用户名: 密码: 验证码:
高速列车SiCp/A356复合材料制动盘热疲劳评价方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
盘型制动作为最有效的安全制动方式,已普遍被采用在提速和高速客车上。避免制动强摩擦与高热负荷所造成的制动盘早期热疲劳失效并预防崩盘恶性事故发生是制动盘选材和结构设计中需要考虑的重要环节。目前,国内高速列车上服役的制动盘均为铸铁或锻钢材料,由于制动盘属簧下质量,制动盘质量过大会增加能耗,并对转向架的动力学性能有不利影响,因此,研究开发适合于高速列车服役工况的具有重量轻、耐磨损和耐热性能好的制动盘,具有非常重大的实际意义。
     论文根据上述背景,以国家863计划资助项目“高速客车用金属基复合材料制动件的研究与应用”(2003AA331190)为支撑,对新开发的用于高速列车制动盘的SiCp/A356颗粒增强铝基复合材料的热循环特性、断裂机制、热疲劳性能进行了试验研究,采用有限元仿真技术与材料热疲劳试验相结合的方法,对制动盘热疲劳裂纹形成和扩展规律进行了深入的研究。主要内容包括:
     1.研究SiCp/A356颗粒增强铝基复合材料常温和高温的单调和循环拉伸特性、热物理性能以及各性能参数与温度的相关性,从而建立了SiCp/A356复合材料的热弹塑性本构关系。
     2.基于制动盘的循环对称结构特点,将泛函与热传导微分方程相结合,建立了制动盘三维瞬态温度场的数学模型,采用顺序耦合的数值计算方法,模拟了制动盘在不同制动工况下的循环应力应变响应规律,提出了热残余应力的形成机制以及制动盘盘面热残余拉应力在裂纹形成与扩展过程中的重要作用。
     3.通过SiCp/A356切口试样在20℃~300℃循环变温下的自约束热疲劳试验,确定了裂纹扩展速率与热循环次数的关系(a~da/dN),探讨了试样切口半径R和试样厚度对裂纹形成和扩展的影响。采用有限元仿真技术,建立了颗粒增强金属基复合材料细观体元的热弹塑性本构模型,重点针对热循环作用下体元的细观应力应变响应进行描述,提出了颗粒增强金属基复合材料界面开裂的细观机理。
     4.根据SiCp/A356颗粒增强铝基复合材料热疲劳试验获得的参数,建立与试验工况一致的有限元仿真模型,以裂纹长度与热循环次数及试样尺寸的关系为准则,提出了定量分析复合材料热应变寿命(△ε_T/2~2N_f)和热疲劳裂纹扩展速率曲线(da/dN~△K)的有限元方法。
     5.采用热弹塑性有限元法,确定了制动盘表面缺口的循环应力-应变响应特性和裂纹应力强度因子,提出了高速列车SiCp/A356复合材料制动盘热疲劳裂纹形成与扩展规律的评价方法。
As the most effective brake mode,brake disc has been used in the high speed train.It is important to consider how to avoid early thermal fatigue failure due to strong friction and intense heat flux in brake disc material selecting and structural design.At present,Cast iron and forged steel are normally used for brake discs of high speed strain in our country.Brake disc belongs to unsprung weight,heavier weight of which makes more energy consumption and worse kinetics performance of bogie,so it is a real significant research subject to develop a brake disc with light weight, anti-abrasive and heat resisting material.
     With the support of National Basic Research and Development program of China (863 program,No.2003AA331190 Research and Application of Metal Matrix Composite Brake Part in High Speed Train),the dissertation studied the thermal cycle performance,fracture mechanism and thermal fatigue character of SiCp/A356 composite latest developed for brake disc of high speed train using experimental method.And thermal fatigue crack initiation and propagation were deeply investigated by Finite element(FE) simulation combined with thermal fatigue test.The main contents are as follows,
     1.In order to establish thermal elastic plastic constitutive relationship of SiCp/A356 composite,its monotic and cyclic tension performance,physical characters with temperatures were investigated.
     2.Combining the functional analysis method with the heat conduction differential equations the finite element mathematic model of the period cyclic symmetric structure, ig.brake disc,was constructed for 3D transient temperature field.The cyclic stress strain responses rule of disc under different braking conditions were simulated with the sequence-coupled numerical calculation method.The mechanism of thermal residual stress and its important function at crack initiation and propagation process of disc surface were presented.
     3.The relationship of crack propagation rate and thermal cycles(a~da/dN) was determined and the influence for crack coming with diameters and thickness of samples were discussed.The thermal elastic plastic constitutive model of micro-unit of metal matrix composite(MMC) reinforced by particle was established by FE simulation technology.The stress strain response of micro-unit was mainly described to open out interface crack mechanism.
     4.According to the parameters obtained from thermal fatigue test of SiCp/A356 notched sample,quantitative analysis of thermal fatigue crack initiation curve (Δε_T/2~2N_f) and propagation rate curve(da/dN~ΔK) of the material were achieved by finite element method(FEM),which realized forecast of thermal fatigue crack initiation and propagation rule.
     5.The notched cyclic stress-strain response and crack stress intensity factors are established by thermal elastic plastic FE.The assessment method of thermal crack initiation and propagation law of SiCp/A356 composite brake disc surface was put forward.
引文
[1]M.Tirovie.高速列车轮装式盘型制动器的开发[J].国外机车车辆工艺,2000,1:1-6.
    [2]新井浩[日]等.机车车辆制动材料摩擦副的磨损研究[J].国外机车车辆工艺.2002
    [3]石宗利,李重庵等。高速列车粉末冶金制动闸片材料研究[J].机械工程学报.Vol.38,No.6.2002
    [4]Taro TSUJIMURA(日本)等.机车车辆铝合金复合材料制动盘的开发[J].国外机车车辆工艺,1996(4):9-13[21]
    [5]Thomas Zeuner[德].高速列车使用铝基复合材料制动圆盘.国外机车车辆工艺.1999.
    [6]日野 春树等.铁道车辆用制动盘的开发[J].国外机车车辆工艺.1994,No.1,PP:1-6.
    [7]和田,雄一等[日].新开发的制动闸片何制动盘[J].国外铁道车辆.Vol.4,1997
    [8]铁路主要技术政策[M].中国铁道出版社.2000.
    [9]孙新海等.盘形制动及其配套技术[M].中国铁道出版社,2001.
    [10]周宏军.国内外摩擦制动材料的进展[J].铁道运输科学管理.1997
    [11]宋宝韫,高飞等.高速列车制动盘材料的研究进展[J].中国铁道科学,Vol.25,No.4,2004.11-17.
    [12]齐海波,丁占来,樊云昌,姜稚清.SiC颗粒增强铝基复合材料制动盘的研究[J].复合材料学报,Vo.18,No.1,2001.
    [13]孙元德,王军.铁道车辆用制动盘早期失效原因分析及超声检测[J].物理测试.2002.Vol.4.15-18
    [14]S.S.Manson.Behavior of materials under conditions of thermal stress[J],NACA,TN2933,1953.
    [15]S.S.Manson:Machine Design,30-16,100.1958
    [16]L.E Coffin.The problem of thermal stress fatigue in austenitic steels at elevated temperatures[J].ASTM,1954;STP 165:31-52.
    [17]D.A.Spera.What is thermal fatigue[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp.3-9.
    [18]E.Velasco,R.Colas.A model for thermal fatigue in an aluminium casting alloy[J].Int.J.Fatigue Vol.17,No.6,pp.399-406,1995.
    [19]Y.C.Lin,S.C.Chen.Effect of residual stress on thermal fatigue in a type 420 martensitic stainless steel weldment[J].Journal of Materials Processing Technology,138(2003) 22-27.
    [20]王中光等译.材料的疲劳(第二版)[M].国防工业出版社.北京.1999
    [21]Kiple R C,Mackin T J,Noe S C,et al.Thermal cracking in disc brakes[J].Engineering Failure Analysis,2002(9):63-67.
    [22]刘牧众,浦维达,黄守兵.轿车制动盘磨损失效分析[J].重型汽车,1999(5):12-13.
    [23]何永乐.飞机刹车盘失效分析及技术改进[J].技术改进·技术革新,2002(5):67-68.
    [24]T.K.Kao and J.W.Richmond.Brake disc hot spotting and thermal judder:an experimental and finite element study.Int.J.of Vehicle Design,Vol.23,Nos.3/4,2000.
    [25]吴萌岭.准高速客车制动盘温度场及应力场的计算与分析(上)[J].铁道车辆,1995,33(9):6-8.
    [26]吴萌岭.准高速客车制动盘温度场及应力场的计算与分析(下)[J].铁道车辆,1995,33(9):33-38.
    [27]王文静.SiCp/A356复合材料制动盘温度场应力场数值模拟及热疲劳寿命预测[D].北京交通大学博士学位论文.2003:3-30.
    [28]黄志辉,吕换小.高速动力车制动盘制动闸片结构涉及及材料选择[J].内燃机车.Vol.8.1997.
    [29]C.H.Gao,X.Z.Lin.Transient temperature field analysis of a brake in a non-axisymmetric three-dimensional model[J].Journal of Materials Processing Technology,2002,129:513-517.
    [30]王红英,李志军,莫守形等.高速列车制动盘失效分析及材料研究的进展[J].焊接.Vol.3.2007.
    [31]郑剑云,郭晓晖,包子骞等.提速客车制动盘热应力有限元分析[J].机车车辆工艺,No.3,2002.
    [32]赵文清.高速列车“中华之星”制动盘温度场及热应力[J].兵工学报.Vol.27,No.1,Jan.2006.
    [33]杨莺,王刚.机车制动盘三维瞬态温度场与应力场仿真[J].机械科学与技术.Vol.24No.10.2005.
    [34]H.Y.Lee,J.B.Kim,B.Yoo.Green's function approach for crack propagation problem subjected to high cycle thermal fatigue loading[J].International Journal of Pressure Vessels and Piping.Vol.76,pp:487-494,1999.
    [35]林谢昭,高诚辉,黄健萌.制动工况参数对制动盘摩擦温度场分布的影响[J].工程设计学报.Vol.13 No.1,Feb.2006.
    [36]徐文娟,操光辉,吴申庆.金属基复合材料的热循环行为[J].材料科学与工程,Vol.17No.1,1999.
    [37]陈德玲,张建武,周平.高速轮轨列车制动盘热应力有限元研究[J].铁道学报.Vol.28,No.2,2006.
    [38]王文静,谢基龙等.基于循环对称结构制动盘的三维瞬态温度场仿真[J].机械工程学报.Vol.38 No.12.2002
    [39]郑建云,郭晓辉等.提速客车制动盘热应力有限元分析[J].机车车辆工艺,2002,6:4-6.
    [40]丁群,谢基龙.基于三维模型的制动盘温度场和应力场计算[J].铁道学报,2002,24(6).34-38
    [41]H.Ouyang,J.E.Mottershead,and W.Li.A moving-load model for disc-brake stability analysis[J].Journal of Vibration and Acoustics,Vol.125,No.1:53-58.
    [42]A.J.Day.An analysis of speed,temperature,and performance characteristics of automotive drum brakes[J].Transactions of the ASME,Journal of tribology,1988,110(4):298-303.
    [43]马保吉,朱均.紧急制动过程动态摩擦热源模型[J].机械科学与技术,Vol 17.1998,pp:45-47.
    [44]M.S.Liu,Q.W.Dong,D.B.Wang,X.Ling.Numerical simulation of thermal stress in tube-sheet of heat transfer equipment[J].International Journal of Pressure Vessels and Piping 76(1999) 671-675.
    [45]韩建民.强摩擦与热应力耦合服役条件下应用的SiCp/A356制动盘材料研究[D].北京交 通大学博士学位论文,2004.
    [46]姚卫星.结构疲劳寿命分析[M].国防工业出版社.北京:2004.
    [47]钱大华.3Cr2W8V钢热应力疲劳探讨[J].淮南工业学院学报.Vol.20 No.1 2000.
    [48]金属材料平面应变断裂韧度K_(IC)试验方法,GB4161-84.
    [49]马大炜.铁道车辆制动热负荷的计算及应用[J].中国铁道科学,2000年12月,pp30-37.
    [50]孔祥谦.热应力有限元单元法分析[M].上海交通大学出版社,1999.
    [51]平修二.热应力与热疲劳(基础理论与设计应用)[M].郭延玮泽.北京:国防工业出版社,1984.
    [52]谢贻权,何福保.弹性和塑性力学中的有限单元法[M].机械工业出版社,1982
    [53]Dale L.Hartsock,James W.Fash.Effect of pad/caliper stiffness,pad thickness,and pad length on thermoelastic instability in disc brakes[J].Journal of Tribology,2000,Vol.122:511-518.
    [54]饶忠.列车制动[M].北京:中国铁道出版社,1998.
    [55]杨月,谢基龙,王文静.紧急制动下高速客车铝基复合材料制动盘温度及弹塑性应力场的数值模拟.可持续发展的中国交通-全国博士生学术论坛(交通运输学科).2005年7月.
    [56]G.R Ostermeyer.Friction and wear of brake systems[J],Forschung im Ingenieurwesen 66(2001) 267-272.
    [57]K.Laden,J.D.Guerin.Frictional characteristics of Al-SiC composite brake disc[J].Tribology Letters 8(2000) 237-247.
    [58]Junichiro Yamabe,Masami Takagi.Development of disc brake rotors for trucks with high thermal fatigue strength.JSAE Review 23(2002)105-112.
    [59]A.Yevtushenko,E.Ivanyk.Determination of heat and thermal distortion in braking systems [J].Wear.185(1995)159-165.
    [60]P.G Sanders,T.M.Dalka,R.H.Basch.A reduced-scale brake dynamometer for friction characterization[J].Tribology International 34(2001)609-615.
    [61]Malak Naji and M.AL-Nimr.Dynamic thermal behavior of a brake system[J].Int.Comm.Heat Mass Transfer,Vol.28.No.6,pp.835-845,2001.
    [62]Gunther,B,Klingelhoeffer,H.A systematic study for fatigue life prediction of grey cast iron disc brakes.In:Fatigue 2000.p.397-405.
    [63]HB6660-1992金属板材热疲劳试验方法.
    [64]许珞萍,吴晓春,绍光杰,闵永安.4Cr5MoSiV1、8407钢的热疲劳性能[J].全国第七界热疲劳学术会议论文集.
    [65]Tso-Liang Teng,Chin-Ping Fung.Effect of residual stresses on the fatigue of butt joint using thermal elasto-plastic and multiaxial fatigue theory[J].Engineering failure analysis.10(2003)131-151.
    [66]Ran Guo,Huiji Shi,Zhenhan Yao.Numerical simulation of thermao-mechanical fatigue properties for particulate reinforced composite[J].Acta Mech Sinica(2005).
    [67]卢金宁,韩建民,李荣华等.300km/h高速列车高纯净锻钢制动盘材料的研究[J].铁道学报,2003,25(6):108-111.
    [68]Yong-Bok Lee,Chin-Sung Chung,Effects of redistributing residual stress on the fatigue behavior of ss330 weldment[J].Int.J.Fatigue Vol.21,No.8,pp.565-573,1998.
    [69]Y.Remond and C.Wagner.Two experimental methods to measure the damaged subsurface of carbon-carbon brake discs[J].Applied Comosite Materials 6:185-501,1999.
    [70]R.E.Abdi,H.Samrout.Anisothermal modeling applied to brake discs[J].International Journal of Non-Linear Mechanics,1999,34:795-805.
    [71]G.Donzellal,M.Scepi,L.Solazzil,et al.The effect of block braking on the residual stress state of a solid railway wheel[J].Proc Instn Mech Engrs,Part F,2001,212:145-158.
    [72]H.J.Mocqueen,M.Myshlyaev.High temperature mechanical and microstrutural behavior of A356/15 Vol%SiCp and A 356 alloy[J].Canadian Metallurgical Quarterly,Quarterly,Vol.37,No.2,pp.125-139,1998.
    [73]Xiaoxin Xia,Hugh J.McQueen and P.Sakaris.Hot deformation mechanisms in a 10%Al_2O_3 particle reinforced 6061 Al matrix composite[J].Scripta Metallugica et Materialia,Vol.32,No.8 pp.1185-1190,1995.
    [74]Q.G.Wang,D.Apelian,D.A.Lados.Fatigue behavior of A356/357 aluminum cast alloys.Part Ⅱ-Effect of microstructural constituents[J].Journal of Light Metals 1(2001)85-97.
    [75]A.Ravikiran,M.K.Surappa.Oscillations in coefficient of friction during dry sliding of A356 Al-30%wt SiCp MMC against steel[J].Scripta Materialia,Vol.36,No.1,pp.95-98,1997
    [76]H.J.Mcqueen,M.Myshlyaev,E.Konopleva.High temperature mechanical and microstructural behavior of A356/15 Vol%SiCp and A356 Alloy[J].Canadian metallurgical quarterly,Vol.37,No.2,pp.125-139,1998.
    [77]Rong Chen,Akira Iwabuchi,Tomoharu Shimizu.The effect of a T6 heat treatment on the fretting wear of a SiC particle-reinforced A356 aluminum alloy matrix composite[J].Wear 238(2000) 110-119.
    [78]郭然,施耐基,姚振汉.颗粒增强复合材料热机疲劳性能的模拟分析[J],材料工程,2003,10
    [79]杨月,谢基龙,王文静.高速客车制动盘材料SiCp/A356细观热疲劳仿真.北京交通大学学报,Vol.31 No.1,2007
    [80]Yang Yue,Xie Jilong.Research on the Thermal Fatigue Life of Notched Sample of SiCp/A356 used in the Brake Disc of High-speed Train[J].Proceeding of the lst International Conference on Enhancement and Promotion of Computational Methods in Engineering Science and Mechanics.Aug.2006.
    [81]杨月,谢基龙.高速客车SiCp/A356铝基制动盘材料的热疲劳裂纹形成与扩展试验研究.铁道学报,Vol.29 No.5 2007
    [82]航空工业部科学技术委员会.应变疲劳分析手册[M].科学出版社.1987:6-73.
    [83]Shang,Jianku.Micromechanisms of fatigue crack propagation in particulate-reinforced metal matrix composite[D].University of California,Berkeley,1989.
    [84]D.E Mowbray and J.E.McConnelee,Nonlinear analysis of Tapered disk thermal fatigue specimen.Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp.10-29
    [85]S.Tepper.Low-Cycle Fatigue analysis of the turbine disk for the national aeronautics and space administration high-temperature turbine rig[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp.38-54
    [86]D.P.H.Hasselman,R.Badaliance,E.P.Chen.Thermal fatigue and its failure prediction for brittle ceramics[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp. 55-68
    [87]D.A.Spera.Description of a computerized method for predicting thermal fatigue life of metals[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp.69-85.
    [88]M.A.H.Howes.A study of thermal fatigue mechanisms[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp.86-105
    [89]C.G.Beck,A.T.Santhanam.Effect of microstructure on the thermal fatigue resistance of a cast cobalt-base alloy,Mar-M509[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp.123-140
    [90]J.S.Laub.Some thermal fatigue characteristics of mild steel for heat exchangers[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp.141-156
    [91]S.W.Hopkins.Low-cycle thermal mechanical fatigue testing[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp.157-169
    [92]C.E.Jaske.Thermal-mechanical,low-cycle fatigue of AISI 1010 Steel[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976,pp.170-198.
    [93]A.E.Gemma,B.S.Langer.Thermomechanical fatigue crack propagation in an anisotropic nickel-base superalloy[J].Thermal fatigue of Materials and Components,ASTM STP 612.1976.pp.199-213.
    [94]刘国庆,杨庆尔.ANSYS工程应用教程[M].北京:中国铁道出版社.2003
    [95]S.aus der Wiesche.Heat transfer and thermal behavior of a rotating disk passed by a planar air stream[J].Forschung im ingenieurwsen 67(2002)161-174.
    [96]施治才,侯卫星,陈明资等.货车转向架疲劳强度规范[M].铁道部四方车辆研究所编印,1989,5.
    [97]M.Naji,M.AI-Nimr,S.Masoud.Transient thermal behavior of a cylindrical brake system[J].Heat and Mass Transfer,36(2000)45-49
    [98]M.Munz,E.Schulz,H.Sturm.Use of scanning force microscopy studies with combined friction,stiffness and thermal diffusivity contrasts for microscopic characterization of automotive brake pads[J].Surface and Interface analysis.2002;33:100-107
    [99]F.Abbasi,A.Shojaer,A.A.Katbab.Thermal interaction between polymer-based composite friction materials and counterfaces[J].Polymer-based composite friction materials and counterface.2000.
    [100]李云平,李溪滨.SiCp颗粒增强耐热铝基复合材料孔隙率与力学性能[J].中南工业大学学报.Vol.33 No.2 2002
    [101]熊黎明,李振环等.金属基复合材料中的热残余应变场及其对材料细观行为的影响.固体力学学报[J].Vol.25 No.3 2004:365-370.
    [102]丁向东,连建设等.短纤维增强金属基复合材料的热残余应力及其对拉伸和压缩载荷下应力分布的影响[J].兵工学报,2002,23(2):282-285.
    [103]Hu G K,Weng G J.Influence of thermal residual stresses on the composite macroscopic behavior[J].Mechanics of Materials,1998,27:299-240.
    [104]Valeria Cannillo.Cristina Leonelli,Aldo R.Boccaccini,Numerical models for thermal residual stresses in Al_2O_3 platelets borosilicate glass matrix composites[J].Materials Science and Engineering,2002,A323:246-250.
    [105]左涛,樊建中,肖伯律等.颗粒增强铝基复合材料疲劳断裂研究[J].稀有金属[J],2007, Vol.34.No.4.
    [106]陈传尧.疲劳与断裂[M].武汉:华中科技大学出版社,2002.
    [107]杨卫.宏微观断裂力学[M].国防工业出版社,1995
    [108]高庆.工程断裂力学[M].重庆大学出版社,1986.
    [109]程靳,赵树山.断裂力学[B].北京:科学出版社,2006.
    [110]T.D.Righiniotis,E.Omer,A.Y.Elghazouli.A simplified crack model for weld fracture in steel moment connections.Engineering Structures 24(2004) 1133-1140.
    [111]T.Ninh Hguyen,M.A.Wahab.A Theoretical study of the effect of weld geometry parameters on fatigue crack propagation life[J].Engineering Fracture Mechanics Vol.51,No.1,pp.1-18,1995
    [112]K.N.Pandey,S.Chand.An energy based fatigue crack growth model[J].International Journal of Fatigue.25(2003) 771-778
    [113]K.C.Liu,J.A.Wang.An energy method for predicting fatigue life,crack orientation,and crack growth under multiaxial loading conditions[J].International Journal of Fatigue 23(2001) s129-s134
    [114]D.L.Mcdowel.An engineering model for propagation of small cracks in fatigue[J].Engineering Fracture Mechanics.Vol.56,No.3,pp.357-377.
    [115]Iuan-Jou Yang.An impedance technique for monitoring crack propagation[J].Materials Chemistry and Physics,Vol.39,1994,pp.47-52.
    [116]S.Burande,Raju Sethuraman.Computational simulation of fatigue crack growth and demonstration of leak before break criterion.International Journal of Pressure Vessels and Piping[J].Vol.76,pp.331-338,1999
    [117]G.M.Song,Y.Zhou,Y.Sun & T.C.Lei.Computer simulation of crack propagation in whisker-reinforced ceramic composites[J].Ceramics International 24(1998) 455-460.
    [118]徐文娟,吴申庆.Al_2O_3sf/ZL109复合材料的热疲劳短裂纹的扩展行为[J].中国有色金属学报.Vol.10,No.2,2000
    [119]王燕群,刘应华,杨海元.考虑材料循环塑性的疲劳裂纹扩展模拟[J].力学学报.Vol.29,No.3,1997
    [120]王泳廉.利用疲劳裂纹扩展速率估算断裂韧性[J].航空学报.Vol.18,No.6,1997.
    [121]张文孝,郭成壁.铝合金的热疲劳特性及断裂力学计算分析[J].固体力学学报.Vol.23,No.3.2002.
    [122]蒋鸣晓,朱位秋.疲劳裂纹扩展随机模型研究近期进展[J].力学进展.Vol.29,No.1,1999.
    [123]郭平,胡宏玖等.塑性应变疲劳裂纹扩展研究进展[J].上海大学学报.Vol.3,No.5,1997.
    [124]刘东学,谢志刚等.表面裂纹受拉伸板三维弹塑性有限元分析模型及其J积分[J].大连理工大学学报.Vol.38,No.2,1998.
    [125]谈金祝,于红梅,周骥.复合型裂纹张开位移和裂尖附近塑性区域的有限元分析[J].南京化工大学学报.Vol.19,No.4,1997.
    [126]张式程,马维甸等.宏观力学性能不均匀裂纹体弹塑性断裂行为的有限元分析[J].机械强度.Vol.11,No.3,1998.
    [127]尹奇志,肖金生等.孔边应力集中和裂纹尖端应力强度因子的有限元分析[J].武汉理 工大学学报.Vol.26,No.1,2002.
    [128]应力强度因子手册[M].中国航空研究院.
    [129]D.M.Knowles,J.E.King.The influence of ageing on fatigue crack growth in SiC particulate reinforced 8090.Acta Metallurgica et Materialia,Vol.39 May 1991,p:793-806.
    [130]K.Sadananda,A.K.Vasudevan,I.W.Kang.Effect of superimposed monotonic fracture modes on the △K and △K_(max) parameters of fatigue crack propagation[J].Acta Materialia.51(2003) 3399-3414.
    [131]Daniel Kujawski.Utilization of partial crack closure for fatigue crack growth modeling[J].Engineering Fracture Mechanics.69(2002) 1315-1324.
    [132]贺斌,傅祥炯.循环压载下缺口旁疲劳裂纹扩展[J].机械强度.Vol.19,No.2,1997.
    [133]压力容器评定规范编制组.乐力容器缺陷评定规范CVDA-1984,压力容器,第2卷第1期,1985.
    [134]D.N.dell'Erba,M.H.Aliabadi.Three-dimensional thermo-mechanical fatigue crack growth using BEM[J].International Journal of Fatigue.22(2000) 261-273.
    [135]G.Bussu,P.E.Irving.The role of residual stress and heat affected zone properties on fatigue crack propagation in friction stir welded 2024-T351 aluminium joints[J].International Journal of Fatigue 25(2003) 77-88.
    [136]Y.W.Kwon,J.H.Lee,C.T.Liu.Study of damage and crack in particulate composites[J].Composites.1998.
    [137]Zhiqiang Wang,Toshio Nakamura.Simulations of crack propagation in elastic-plastic graded materials[J].Mechanics of Materials.36(2004) 601-622.
    [138]Li C.and Ellyin F.Short crack growth behaviour in a particulate-reinforced aluminium alloy composite[J].Metall.Mater.Trans.A(1995),3177-3182.
    [139]S.Tasgetiren,K.Aslantas.A numerical study of the behavior of surface cracks under dry-sliding conditions[J].Materials & Design.24(2003) 273-279.
    [140]W.S.Blackburn,W.S.Hall.Numerical simulation of the initiation and growth of new fatigue cracks following crack intersections[J].Int.J.Fatigue,Vol.17,No.6,pp.437-446,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700