate the organic matter abundance, type and degree of thermal evolution of the Carboniferous source rocks in the study area, and then discussing the sedimentary environments and organic matter source of the hydrocarbon source rocks with the gas chromatography of saturated hydrocarbons, chromatography-mass spectrometry analysis. Combined with the analysis of the sedimentary facies in the source rocks, identified the Carboniferous hydrocarbon source rock characteristics, hydrocarbon potential, spatial distribution and other characteristics in the study area. The main conclusions obtained in this thesis are as follows:
     During Carboniferous the ancient tectonic environment of the Junggar basion is complex. It is a time when Central Asia-Mongolia slot tends to cut close. Fold movement and volcanic activity are very frequent. A series of fold mountain and numerous of small mountain depression and fault formed around the block area. Due to the rising mountain ranges the small closed area between the land and sea, bay or lagoon residual formed in some areas. Then uplift to erosion areas, low-lying areas begin to accept deposits. Junggar basin, dominated by marine deposits in the Carboniferous. There are also marine-terrigenous facies, and continental sedimentary. The Zhundong area deposited a set of a Lower Carboniferous clastic rocks-volcanic construction, to marine-based, some areas develop the continental facies, and thickness has changed dramatically, about 1000-3000m.
     Early Carboniferous, the oceanic crust of Kelameili continued northward subduction and formed some underwater island arc in the south side of th Arman suture zone. Wulungu depression and Wucaiwan on both sides of these island arcs. Late Carboniferous, Kelameili ocean basin closed, the early Carboniferous to Late Carboniferous deposits between the residual basin unconformably covered on the ophiolite, about 300Ma in the late Carboniferous granitic batholith intrusion, the gravel thick to 1600m of the Shanlianglishi group (C1sl) deposits in the south of the ophiolite belt and formed the Kelameili suture. In the north the Wulungu depression developed coastal sediments. From the point of view of the sedimentary evolution of features, the Wulungu region could be deposited shallow-bathyal sea clasitic rocks in the early Carboniferous.
     Through organic geochemical analysis, we know that most of the Carboniferous shale samples in the Zhundong and Wulungu are effective hydrocarbon source rocks. Among all of them, the mudstone of the Jiangbasitao mostly are general or well source rocks, and the shale samples of the Tamugang are good hydrocarbon source rocks. By drilling strata we know that the mudstone of the Batamayineishan is mainly volcanic rock which are poor-general hydrocarbon source rocks. The kerogen type of source rocks in Jiangbasitao and Batamayineishan groups are generallyⅢ1-Ⅲ2, only individual to typeⅡ1. The kerogen type of source rocks in Tamugang group areⅡ2-Ⅲ2 .The maturity of organic matter has entered the mature to the high mature stage. While part of the hydrocarbon source rock samples of the Jiangbasitao has reached over-mature stage.
     According to the geochemical characteristics of soluble organic matter of core samples from the Carboniferous source rocks in the Zhundong and Wulungu location, it is concluded that the organic matter of the Tamugang source rocks is mature, but has not reached a high stage of maturity. In the Dishuiquan profile bottom-up, the reduction of the source rock depositional environment enhanced. Section samples of the Carboniferous were formed under oxidizing environment and the lithofacies palaeogeography is marine-continental transitional facies. Organic matter was derived from hydrobiont such as algae and plankton or terrigenous. The CPI of the Batamayineishan group mudstone in Q1 well ranged from 1.47 to 1.94 range, OEP is between 0.91 and 1.66. The CPI of Q2 well is between 1.5 and 1.59, OEP is between 1.44 and 1.48. Based on biomarkers to judge the maturity of source rocks should be in the low maturity to maturity. Pr/Ph of the source rocks in Q1 and Q2 wells are more than 2, Pr/nC17= 0.77~1.0.
     Oil-source correlation results showed that oil and gas of the well L5 and well D1 kinship with the Carboniferous source rocks. The tectonic evolution analysis showed that the Suosuoquan Depression and Wucaiwan Depression differentiation in the Triassic, Luliang Uplift has been taking shape. The oil and gas accumulation of Wucaiwan Depression is mainly Yanshan period. A large number of oil and gas can not flow backward across the Luliang Uplift to Wulungu depression, so the oil and gas of D1 well could not come from Wucaiwan depression. Tectonic evolution of north-south direction shows that after the Triassic the Hongyan area had been already in the uplift, therefore, the oil sands of Lun5 wells should not be from the north. While the Wulungu depression experienced in the evolution of multi-stage tectonic movements, as the oil and gas migration provides the ideal venue for tectonic evolution analysis showed that oil and gas of the well L5 and oil sands of the well D1 indicate that it should have come from Wulungu depression.
     The biomarker geochemistry of Carboniferous oil in C27 well and C201 well have a certain similarity with the Carboniferous mudstone of C1 well that the crude oil of C27 and C201 wells mainly from Carboniferous source rocks.The reservoir of Batamayineishan group was covered above the source rocks of Tamugang group, under the pressure difference oil and gas generated in the source rocks are directly migrate to the internal reservoirs of Carboniferous and formed a self storage in the reservoir model in Batamayineishan group with cracks and corrosion in the pores.
引文
[1]蔡士赐.新疆岩石地层[M].地质出版社,1999:77-78
    [2]蔡忠贤,陈发景,贾振远.准噶尔盆地的类型和构造演化[J].地学前缘(中国地质大学,北京),2000,7(4):431-440
    [3]程克明,王铁冠,钟宁宁.烃源岩地球化学[M].北京:科学出版社,1995:41-42
    [4]陈建平.酒东盆地油气生成运移和聚集[M].北京:石油工业出版社,1996:58-62
    [5]陈建平,赵长毅,何忠华.煤系有机质生烃潜力评价标准探讨[J].石油勘探与开发,1997,24(1):1-5
    [6]陈刚.准噶尔盆地北缘山前带构造演化与油气成藏[R].西安:西北大学,2008
    [7]戴卿林,孙永革,盛国英,等.辽河外围盆地中生界烃源岩热模拟实验与生烃评价[A].冯志强,冯子辉.石油地质实验技术论文集[C].北京:石油工业出版社,1997:194-198
    [8]范光华,杨斌,支家生,等.准噶尔盆地生油岩评价和油源对比[R].克拉玛依:新疆石油管理局勘探开发研究院,1984
    [9]国建英,李志明.准噶尔盆地石炭系烃源岩特征及气源分析[J].石油实验地质,2009,31(3):275-281
    [10]新疆维吾尔自治区地质矿产局.新疆维吾尔自治区岩石地层[M].武汉:中国地质大学除报社,1999:270-281
    [11]郝石生.碳酸盐岩生油岩热演化模拟实验[J].石油学报,1987,(4):26-35
    [12]黄第藩,张大江,李晋超,等.中国吐鲁番盆地侏罗系煤系中烃类的生成[A].第四届全国有机地球化学会议论文集[C].武汉:中国地质大学出版社,1990:1-17
    [13]黄第藩,李晋超.中国陆相油气生成[M].北京:石油工业出版社,1982:77-90
    [14]黄第藩,秦匡宗,王铁冠,等.煤成油的形成和成烃机理[M].北京:石油工业出版社,1995:15-18
    [15]霍立秋,付丽,徐永承.松辽盆地显微组分热模拟生烃研究[J].大庆石油地质与开发,2002,20(6):17-19
    [16]胡瑛,张枝焕,李伟,等.黄骅坳陷滩海三马地区烃源岩分子标志及其沉积相指示意义[J].沉积学报,2006,24(3):419-425
    [17]胡平,石新璞,解宏伟.准东白家海-五彩湾地区成藏动力学系统[J].新疆石油地质,2002,23(4):302-305
    [17]靳军,张朝军,刘洛夫,等.准噶尔盆地石炭系构造沉积环境与生烃潜力[J].新疆石油地质,2009,30(2):211-214
    [18]蒋助生,范光华.风成城地区石炭系生油岩研究[J].新疆石油地质,1983,3:74-91
    [19]孔祥星,徐兴友,朱日房,等.准噶尔盆地准东-乌伦古地区烃源岩研究[R].新疆:中石化西部勘探指挥部,2003
    [20]柳益群.准噶尔区块构造-岩相古地理研究与编图[R].西安:西北大学,2006
    [21]李锦轶,肖序常,汤耀庆,等.新疆东准噶尔卡拉麦里地区晚古生代板块构造的基本特征[J].地质论评,1990,36(4):305-316
    [22]李锦轶.试论新疆东准噶尔早古生代岩石圈板块构造演化[J].中国地质科学院院报,1991,23:1-12
    [23]李锦轶.新疆东准噶尔蛇绿岩的基本特征和侵位历史[J].岩石学报,1995,11(增刊):73-84
    [24]李锦轶.新疆东部新元古代晚期至古生代的构造格局与构造演化[J].地质论评,2004,50(3):304-322
    [25]李亚萍,李锦轶,孙桂华,等.准噶尔盆地基底的探讨:来自原泥盆纪卡拉麦里组砂岩碎屑锆石的证据[J].岩石学报,2001,23(7):59-63
    [26]李剑.中国重点含气盆地气源特征与资源丰度[M].徐州:中国矿业大学出版社,2000:86-95
    [27]李天德,秦典燮.区域地质调查报告-红柳峡幅[R].新疆:新疆地质局,1977
    [28]孟繁有,帕尔哈提.准噶尔盆地石炭系成气潜力评价[J].新疆石油学院学报,1999,11(2):1-6
    [29]卢双舫,张敏.油气地球化学[M].北京:石油工业出版社,2008:213-214
    [30]马瑞士,舒良树,孙家齐.东天山构造演化与成矿[M].北京:地质出版社,1997,1-202
    [31]彭希龄.准噶尔盆地早古生代陆壳存在的依据[J].新疆石油地质,1994,15(4):289-297
    [32]潘钟祥.石油地质学[M].北京:石油工业出版社,1986:27
    [33]秦建中,贾蓉芬,郭爱明,等.华北地区煤系烃源岩层油气生成、运移、评价[M].北京:科学出版社,2000:5-87
    [34]任新成.准噶尔盆地乌伦古坳陷中生代构造单元划分[J].油气地球物理,2008,6(4):38-41
    [35]石昕,王绪龙,张霞,等.准噶尔盆地石炭系烃源岩分布及地球化学特征[J].中国石油勘探,2005,10(1):34-39
    [36]舒良树,卢华复,印栋豪,等.新疆北部古生代大陆增生构造[J].新疆地质,2001,19(1):59-63
    [37]舒良树,卢华复,印栋豪,等.中、南天山古生代增生-碰撞事件和变形运动学研究[J].南京大学学报(自然科学),2003,39(1):1577-1590
    [38]王绪龙.准噶尔盆地石炭系的生油问题[J].天然气地球科学,1996,17(3):230-233
    [39]王屿涛.乌伦古地区伦2、伦3井生油岩评价和油源对比[J].新疆石油地质,1987,8(1):29-34
    [40]王屿涛.乌伦古坳陷未成熟原油的地球化学特征及成因探讨[J].地球化学,1994,23(2):179-188
    [41]王铁冠.油藏地球化学[M].北京:石油工业出版社,1997:35
    [42]吴庆福.准噶尔盆地发育阶段、构造单元划分及局部构造成因概论[J].新疆石油地质,1986,7(1):1-12
    [43]吴庆福.哈萨克斯坦板块准噶尔板片演化探讨[J].新疆石油地质,1985:11-12
    [44]吴乃元.石炭系,新疆古生界(新疆地层总结之二)(下)[M].乌鲁木齐:新疆人民出版社,1991:32
    [45]吴晓智,齐雪峰,唐勇,等.新疆北部石炭纪地层、岩相古地理与烃源岩[J].现代地质,2008,22(4):549-557
    [46]新疆维吾尔自治区区域地层表编写组.西北地区区域地层表-新疆维吾尔自治区分册[M].北京:地质出版社,1985:27
    [47]徐兴友,朱日房,王岫岩,等.准噶尔盆地准东滴水泉组烃源岩生烃物理模拟研究[J].大庆石油地质与开发,2003,22(4):9-11
    [48]徐兴友.准噶尔盆地东部克拉美丽地区石炭系烃源岩研究[J].油气地质与采收率,2005,12(1):38-41
    [49]杨斌,李建新.准噶尔盆地东部油区石炭系原油探讨[J].新疆石油地质,1992,13(2):171-178
    [50]杨海波,陈磊,孔玉华,等.准噶尔盆地构造单元划分新方案[J].新疆石油地质,2004,25(6):686-688
    [51]朱日房.准噶尔盆地乌伦古坳陷东部南斜坡油气来源分析[J].天然气地球科学,2009,20(3):400-404
    [52]赵白.石炭、二叠系是准噶尔盆地的主要油源岩[J].新疆石油地质,1994,15(1),10-15
    [53]张恺.新疆三大盆地边缘古推覆体的形成演化与油气远景[J].新疆石油地质,1989,10(1):7-15
    [54]张恺.新疆三大盆地边缘古推覆体的形成演化与油气远景[J].新疆石油地质,1989,10(1):7-15
    [55]张文正,徐正求.低阶煤热演化生烃模拟实验研究[J].天然气工业,1986,(2):1-7
    [56]张林晔,张守春,黄开全,等.半咸水湖相未熟油成因机理模拟实验研究[J].科学通报,1999,44(4):361-368
    [57]张朝军,石昕,吴晓智,等.准噶尔盆地石炭系油气富集条件及有利勘探领域预测[J].石油地质,2005(1):11-16
    [58]张义杰,齐雪峰,程显胜,等.准噶尔盆地晚石炭世和二叠纪沉积环境[J].新疆石油地质,2007,28(6):673-675
    [59]周光甲,陈致林,李经荣等.成油藻对油气生成的贡献研究[A].第四届全国有机地球化学会议论文集[C].武汉:中国地质大学出版社,1990:25-37
    [60]Allen MB, Windley BF and Zhang C. Paleozoic collisional tectonics and magmatism of the Chinese Tien Shan, central Asia[J]. Tectonophysics,1993,220:89-115
    [61]Allen MB, Sengor AMC and Natal'in BA. Junggar, Turfan, and Alakil basins as Late Permian sinistral pull-apart structures in the Altaid orogenis collage, central Asia[J]. Journal of the Geological Society, London,1995,152:327-338
    [62]Allen MB, Alsop GI and Zhemchuzhnikov VG. Dome and basin refolding and transpressive inversion along the Karatau fault system, southern Kazastan[J]. Journal of the Geological Society, London, 2001,158:83-95
    [63]Laurent CS, Charvet J, Shu LS, Ma RS and Lu HF. Palaeozoic Late collisional strike-slip deformations in Tianshan and Altay, Eastern Xinjiang, NW China[J]. Terra Nova,2002,14(4):249-256
    [64]Laurent CS, Moni P, Charvet J, Shu LS, and Ma RS. Late-Paleozoic strike-slip shear zones in northeastern Xinjiang (NW China):new structural and geochronological data[J]. Tectonics,2003, 22(2):1099-1101
    [65]Moldowan J M, Seifert W K, Gallegos E J. Relationship between petroleum composition and depositional environment of petroleum source rocks[J]. American Association of Petroleum Geologists Bulletion,1985,69:1255-1268.
    [66]Rohrback B G, Peters K E, Kaplan I R, Geochemisty of artificially beaded Humic and Sapropelic Sediments-Ⅱ, oil and gas generation[J]. AAPG Bulletin,1984,68(8):961-970
    [65]Rullkotter J, Marizi R. Natural and Maturation of biological markers in a Toarcian shale from northern Germany[J]. Organic Geochemistry,1988,13:639-645
    [67]Saxby J D, Riley K W. Petroleum generation by laboratory scale pyrolysia over six year simulating conditions in a subsiding basin[M].Nature,1984, (308):5955-5956
    [68]Windley BF, Allen MB, Zhang C, Zhao ZY and Wang GR. Paleozoic accretion and Cenozoic redeformation of the Chinese Tienshan range, Central Asia[J]. Geology, 1990,18:128-131.
    [69]Zhang Dajiang, Li Jinchao.1988. Biodegraded sequence of Karamayoils and semi-quantitative estimation of their biodegraded degree in Jungger Basin, China[J]. Organic Geochemistry,13(2):295-302

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700