用户名: 密码: 验证码:
重金属和草甘膦复合污染生态毒理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
摘要:过去大多数复合污染的研究集中在重金属元素之间,而由于重金属与有机物的性质差异显著,对于重金属-有机污染物之间的复合污染研究相对较少,但重金属-有机污染物的复合污染形式却非常普遍地存在在环境中。除草剂草甘膦,在农业土壤上大量使用,可能对土壤生物造成危害,而环境中草甘膦存在的地方往往重金属含量也很高,如含铜杀菌剂,含镉磷肥,含铜镉的污水灌溉等与除草剂草甘膦在果园、农田等土壤中使用,为两者的共存及复合污染提供了可能,他们的共存可会改变土壤中重金属的环境化学行为和毒性。因为草甘膦中含有羧基、氨基、磷酸基等配位基团对重金属阳离子和有机阳离子有很强的络合能力,能影响重金属的生物有效性、毒性以及重金属在生物体内的积累。本文以除草剂草甘膦(GPS)和重金属铜(Cu)、镉(Cd)为典型的有机物和重金属污染物,对草甘膦与Cu、Cd复合污染生态毒理学生物标记物的筛选和定量表征进行了重点深入的研究,以期为有机物和重金属污染物的研究与诊治提供科学依据,主要研究结果如下:
     (1)在环境污染物的毒性评价和监测中,发光细菌法是一种具有快速、灵敏和廉价等优点的直接生物测试方法。有毒物质会影响发光菌的呼吸作用、电子传输系统、ATP产生、蛋白质或脂类合成,从而改变发光强度。以明亮发光杆菌T3小种(Photobacteriumphosphorem T3)为例,采用室内模拟实验,研究了Cu、Cd、草甘膦(原药)对发光菌单一,及草甘膦与Cu、Cd的复合的急性毒性效应。实验结果表明,Cu、Cd对发光菌都有很强的毒性,而没有调节pH的草甘膦具有很强的酸性,能够降低溶液pH,对发光菌有很强的毒性。而调节pH后的草甘膦对发光菌无明显毒性,并且能够显著降低重金属Cu、Cd对发光菌的抑制,特别是与Cu复合,随着GPS/Cu摩尔比值的增大而毒性降低,甚至对发光菌无明显抑制。因此本研究认为,在草甘膦和重金属共存的环境中,草甘膦能够降低重金属对发光菌的毒性。
     (2)采用模拟土壤溶液的方法,研究了Cu、草甘膦(原药)对赤子爱胜蚯蚓(Eisenia fetida)单一,及草甘膦与Cu的复合的48h急性毒性效应。对蚯蚓的死亡、Cu的吸收,和一些生物标记物如超氧化物歧化酶(SOD)活性、谷胱甘肽含量(GSH)、乙酰胆碱酯酶(AchE)活性进行了测定。蚯蚓的死亡率和体内Cu含量随着溶液中Cu浓度的增加而显著增加,Cu产生毒性的原因主要是自由态的Cu~(2+),然而本研究没有发现草甘膦对蚯蚓产生显著毒性,有意思的是由于草甘膦的存在,溶液中自由态的Cu~(2+)几乎全部与草甘膦发生络合,显著的降低Cu对蚯蚓的急性毒性,即Cu浓度一定,草甘膦存在的情况下,蚯蚓的死亡率显著降低,体内甚至不再富集Cu。除此之外,蚯蚓的SOD酶活性、GSH含量、AchE酶活性几乎恢复到正常水平。实验结果表明草甘膦能够降低重金属Cu对蚯蚓的急性毒性。
     (3)采用OECD人工土壤培养方法,研究了Cu和草甘膦以及两者复合对蚯蚓的亚急性毒性效应,将蚯蚓暴露在人工土壤中28d,测定了蚯蚓的体重损失率、产茧量、Cu的吸收动力学、Cu富集量以及一些生物标记物如超氧化物歧化酶(SOD)、过氧化氢酶和丙二醛(MDA)。实验结果表明暴露在Cu处理的土壤中,随着Cu浓度的增加,蚯蚓的体重损失增加以及体内金属含量显著增加,随着时间的增加蚯蚓对Cu的吸收达到平衡,不同的是草甘膦对蚯蚓毒性很低,甚至无明显毒害。有趣的是他们复合之后对蚯蚓的毒性显著降低,即Cu一定时,草甘膦的存在蚯蚓体重损失显著降低、产茧量增加、对Cu的富集减少。除此之外Cu所引起的蚯蚓SOD、CAT、MDA的异常都一定程度上缓解。本实验结果表明暴露28天后Cu对蚯蚓产生了很强的毒性,而草甘膦毒性较弱,两者复合后毒性降低表现为颉颃作用。
     (4)采用模拟土壤溶液的方法,研究草甘膦存在,Cd对赤子爱胜蚯蚓(Eisenia fetida)的48h急性毒性效应。对蚯蚓的死亡、Cd的吸收和生物标记物如超氧化物歧化酶(SOD)活性、过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)活性进行了测定。蚯蚓的死亡率和体内Cd含量随着溶液中Cd浓度的增加而显著增加,有意思的是草甘膦的存在能够显著的降低Cd对蚯蚓的急性毒性,即Cd浓度一定,草甘膦存在的情况下,随着GPS/Cd摩尔比值的增加蚯蚓的死亡率降低,体内富集Cd量降低。对Cd的亚细胞测定发现Cd主要分布在E(细胞残渣)、H(热稳定组分)、G(热变性组分),而D(细胞器)和F(微粒体含量)很少。草甘膦的添加在各个组分中都一定程度上有所降低,特别是E(细胞残渣)。暴露在Cd处理中引起了蚯蚓的抗氧化酶应激,但草甘膦的存在蚯蚓的SOD酶活性、CAT酶、GSH-Px酶活性显著降低但与对照相比仍然差异显著。实验结果表明草甘膦能够降低重金属Cd对蚯蚓的急性毒性。
     (5)采用OECD人工土壤培养方法,研究草甘膦存在,Cd对赤子爱胜蚯蚓(Eisenia fetida)的亚急性毒性效应,将蚯蚓暴露在人工土壤中28d,测定了蚯蚓的体重损失率、产茧量、Cd的吸收动力学、Cd富集量、丙二醛(MDA)含量的变化。实验结果表明Cd处理的土壤中,整个实验过程随着时间的增加蚯蚓对Cd的吸收一直增加未达到平衡,28d后,随着Cd浓度的增加,蚯蚓的体重损失增加、产茧量显著降低、以及体内金属含量显著增加,且引起了蚯蚓的脂质过氧化。当Cd一定,草甘膦的存在蚯蚓体重损失显著降低、产茧量增加、对Cd的富集减少。除此之外Cd所引起的蚯蚓脂质过氧化都一定程度上缓解。本实验结果表明暴露28天后Cd对蚯蚓产生了很强的亚急性毒性,而与草甘膦复合后毒性降低表现为颉颃作用。
Herbicide glyphosate (GPS) is widely used in the environments, including farmland andorchard, where heavy metals are very often found in elevated levels. Co-existence of metal andGPS could result in combined pollution of soil environment. Furthermore, GPS affects metalbehaviors in water and soil systems because its functional groups such as amine, carboxylate andphosphonate react with metal ions to form metal complexes.
     (1) A laboratory experiment was therefore conducted to investigate the interactions of GPSand Cu or Cd with respect to acute toxicity to Photobacterium phosphorem T3. Photobacteriumwere exposed to the solution containing different concentration Cu or Cd and GPS. Then theEC50(Median Effective Concentrations) of GPS and Cu or Cd were measured based on linearregression analysis. To study the combined effects, photobacterium were exposed to the solutionscontaining different concentrations of Cu or Cd at the different GPS concentrations, the inhibitionof photobacterium was calculated. Results showed that the toxicity of Cu or Cd tophotobacterium was much higher. The GPS (technical-grade glyphosate acid), unadjusted pH,possessed much higher toxicity. Because GPS is a Lewis acid, the adding of this acid decreasedthe pH of the test media obviously. Nevertheless, toxicity of GPS (pH adjusted) was not observedin this study. Additionally, the presence of GPS could significantly reduce the acute toxicity ofCu or Cd to photobacterium. Particularly, the inhibition to photobacterium decreasedsignificantly wih the increase molar ratio value of GPS/Cu. Based on the observations of thepresent study, it can be concluded that that Cu or Cd exhibited acute toxicities on photobacterium,the toxicity increased when Cu or Cd concentration increased. However, GPS was nearlynon-toxic to them and the presence of GPS could significantly reduce the acute toxicity of heavymetal on photobacterium. Buffered medium or pH-adjustment should be included in the toxicitytests for acidic toxicants to eliminate pH-induced toxicity since natural soil and water has higherbuffering capacity than test media in resisting pH change.
     (2) A laboratory experiment was conducted to investigate the interactions between GPS andcopper (Cu) expressed with the acute toxicity of soil invertebrate earthworm (Eisenia fetida),which was exposed to aqueous solutions for48h with different mixing concentrations of Cu andGPS (technical-grade Gly acid). The mortality rates, Cu uptake by earthworm, and somebiomarkers such as superoxide dismutase (SOD) activity, glutathione (GSH) content, andacetylcholinesterase (AchE) activity were measured. The mortality rates and whole-worm metalburdens increased significantly with the increasing exposed concentration of Cu. However, therewas no indication that GPS was toxic to earthworms in this study. Furthermore, the presence of GPS could significantly reduce the acute toxicity of Cu to earthworms. The mortality ratesdecreased sharply and the uptake of Cu was nearly halted in the presence of GPS. In addition tothat, the SOD activity, GSH content, and AchE activity almost declined to the levels of thecontrol. These results demonstrate that GPS could control the toxicity as well as thebioavailability of heavy metals in soil solutions where both GPS and heavy metals often coexist.
     (3) Glyphosate (GPS) is a wildly used pesticide throughout the world. It affects metalbehaviors both in water and soil system because its functional groups such as amine, carboxylateand phosphonate can react with metal ions to form metal complexes. As a result, GPS cantypically decrease the heavy metal bioavailability. A laboratory experiment was conducted toinvestigate the interactions between GPS and copper (Cu) with respect to the subacute toxicity tosoil invertebrate earthworm (Eisenia fetida). Earthworms were exposed to artificial soil for28dwith different concentrations of Cu and GPS (technical-grade GPS acid). The growth inhibitionratio, cocoon production, Cu uptake by earthworm, and some biomarkers such as superoxidedismutase (SOD) activity, catalase (CAT) activities, and malondialdehyde (MDA) content weremeasured. The growth inhibition ratio and whole-worm metal burdens increased significantlywith the increasing exposed concentration of Cu. However, the toxicity of GPS was much lowerthan copper in this study. Furthermore, The joint toxicity data showed that the presence of GPScould reduce the toxicity of Cu to earthworm, The growth inhibition were alleviated obviously,the cocoon production were increased, and Cu absorption by earthworms were decreased. Inaddition, the SOD, CAT and MDA were alleviated by Cu when GPS was present to a certaindegree. Therefore, it is shown that the herbicide glyphosate can affect the toxicity andbioavailability of heavy metals in the soil ecosystems acts.This may be due to GPS is similar tothe well-known complexing agents for Cu like EDTA and NTA.
     (4) A laboratory experiment was therefore conducted to investigate the interactions of GPSand Cd with respect to acute toxicity to earthworm (Eisenia fetida). To study the combinedeffects, earthworm were exposed to the solutions containing different concentrations of Cd at thedifferent GPS concentrations. Results showed that the toxicity of Cd to earthworm was muchhigher. The presence of GPS could significantly reduce the acute toxicity of Cd to earthworm.Particularly, the motility, accumulation of Cd decreased significantly wih the increase molar ratiovalue of GPS/Cd. Analyses of metal subcellular distribution in E. fetida showed that the theinternal metals Cd were major in fraction E (intact cells), H (heat-stable proteins fraction),followed by the G (denatured proteins fraction), F (microsomal fraction), D (microsomalfraction). In the presence of GPS, each fraction, especially the fraction E, were decreased to acertain extent, respectively. In addition to that, the SOD activity, CAT activity, and GSH-Pxactivity also declined. Based on the observations of the present study, it can be concluded that,GPS was nearly non-toxic to them and the presence of GPS could significantly reduce the acutetoxicity of Cd on earthworm.
     (5) A laboratory experiment was conducted to investigate the interactions between GPSand Cd with respect to the subacute toxicity to soil invertebrate earthworm (Eisenia fetida). Earthworms were exposed to artificial soil for28d with different concentrations of Cd and GPS(technical-grade GPS acid). The weight loss ratio, cocoon production, Cd uptake by earthworm,and malondialdehyde (MDA) content were measured. The weight loss ratio, cocoon production,whole-worm metal burdens, MDA content were all changed significantly with the increasingexposed concentration of Cd. Furthermore, the joint toxicity data showed that the presence ofGPS could reduce the toxicity of Cd to earthworm. The growth inhibition were alleviatedobviously, the cocoon production were increased, and Cd absorption by earthworms weredecreased. In addition, the MDA were alleviated by Cd when GPS was present to a certain degree.Therefore, it is shown that the herbicide glyphosate can affect the toxicity and bioavailability ofCd in the soil ecosystems acts.
引文
[1]陈怀满,郑春荣,周东美,等.关于我国土壤环境保护研究中一些值得关注的问题[J].农业环境科学学报.2004,23(6):1244-1245.
    [2]陈怀满,郑春荣,涂从,等.中国土壤重金属污染现状与防治对策[J]. Ambio.1999,28(2):130-134.
    [3]杨苏才,南忠仁,曾静静.土壤重金属污染现状与治理途径研究进展[J].安徽农业科学.2006,34(3):549-552.
    [4]周东美,王慎强,陈怀满.土壤中有机污染物-重金属复合污染的交互作用[J].土壤与环境.2000,9(2):143-145.
    [5]王慎强,陈怀满.我国土壤环境保护研究的回顾与展望[J].土壤.1999,31(5):255-260.
    [6] Wang Q Y, Zhou D M, Cang L. Microbial and enzyme properties of apple orchard soil as affected bylong-term application of copper fungicide[J]. Soil Biology and Biochemistry.2009,41(7):1504-1509.
    [7]周桂莲,蒋宗勇,林映才.饲用抗生素在畜禽体内残留及消除规律研究进展[J].饲料工业.2007,28(4):1-8.
    [8]郑顺安,李仪,普锦成,等.污水灌溉条件下Cu在农田土壤中的运移及其模拟研究[J].浙江大学学报(农业与生命科学版).2011,37(3):343-354.
    [9]刘洪涛,郑国砥,陈同斌,等.农田土壤中铜的主要输入途径及其污染风险控制[J].生态学报.2008,28(4):1774-1785.
    [10]王秀丽,徐建民,姚槐应,等.重金属铜、锌、镉、铅复合污染对土壤环境微生物群落的影响[J].环境科学学报.2003(01):22-27.
    [11]朱云集,王晨阳.铜胁迫对小麦根系生长发育及生理特性的影响[J].麦类作物.1997,17(5):49-51.
    [12] Paoletti M G. The role of earthworms for assessment of sustainability and as bioindicators[J]. Agriculture,ecosystems&environment.1999,74(1-3):137-155.
    [13]黄益宗,朱永官,童依平,等.土壤水分变化对玉米苗期吸收积累镉的影响[J].生态学报.2004,24(12):2832-2836.
    [14]胡宁静,李泽琴,黄朋,等.我国部分市郊农田的重金属污染与防治途径[J].矿物岩石地球化学通报.2003,22(3):251-254.
    [15]陈怀满,郑春荣,周东美,等.土壤环境质量研究回顾与讨论[J].农业环境科学学报.2006(04):821-827.
    [16]马元庆,唐学玺,刘义豪,等.山东半岛近海贝类污染状况调查与评价[J].海洋环境科学.2009,28(5):562-565.
    [17]郑喜珅,鲁安怀,高翔,等.土壤中重金属污染现状与防治方法[J].土壤与环境.2002,11(1):79-84.
    [18]赵维信,魏华贾.镉对罗氏沼虾组织转氨酶活性及组织结构的影响[J].水产学报.1995,19(1):21-27.
    [19]黄思齐.镉对孕期、哺乳期大鼠及仔代铁代谢的影响[J].营养学报.1997(03):89-92.
    [20]谭亚军,李少南,孙利.农药对水生态环境的影响[J].农药.2003,42(12):12-14,8.
    [21] Franz J E, Mao M K, Sikorski J A. Glyphosate: a unique global herbicide.[M]. American Chemical Society,1997.
    [22] Malik J, Barry G, Kishore G. The herbicide glyphosate.[J]. BioFactors (Oxford, England).1989,2(1):17.
    [23]苏少泉.草甘膦与抗草甘膦作物[J].农药.2008(9):631-636.
    [24] Carlisle S M, Trevors J T. Glyphosate in the environment[J]. Water, Air,&Soil Pollution.1988,39(3):409-420.
    [25] Folmar L C, Sanders H O, Julin A M. Toxicity of the herbicide glyphosate and several of its formulations tofish and aquatic invertebrates[J]. Archives of Environmental Contamination and Toxicology.1979,8(3):269-278.
    [26] Howe C M, Berrill M, Pauli B D, et al. Toxicity of glyphosate‐b ased pesticides to four North American frogspecies[J]. Environmental Toxicology and Chemistry.2004,23(8):1928-1938.
    [27] Glass R L. Metal complex formation by glyphosate[J]. Journal of Agricultural and Food Chemistry.1984,32(6):1249-1253.
    [28] Subramaniam V, Hoggard P E. Metal complexes of glyphosate[J]. Journal of Agricultural and Food Chemistry.1988,36(6):1326-1329.
    [29] Tsui M, Wang W X, Chu L M. Influence of glyphosate and its formulation (Roundup(R)) on the toxicity andbioavailability of metals to Ceriodaphnia dubia[J]. Environmental Pollution.2005,138(1):59-68.
    [30] Morillo E, Undabeytia T, Maqueda C, et al. The effect of dissolved glyphosate upon the sorption of copper bythree selected soils[J]. Chemosphere.2002,47(7):747-752.
    [31]周启星,程云,张倩茹,等.复合污染生态毒理效应的定量关系分析[J].中国科学C辑.2003,33(6):566-573.
    [32]何勇田,熊先哲.复合污染研究进展[J].环境科学.1994,15(6):79-83.
    [33]王玉军,周东美,孙瑞娟,等.除草剂草甘膦在几种土壤和矿物上的吸附研究[J].土壤学报.2006(5):780-785.
    [34]王玉军,周东美,孙瑞娟,等.土壤中草甘膦与镉的交互作用对3种土壤酶活性的影响[J].生态毒理学报.2006(1):58-63.
    [35] von Wirén Lehr S, Komo A D, Gl Gen W E, et al. Mineralization of [14C] glyphosate and itsplant‐associated residues in arable soils originating from different farming systems[J]. Pesticide science.1997,51(4):436-442.
    [36]窦磊,周永章,高全洲,等.土壤环境中重金属生物有效性评价方法及其环境学意义[J].土壤通报.2007,38(3):576-583.
    [37]廖敏,黄昌勇,谢正苗. pH对镉在土水系统中的迁移和形态的影响[J].环境科学学报.1999,19(1):81-86.
    [38] Li L, Zhou D, Luo X, et al. Effect of major cations and pH on the acute toxicity of cadmium to the earthwormEisenia fetida: implications for the biotic ligand model approach[J]. Archives of environmental contaminationand toxicology.2008,55(1):70-77.
    [39]王玉军,周东美,孙瑞娟,等.除草剂草甘膦在几种土壤和矿物上的吸附研究[J].土壤学报.2006(05):780-785.
    [40]李丹丹,汪鹏,李连祯,等.不同阳离子影响下小麦根吸收镉的动力学过程[J].生态毒理学报.2010,05(4):580-586.
    [41] Huang R, Wen B, Pei Z, et al. Accumulation, subcellular distribution and toxicity of copper in earthworm(Eisenia fetida) in the presence of ciprofloxacin[J]. Environmental science&technology.2009,43(10):3688-3693.
    [42] Morillo E, Undabeytia T, Maqueda C. Adsorption of glyphosate on the clay mineral montmorillonite: effect ofCu (II) in solution and adsorbed on the mineral[J]. Environmental science&technology.1997,31(12):3588-3592.
    [43] Kopittke P M, Blamey F, Mckenna B A, et al. Toxicity of metals to roots of cowpea in relation to their bindingstrength[J]. Environmental Toxicology and Chemistry.2011,30(8):1827-1833.
    [44] Li D D, Zhou D M. Acclimation of wheat to low-level cadmium or zinc generates its resistance to cadmiumtoxicity[J]. Ecotoxicology and environmental safety.2012,79:264-271.
    [45] Di Toro D M, Allen H E, Bergman H L, et al. Biotic ligand model of the acute toxicity of metals.1. Technicalbasis[J]. Environmental Toxicology and Chemistry.2001,20(10):2383-2396.
    [46] Morel F M M. Principles of aquatic chemistry[J]. John Wiley and Sons, New York NY.1983.446.1983.
    [47]李培军,熊先哲,杨桂芬,等.动物生物标志物在土壤污染生态学研究中的应用[J].应用生态学报.2003(12):2347-2350.
    [48] Sanchez-Hernandez J. Earthworm biomarkers in ecological risk assessment[J]. Reviews of environmentalcontamination and toxicology.2006:85-126.
    [49] Li L Z, Zhou D M, Wang P, et al. Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affectedby Ca2+ions and Cd-Pb interaction[J]. Ecotoxicology and Environmental Safety.2008,71(3):632-637.
    [50] Spurgeon D J, Weeks J M, Van Gestel C A M. A summary of eleven years progress in earthwormecotoxicology: The7th international symposium on earthworm ecology· Cardiff· Wales·2002[J].Pedobiologia.2003,47(5-6):588-606.
    [51] Heimbach F. Correlations between three methods for determining the toxicity of chemicals to earthworms[J].Pesticide science.1984,15(6):605-611.
    [52] Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizingthe principle of protein-dye binding[J]. Analytical biochemistry.1976,72(1-2):248-254.
    [53] Belfroid A, Sikkenk M, Seinen W, et al. The toxicokinetic behavior of chlorobenzenes in earthworm (Eiseniaandrei) experiments in soil[J]. Environmental toxicology and chemistry.1994,13(1):93-99.
    [54] Sanchez-Hernandez J. Earthworm biomarkers in ecological risk assessment[J]. Reviews of environmentalcontamination and toxicology.2006:85-126.
    [55] Spurgeon D J, Hopkin S P. Extrapolation of the laboratory-based OECD earthworm toxicity test tometal-contaminated field sites[J]. Ecotoxicology.1995,4(3):190-205.
    [56] Ma W, Bodt J. Differences in toxicity of the insecticide chlorpyrifos to six species of earthworms (Oligochaeta,Lumbricidae) in standardized soil tests[J]. Bulletin of environmental contamination and toxicology.1993,50(6):864-870.
    [57]朱江.镉与菲复合污染对安德爱胜蚓(Eisenia andrei)溶酶体膜稳定性的影响[J].上海交通大学学报(农业科学版).2010(04):355-360.
    [58]肖能文,刘向辉,李薇,等.用蚯蚓溶酶体作为检测土壤污染的生物标志物[J].应用生态学报.2006(03):3516-3519.
    [59] Xiao N W, Song Y, Ge F, et al. Biomarkers responses of the earthworm Eisenia fetida to acetochlor exposurein OECD soil[J]. Chemosphere.2006,65(6):907-912.
    [60] Scott-Fordsmand J J, Weeks J M, Hopkin S P. Toxicity of nickel to the earthworm and the applicability of theneutral red retention assay[J]. Ecotoxicology.1998,7(5):291-295.
    [61]封少龙,罗屿,钟远,等.应用单细胞凝胶电泳技术测定农药对蚯蚓的DNA损伤[J].南京大学学报(自然科学版).2000(05):649-652.
    [62]陈颖,王子健.用彗星试验检测土壤污染对蚯蚓活体基因损伤[J].土壤学报.2005(04):577-583.
    [63] Collins A R. The comet assay for DNA damage and repair[J]. Molecular Biotechnology.2004,26(3):249-261.
    [64]曾强,程文文,蔡凤云,等.邻苯二甲酸二异辛酯致赤子爱胜蚓体细胞氧化损伤的研究[J].生态毒理学报.2010(05):718-723.
    [65] Song Y, Zhu L S, Wang J, et al. DNA damage and effects on antioxidative enzymes in earthworm (Eiseniafoetida) induced by atrazine[J]. Soil Biology and Biochemistry.2009,41(5):905-909.
    [66] Calisi A, Lionetto M G, Schettino T. Biomarker response in the earthworm Lumbricus terrestris exposed tochemical pollutants[J]. Science of The Total Environment.2011,409(20):4456-4464.
    [67] Capowiez Y, Dittbrenner N, Rault M, et al. Earthworm cast production as a new behavioural biomarker fortoxicity testing[J]. Environmental pollution.2010,158(2):388-393.
    [68] Spurgeon D J, Hopkin S P. Extrapolation of the laboratory-based OECD earthworm toxicity test tometal-contaminated field sites[J]. Ecotoxicology,1995,4(3):190-205.
    [69] Bengtsson G, Tranvik L. Critical metal concentrations for forest soil invertebrates[J]. Water, Air, and SoilPollution,1989,47(3-4):381-417.
    [70] Mosleh Y Y, Ismail S, Ahmed M T, et al. Comparative toxicity and biochemical responses of certain pesticidesto the mature earthworm Aporrectodea caliginosa under laboratory conditions[J]. Environmental toxicology.2003,18(5):338-346.
    [71] Reinecke A J, Reinecke S A, Maboeta M S. Cocoon production and viability as endpoints in toxicity testing ofheavy metals with three earthworm species[J]. Pedobiologia.2001,45(1):61-68.
    [72] Cheng S. Heavy metal pollution in China: origin, pattern and control[J]. Environmental Science and PollutionResearch.2003,10(3):192-198.
    [73] J Rup L. Hazards of heavy metal contamination[J]. British Medical Bulletin.2003,68(1):167.
    [74]周东美,王玉军,郝秀珍,等.铜矿区重金属污染分异规律初步研究[J].农业环境保护.2002(03):225-227.
    [75]李秀兰,胡雪峰.上海郊区蔬菜重金属污染现状及累积规律研究[J].化学工程师.2005(5):36-38.
    [76] Fletcher J S. Herbicides and plant growth regulators[J]. Economic Botany.1984,38(2):217.
    [77] Woodburn A T. Glyphosate: production, pricing and use worldwide[J]. Pest Management Science.2000,56(4):309-312.
    [78]刘保奇,葛会林,刘树深.测定环境污染物对青海弧菌发光强度抑制的微板发光法研究[J].生态毒理学报.2006,1(2):186-191.
    [79]皇甫鑫,廖翀,杨坪,等.金属化合物对发光菌的毒性效应及不同发光菌的敏感度差异研究[J].环境科学学报.2010,30(9):1787-1792.
    [80]于景丽,刘芳,张国辉,等.发光菌法研究镉离子、草甘膦和啶虫脒的联合毒性[J].安全与环境学报.2010,10(2):1-4.
    [81] Tsui M T K, Chu L M. Aquatic toxicity of glyphosate-based formulations: comparison between differentorganisms and the effects of environmental factors[J]. Chemosphere.2003,52(7):1189-1197.
    [82] Chu S, He Y, Xu X. Determination of acute toxicity of polychlorinated biphenyls to Photobacteriumphosphoreum[J]. Bulletin of environmental contamination and toxicology.1997,58(2):263-267.
    [83] Abate L, De Stefano C, Foti C, et al. Binding of glyphosate by open-chain polyammonium cations[J].Environmental Toxicology and Chemistry.1999,18(10):2131-2137.
    [84]邓铁柱,苏丽敏,袁星,等.乙草胺与Cu, Zn对发光菌和斑马鱼胚胎的联合毒性效应[J].环境化学.2008,26(6):741-744.
    [85] Spurgeon D J, Hopkin S P, Jones D T. Effects of cadmium, copper, lead and zinc on growth, reproduction andsurvival of the earthworm Eisenia fetida (Savigny): assessing the environmental impact of point-source metalcontamination in terrestrial ecosystems[J]. Environmental Pollution.1994,84(2):123-130.
    [86] Li L Z, Zhou D M, Wang P, et al. Effect of cation competition on cadmium uptake from solution by theearthworm Eisenia fetida[J]. Environmental Toxicology and Chemistry.2009,28(8):1732-1738.
    [87] Kiewiet A T, Ma W. Effect of pH and calcium on lead and cadmium uptake by earthworms in water[J].Ecotoxicology and environmental safety.1991,21(1):32-37.
    [88] Li D, Zhou D. Toxicity and subcellular distribution of cadmium in wheat as affected by dissolved organicacids[J]. Journal of Environmental Sciences.2012,24(5):903-911.
    [89] Owojori O J, Reinecke A J, Rozanov A B. Effects of salinity on partitioning, uptake and toxicity of zinc in theearthworm Eisenia fetida[J]. Soil Biology and Biochemistry.2008,40(9):2385-2393.
    [90] Saint-Denis M, Labrot F, Narbonne J F, et al. Glutathione, glutathione-related enzymes, and catalase activitiesin the earthworm Eisenia fetida andrei[J]. Archives of environmental contamination and toxicology.1998,35(4):602-614.
    [91] Saint-Denis M, Narbonne J F, Arnaud C, et al. Biochemical responses of the earthworm Eisenia fetida andreiexposed to contaminated artificial soil: effects of benzo (a) pyrene[J]. Soil Biology and Biochemistry.1999,31(13):1837-1846.
    [92] Steenbergen N T T M, Iaccino F, de Winkel M, et al. Development of a biotic ligand model and a regressionmodel predicting acute copper toxicity to the earthworm Aporrectodea caliginosa[J]. Environmental Science&Technology.2005,39(15):5694-5702.
    [93] Arnold R E, Hodson M E, Comber S. Does speciation impact on Cu uptake by, and toxicity to, the earthwormEisenia fetida?[J]. European Journal of Soil Biology.2007,43, Supplement1(0): S230-S232.
    [94] Willuhn J, Otto A, Koewius H, et al. Subtoxic cadmium-concentrations reduce copper-toxicity in theearthworm Enchytraeus buchholzi[J]. Chemosphere.1996,32(11):2205-2210.
    [95] Neuhauser E F, Loehr R C, Milligan D L, et al. Toxicity of metals to the earthworm Eisenia fetida[J]. Biologyand Fertility of Soils.1985,1(3):149-152.
    [96] Gaete H, Hidalgo M E, Neaman A, et al. Assessment of copper toxicity in soils using biomarkers of oxidativestress in Eisenia foetida[J]. Química Nova.2010,33(3):566-570.
    [97] Van der Oost R, Beyer J, Vermeulen N P. Fish bioaccumulation and biomarkers in environmental riskassessment: a review[J]. Environmental Toxicology and Pharmacology.2003,13(2):57-149.
    [98] Jaeschke H, Farhood A. Neutrophil and Kupffer cell-induced oxidant stress and ischemia-reperfusion injury inrat liver[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology.1991,260(3): G355-G362.
    [99]刘廷凤,刘振宇,孙成. Cu2+与草甘膦单一及复合污染对蚯蚓的急性毒性研究[J].环境污染与防治.2009,31(6):3-6.
    [100]王彦华,俞卫华,杨立之,等.22种常用除草剂对蚯蚓(Eisenia fetida)的急性毒性[J].生态毒理学报.2012(03):317-325.
    [101] Uchida M, Takumi S, Tachikawa K, et al. Toxicity evaluation of glyphosate agrochemical components usingJapanese medaka (Oryzias latipes) and DNA microarray gene expression analysis.[J]. The Journal oftoxicological sciences.2012,37(2):245.
    [102] Atkinson D. Toxicological properties of glyphosate—a summary[J]. The Herbicide Glyphosate. Butterworthand Co., Toronto, Canada.1985:210-216.
    [103] Bernal M H, Solomon K R, Carrasquilla G. Toxicity of formulated glyphosate (Glyphos) and cosmo-flux tolarval and juvenile colombian frogs2. field and laboratory microcosm acute toxicity[J]. Journal of Toxicologyand Environmental Health, Part A.2009,72(15-16):966-973.
    [104] Howe C M, Berrill M, Pauli B D, et al. Toxicity of glyphosate-based pesticides to four North American frogspecies[J]. Environmental Toxicology and Chemistry.2004,23(8):1928-1938.
    [105] Sorvari J, Sillanp M. Influence of metal complex formation on heavy metal and free EDTA and DTPA acutetoxicity determined by Daphnia magna [J]. Chemosphere.1996,33(6):1119-1127.
    [106]周垂帆,王玉军,俞元春,等.铜和草甘膦对蚯蚓的毒性效应研究[J].中国生态农业学报.2012(08):1077-1082.
    [107] Wang Y J, Cui Y X, Zhou D M, et al. Adsorption kinetics of glyphosate and copper (II) alone and together ontwo types of soils[J]. Soil Science Society of America Journal.2009,73(6):1995-2001.
    [108]王米道,程凤侠,司友斌.铜与草甘膦复合污染对小麦种子发芽与根伸长的抑制作用[J].生态毒理学报.2009,4(4):591-596.
    [109] Bernards M L, Thelen K D, Penner D, et al. Glyphosate interaction with manganese in tank mixtures and itseffect on glyphosate absorption and translocation[J]. Weed Technology2009,26:2,167-176.
    [110] Eker S, Ozturk L, Yazici A, et al. Foliar-applied glyphosate substantially reduced uptake and transport of ironand manganese in sunflower (Helianthus annuus L.) plants[J]. Journal of agricultural and food chemistry.2006,54(26):10019-10025.
    [111]王秋丽,朱琳,黄碧捷,等.土壤铅污染对蚯蚓体腔细胞溶酶体的毒性效应[J].农业环境科学学报.2007(05):1874-1878.
    [112] Dj S, Sp. H. Effects of metal-contaminated soils on the growth, sexual development, and early cocoonproduction of the earthworm Eisenia fetida, with particular reference to zinc[J]. Ecotoxicol Environ Safe.1996,35(1):86-95.
    [113] Spurgeon D J, Hopkin S P. Effects of metal-contaminated soils on the growth, sexual development, and earlycocoon production of the earthworm Eisenia fetida, with particular reference to zinc[J]. Ecotoxicology andenvironmental safety.1996,35(1):86-95.
    [114] Scott-Fordsmand J J, Krogh P H, Schaefer M, et al. The toxicity testing of double-wallednanotubes-contaminated food to Eisenia veneta earthworms[J]. Ecotoxicology and Environmental Safety.2008,71(3):616-619.
    [115] Owojori O J, Reinecke A J, Rozanov A B. The combined stress effects of salinity and copper on the earthwormEisenia fetida[J]. Applied Soil Ecology.2009,41(3):277-285.
    [116] Spurgeon D J, Hopkin S P. Extrapolation of the laboratory-based OECD earthworm toxicity test tometal-contaminated field sites[J]. Ecotoxicology.1995,4(3):190-205.
    [117] Spurgeon D J, Hopkin S P, Jones D T. Effects of cadmium, copper, lead and zinc on growth, reproduction andsurvival of the earthworm Eisenia fetida (Savigny): assessing the environmental impact of point-source metalcontamination in terrestrial ecosystems[J]. Environmental Pollution.1994,84(2):123-130.
    [118] Altauskait J, Sodien I. Effects of total cadmium and lead concentrations in soil on the growth, reproduction andsurvival of earthworm Eisenia fetida[J]. Ekologija.2010,56(1):10-16.
    [119] Helling B, Reinecke S A, Reinecke A J. Effects of the fungicide copper oxychloride on the growth andreproduction of Eisenia fetida (Oligochaeta)[J]. Ecotoxicology and environmental safety.2000,46(1):108-116.
    [120] Peijnenburg W, Jager T. Monitoring approaches to assess bioaccessibility and bioavailability of metals: Matrixissues[J]. Ecotoxicology and environmental safety.2003,56(1):63-77.
    [121] Neuhauser E F, Cukic Z V, Malecki M R, et al. Bioconcentration and biokinetics of heavy metals in theearthworm[J]. Environmental Pollution.1995,89(3):293-301.
    [122] Van der Oost R, Beyer J, Vermeulen N P. Fish bioaccumulation and biomarkers in environmental riskassessment: a review[J]. Environmental Toxicology and Pharmacology.2003,13(2):57-149.
    [123]王轶,刁晓平,张先勇.莫能菌素对蚯蚓的生态毒理效应[J].农业环境科学学报.2010(06):1091-1097.
    [124] Srivastava S, Mishra S, Tripathi R D, et al. Copper-induced oxidative stress and responses of antioxidants andphytochelatins in Hydrilla verticillata Royle[J]. Aquatic toxicology.2006,80(4):405-415.
    [125] Yasmin S, D Souza D. Effect of pesticides on the reproductive output of Eisenia fetida[J]. Bulletin ofenvironmental contamination and toxicology.2007,79(5):529-532.
    [126]朱国念,楼正云,孙锦荷.草甘膦对水生生物的毒性效应及环境安全性研究[J].浙江大学学报(农业与生命科学版).2000,26(3):309-312.
    [127]范瑾煜,耿金菊,王晓蓉.草甘膦及Roundup~ 诱导鲫鱼肝脏自由基的产生及其氧化应激[J].中国化学会第28届学术年会第2分会场摘要集.2012.
    [128] Modesto K A, Martinez C B R. Effects of Roundup Transorb on fish: Hematology, antioxidant defenses andacetylcholinesterase activity[J]. Chemosphere.2010,81(6):781-787.
    [129] Zhou C, Wang Y, Yu Y, et al. Does glyphosate impact on Cu uptake by, and toxicity to, the earthworm Eiseniafetida?[J]. Ecotoxicology.2012,21(8):2297-2305.
    [130] Vereecken H. Mobility and leaching of glyphosate: a review[J]. Pest management science.2005,61(12):1139-1151.
    [131] Teisseire H, Couderchet M, Vernet G. Phytotoxicity of diuron alone and in combination with copper or folpeton duckweed (Lemna minor)[J]. Environmental Pollution.1999,106(1):39-45.
    [132]晁雷,周启星,陈苏,等.基于小麦产品质量的土壤铅修复基准[J].生态科学.2006(6):554-557.
    [133]王玉军,周东美,孙瑞娟,等.镉与除草剂草甘磷的交互作用对小麦的毒性[J].生态环境.2004(02):158-160.
    [134]钟宁,姜洁凌.环境和饲料中的镉对畜禽的毒性研究进展[J].饲料工业.2005,26(7):18-22.
    [135]钟宁,曾清如,姜洁凌.环境和饲料中的镉对畜禽的毒性研究进展[J].微量元素与健康研究.2005,22(3):35-38.
    [136]翁南燕,周东美,汪鹏,等.铜镉复合胁迫下硫素对小麦幼苗铜镉吸收、亚细胞分布及毒性的影响[J].生态毒理学报.2011,6(1):87-93.
    [137] Li D D, Zhou D M. Acclimation of wheat to low-level cadmium or zinc generates its resistance to cadmiumtoxicity[J]. Ecotoxicology and environmental safety.2012,79:264-271.
    [138] Jurczuk M, Brzoska M M, Moniuszko-Jakoniuk J, et al. Antioxidant enzymes activity and lipid peroxidation inliver and kidney of rats exposed to cadmium and ethanol.[J]. Food and chemical toxicology: an internationaljournal published for the British Industrial Biological Research Association.2004,42(3):429.
    [139] Yalin S, Comelekoglu U, Bagis S, et al. Acute effect of single-dose cadmium treatment on lipid peroxidationand antioxidant enzymes in ovariectomized rats.[J]. Ecotoxicology and environmental safety.2006,65(1):140.
    [140] Vijver M G, van Gestel C A M, van Straalen N M, et al. Biological significance of metals partitioned tosubcellular fractions within earthworms (Aporrectodea caliginosa)[J]. Environmental Toxicology andChemistry.2006,25(3):807-814.
    [141]贾秀英.镉对泥鳅幼鱼的急性和亚急性毒性研究[J].环境污染与防治.2001,23(5):227-228.
    [142] Chaoui A, Mazhoudi S, Ghorbal M H, et al. Cadmium and zinc induction of lipid peroxidation and effects onantioxidant enzyme activities in bean Phaseolus vulgaris L[J]. Plant Science.1997,127(2):139-147.
    [143]李连祯,罗小三,周东美.土壤溶液中Ca2+降低Cd2+对赤子爱胜蚓的毒性[J].中国环境科学.2007,27(5):681-685.
    [144]乔文鹏,乔玉辉,赵晶,等.氯化镉、马拉硫磷和乙草胺对赤子爱胜蚓的复合急性毒性[J].中国生态农业学报.2010,18(3):562-565.
    [145]陈志伟,李兴华,周华松.铜、镉单一及复合污染对蚯蚓的急性毒性效应[J].浙江农业学报.2007,19(1):20-24.
    [146] Li D, Zhou D, Wang P, et al. Temperature affects cadmium-induced phytotoxicity involved in subcellularcadmium distribution and oxidative stress in wheat roots[J]. Ecotoxicology and environmental safety.2011,74(7):2029-2035.
    [147] Li L, Zhou D, Wang P, et al. Subcellular distribution of Cd and Pb in earthworm Eisenia fetida as affected byCa2+ions and Cd–Pb interaction[J]. Ecotoxicology and Environmental Safety.2008,71(3):632-637.
    [148] Li D, Zhou D, Wang P, et al. Temperature affects cadmium-induced phytotoxicity involved in subcellularcadmium distribution and oxidative stress in wheat roots[J]. Ecotoxicology and environmental safety.2011,74(7):2029-2035.
    [149]赖廷和,何斌源,范航清,等.重金属Cd胁迫对红树蚬的抗氧化酶、消化酶活性和MDA含量的影响[J].生态学报.2011,31(11):3044-3053.
    [150]刘伟成,李明云,黄福勇,等.镉胁迫对大弹涂鱼肝脏黄螵呤氧化酶和抗氧化酶活性的影响[J].应用生态学报.2006,17(7):1310-1314.
    [151] Roberts M H, Sved D W, Felton S P. Temporal changes in AHH and SOD activities in feral spot from theElizabeth River, a polluted sub-estuary[J]. Marine environmental research.1987,23(2):89-101.
    [152] Spurgeon D J, Hopkin S P. Effects of metal-contaminated soils on the growth, sexual development, and earlycocoon production of the earthworm Eisenia fetida, with particular reference to zinc[J]. ECOTOXICOLOGYAND ENVIRONMENTAL SAFETY.1996,35(1):86-95.
    [153] altauskait J, Sodien I. Effects of total cadmium and lead concentrations in soil on the growth, reproductionand survival of earthworm Eisenia fetida[J]. Ekologija.2010,56(1):10-16.
    [154] OECD OFECIAL. Earthworm, acute toxicity tests. In: Organization for Economic Co-operation andDevelopment, OECD Guidelines for Testing of Chemicals[M]. OECD,1984.
    [155] Lavelle P. Earthworm activities and the soil system[J]. Biology and Fertility of Soils.1988,6(3):237-251.
    [156] Zang Y, Zhong Y, Luo Y, et al. Genotoxicity of two novel pesticides for the earthworm, Eisenia fetida[J].Environmental Pollution.2000,108(2):271-278.
    [157] Spurgeon D J, Hopkin S P. Effects of variations of the organic matter content and pH of soils on theavailability and toxicity of zinc to the earthworm Eisenia fetida[J]. Pedobiologia.1996,40(1):80-96.
    [158] Spurgeon D J, Hopkin S P. Comparisons of metal accumulation and excretion kinetics in earthworms (Eiseniafetida) exposed to contaminated field and laboratory soils[J]. Applied Soil Ecology.1999,11(2):227-243.
    [159] Conder J M, Seals L D, Lanno R P. Method for determining toxicologically relevant cadmium residues in theearthworm Eisenia fetida[J]. Chemosphere.2002,49(1):1-7.
    [160] Smith B A, Egeler P, Gilberg D, et al. Uptake and elimination of cadmium and zinc by Eisenia andrei duringexposure to low concentrations in artificial soil[J]. Archives of environmental contamination and toxicology.2010,59(2):264-273.
    [161] Livingstone D R, Martinez P G, Michel X, et al. Oxyradical production as a pollution-mediated mechanism oftoxicity in the common mussel, Mytilus edulis L., and other molluscs[J]. Functional Ecology.1990:415-424.
    [162] Vig K, Megharaj M, Sethunathan N, et al. Bioavailability and toxicity of cadmium to microorganisms and theiractivities in soil: a review[J]. Advances in Environmental Research.2003,8(1):121-135.
    [163]陈怀满.环境土壤学[M].科学出版社,2005.
    [164]王玉军,周东美,孙瑞娟,等.土壤中草甘膦与镉的交互作用对3种土壤酶活性的影响[J].生态毒理学报.2006,1(1):58-63.
    [165] Denduluri S. Reduction of lead accumulation by ethylenediamine tetraacetic acid and nitrilo triacetic acid inokra (Abelmoschus esculentus L.) grown in sewage-irrigated soil[J]. Bulletin of environmental contaminationand toxicology.1993,51(1):40-45.
    [166] Denduluri S. Reduction of manganese accumulation by ethylenediamine tetraacetic acid and nitrilo triaceticacid in okra (Abelmoschus esculentus L.) grown in sewage-irrigated soil[J]. Bulletin of environmentalcontamination and toxicology.1994,52(3):438-443.
    [167]周东美,王慎强,陈怀满.土壤中有机污染物-重金属复合污染的交互作用[J].土壤与环境.2000(02):143-145.
    [168] Wang Y, Zhou D, Sun R, et al. Zinc adsorption on goethite as affected by glyphosate[J]. Journal of hazardousmaterials.2008,151(1):179-184.
    [169] Wang Y, Zhou D, Sun R, et al. Cosorption of zinc and glyphosate on two soils with different characteristics[J].Journal of hazardous materials.2006,137(1):76-82.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700