用户名: 密码: 验证码:
微弯延伸裂纹断裂特性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论上比较精确地研究了弯曲延伸裂纹尖端塑性区域边界上正应力和剪应力的分布状况。综合考虑了静态作用应力,塑性区域边界上的正应力和剪应力,利用二阶摄动方法,研究分析了弯曲延伸裂纹尖端塑性区域的范围。利用二阶摄动方法与卡氏定理比较精确地计算了弹塑性弯曲延伸裂纹尖端的张开位移。以弯曲延伸裂纹尖端塑性区域的边界曲线为积分回路,求解了弹塑性弯曲延伸裂纹尖端的J积分
     本文利用二阶摄动方法分析研究了疲劳载荷作用下弯曲延伸裂纹尖端应力强度因子的变化幅度,进一步得到了疲劳载荷作用下弯曲延伸裂纹尖端应力强度因子变化幅值的近似表达式。以匹配渐进扩张的形式考虑了远场区域边界条件的效果,研究了弯曲延伸裂纹尖端附近的渐进应力场。利用Irwin公式计算出由于裂纹发展而引起的应变能释放率变化幅值。研究了在具有非均匀断裂韧度的物质中裂纹的弯曲延伸。考虑了疲劳载荷、残余应力、以及由于焊接而引起的物质衰变等因素,利用了二阶摄动方法预测了沿着焊接点传播的线弹性裂纹路径。
     本文从理论上比较精确地研究了疲劳载荷作用下弯曲延伸裂纹尖端塑性区域边界上的交变正应力和交变剪应力的分布状况。综合考虑了疲劳作用应力,塑性区域交变正应力和交变剪应力,利用二阶摄动方法,研究分析了疲劳载荷作用下弯曲延伸裂纹尖端塑性区域的范围。利用二阶摄动方法与卡氏定理计算了疲劳载荷作用下弯曲延伸裂纹尖端张开位移的最大值及变化幅值。以弯曲延伸裂纹尖端塑性区域的边界曲线为积分回路,求解了疲劳载荷作用下弹塑性弯曲延伸裂纹尖端J积分的最大值与变化幅值。
     本文利用二阶摄动方法研究计算了轻微弯曲延伸裂纹尖端动态应力强度因子,进一步得到了在动态载荷作用下弯曲延伸裂纹尖端动态应力强度因子的近似表达式。以匹配渐进扩张的形式考虑了远区域动态边界条件的效果,研究了弯曲延伸裂纹尖端附近的动态渐进应力场。利用Irwin公式计算出由于弯曲延伸裂纹扩展而产生的动态应变能释放率。预测了动态载荷作用下,在具有非均匀断裂韧度的物质中裂纹的弯曲延伸扩展。全面考虑了远场动态载荷、残余应力、以及由于焊接而引起的物质衰变等因素,利用二阶摄动方法预测了动载荷作用下沿着焊接点传播的线弹性裂纹路径。利用二阶摄动方法研究了动态载荷作用下的工程结构中线弹性裂纹弯曲延伸问题。
     本文理论上比较精确地研究了动载荷作用下弯曲延伸裂纹尖端塑性区域的范围和塑性区域边界上的动态正应力和动态剪应力的分布状况。综合考虑了动态作用应力,塑性区域边界上的动态正应力和动态剪应力,利用二阶摄动方法与卡氏定理精确地推导出动载荷作用下弹塑性弯曲延伸裂纹尖端张开位移关于时间变化的函数表达式;以弯曲延伸裂纹尖端塑性区域的边界曲线为积分回路,研究了动载荷作用下弹塑性弯曲延伸裂纹尖端动态J积分。
In this article, the distributing state of normal and shear stresses on the boundaries of plasticity area of curved extension crack tip has been worked over theoretically and accurately. Plasticity area at the tip of the curved extension crack has been studied and analyzed. Elasticity-plasticity curved extension crack tip opening displacement are calculated as a practical application of the second order perturbation method、theorem of surname KA. Elasticity-plasticity curved extension crack tip J integral are calculated making use of the boundary curve of splinter strip plasticity area of original curved extension crack tip as an integral loop,where the effects of static applied stresses,normal and shear stresses on the boundaries of plasticity area of curved extension crack tip are taken into considerations.
     Amplitude of stress intensity factors is analyzed for a slightly curved crack by using a second order perturbation method. This method is extended to obtain an approximate representation of the amplitude of stress intensity factors at the tip of slightly curved extension crack under cyclic loading. Having examined the near tip asymptotic stress field,effects of the remote boundary conditions are taken into account in the sense of a matched asymptotic expansion. Amplitude of an energy release rate due to the crack growth can be calculated by using Irwin’s formula. Prediction of crack extension in materials with inhomogeneous fracture toughness is considered. Paths of brittle crack propagation along a welded joint are predicted as an application of the method, where the effects of cyclic loading, residual stresses, and material deterioration due to welding are considered.
     In this article, the distributing state of cyclic normal stresses and cyclic shear stresses on the boundaries of plasticity area at fatigue curved extension crack tip has been worked over theoretically and accurately. Plasticity area at the tip of fatigue curved extension crack has been studied and analyzed. Maximum and amplitude of fatigue curved extension crack tip opening displacement are calculated as a practical application of the second order perturbation method、theorem of surname KA. Maximum and amplitude of fatigue curved extension crack tip J integral are calculated using the boundary curve of plasticity area of original curved extension crack tip as an integral loop,where the effects of cyclic applied stresses, cyclic normal stresses and cyclic shear stresses on the boundaries of plasticity area at fatigue curved extension crack tip are taken into considerations.
     Dynamic stress intensity factors are analyzed for slightly curved extension crack by means of a second order perturbation method. The method is extended to obtain an approximate representation of dynamic stress intensity factors at the tip of slightly curved extension crack. Having examined the near tip asymptotic stress field,the effects of far field boundary conditions are taken into account in the sense of a matched asymptotic expansion. An dynamic energy release rate due to curved extension crack growth can be calculated by using Irwin’s formula. Considerations are made for growth of curved extension crack in materials with inhomogeneous fracture toughness. Paths of brittle cracks propagating along a welded joint are predicted as a practical application of the present method, where the effects of dynamic applied stresses, residual stresses, and material deterioration due to welding are taken into considerations.
     In this article, plasticity area at the tip of curved extension crack tip and the distributing state of dynamic normal stresses and dynamic shear stresses on the boundaries of it has been worked over theoretically and accurately. Function expression concerning time of elasticity-plasticity curved extension crack tip opening displacement under dynamic loads are deduced as a practical application of the second order perturbation method、theorem of surname KA;Dynamic J integral of elasticity-plasticity curved extension crack tip under dynamic loads are studied using the boundary curve of plasticity area of original curved extension crack tip as an integral loop,where the effects of dynamic applied stresses,dynamic normal stresses and dynamic shear stresses on the boundaries of plasticity area of curved extension crack tip are taken into considerations.
引文
[1]郦正能,何庆芝.工程断裂力学[M].北京:北京航空航天大学出版社, 1993
    [2] Griffith A A. The Phenomena of Ruptrue and Flow in Solid [J]. Philosophical Transaction of Royal Society of London, 1921 (A221): 163 -197
    [3] Irwin G R. Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate [J]. Journal of Applied Mechanics, 1957 (22 ): 361-364
    [4] Irwin G R, Kies J A, Smith H L. Fracture Strengths Relative to Onset and Arrest of Crack Propagation [J]. Proceedings of the American Society for Testing Materials, 1958 (58): 640-657
    [5] Wells A A. Application of Fracture Mechanics at and Beyond General Yielding [J]. British Welding Journal, 1963 (10): 563 -570
    [6] Rice J R. A Path Independent Integral and the Approximate Analysis of strain Concentrations by Notches and Cracks [J]. Journal of Applied Mechanics, 1968(35 ): 379 ~386
    [7] Hutchinson J W. Singular Behavior at the End of a Tensile Crack in a Hardening Material [J]. Journal of the Mechanics and Physics of Solids, 1968 (16): 13-31
    [8] Rice J R, Rosengren G F. Plane Strain Deformation Near Crack Tip in a Power– Law Hardening Material [J]. Journal of the Mechanics and Physics of Solids, 1968 (16): 1 -12
    [9] Paris P C et al. A Rational Analytic Theory of Fatigue [J]. The Trend in Engineering, 1961(13): 9 -14
    [10] N F Mott. Engineering [J]. 1948 (168) : 10-15
    [11] E Y Yoffe. Phil Mag [J]. 1951 (42) : 739-750
    [12] Banichuk N V. Determination of the form of a curvilinear crack by small parameter technique, Izv [J]. An SSSR MTT, 1970(7-2) : 130-137 (in Russian)
    [13] Goldstein R V, Salganik R L. Plane problem of curvilinear cracks in an elastic solid, Izv [J]. An SSSR MTT, 1970(7-3) : 69-82 (in Russian)
    [14] Goldstein R V, Salganik R L. Brittle fracture of solids with arbitrary cracks [J]. Int. J. Fracture, 1974 (10) : 507-523
    [15] Cotterell B, Rice J R. Slightly curved or kinked cracks [J]. Int. J. Fracture, 1980 (16) : 155-169
    [16] Karihaloo B L, Keer L M, Nemat-Nasser S, Oranratnachai A. Approximate description of crack Kinking and curving [J]. J. Appl. Mech., 1981(48): 515-519
    [17] Sumi Y, Nemat-Nasser S, Keer L M. On crack branching and curving in a finite body [J]. Int. J. Fracture, 1983 (21) : 67-79 ; Erratum, Int, J. Fracture, 1984(24): 159
    [18] Sumi Y. A note on the first order perturbation solution of a straight crack with slightly branched and curved extension under a general geometric and loading condition [J]. Engng. Fracture Mech, 1986 (24) : 479-481
    [19] Yoichi Sumi. A second order perturbation solution of a Non-Collinear crack and its application to crack path prediction of brittle fracture in weldment [J]. J. S. N. A. Japan, June 1989 (165), Dec. 1989 (166)
    [20] Wu C H. Explicit asymptotic solution for the maximum-energy-release-rate problem [J]. Int. J. Solids Structures, 1979 (15) : 561-566
    [21] Amestoy M, Leblond J B. On the criterion giving the direction of propagation of cracks in the Griffith theory [J]. Comptes Rendus, 1985, 301(2) : 969-972 ( in French)
    [22]贾斌,王振清,李永东. I型定常扩展裂纹尖端的弹黏塑性场[J].力学学报, 2005, 37 (4) : 421-427
    [23]贾斌,王振清,李永东等.稳恒扩展裂纹尖端的弹粘塑性场[J].应用力学学报, 2003, 20 (1) : 64- 69
    [24]姜翠香,赵耀,刘土光.含中心裂纹的有限加筋板Dugdale模型[J].中国造船, 2004, 45 (1) : 65-70
    [25]姜翠香,赵耀,刘土光.含裂纹损伤部分加筋板应力强度因子分析[J].中国造船,增刊, 2004 (44) : 387-393
    [26]张雪霞,杨维阳.关于各向异性纤维复合材料板III,混合型裂纹尖端的应变能释放率[J].太原重型机械学院学报, 2003, 24 (3) : 180-186
    [27]陈梦成,张安哥,野田尚昭.压电材料中三维I型断裂力学分析[J].力学学报, 2005, 37 (1) : 15- 24
    [28]郭树祥,许希武.任意多孔多裂纹有限大板的应力强度因子分析[J].固体力学学报, 2005, 26 (3) : 351- 358
    [29]李永东,张男,唐立强等.裂纹面摩擦接触引起的断裂韧性增长的研究[J].力学学报, 2005, 37 (3) : 280 -286
    [30]汤任基,秦太验.三维断裂力学的超奇异积分方程方法[J].力学学报, 1993, 25 : 665 - 675
    [31] Khalil Mohamed, Topper T H. Prediction of crack opening stress levels for 1045 quenched and tempered steel under service loading spectra [J]. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29 (1) : 3-10
    [32]李英治,柳春图. Reissner型板裂纹尖端应力应变场及应力强度因子计算[J].力学学报, 1984, 16 (4) : 351- 362
    [33] Lim B S, Jeong C S, Bae S Y, Song S J, Kim Y H. Prediction of creep crack growth life using backward radiated ultrasound [J]. Fracture and Strength of Solids, 2006 (5): 1025-1030
    [34] Zheng J J, Zhou X Z, Xu S L. Prediction of crack width of chloride contaminated reinforced concrete structures [J]. Environmental Ecology and Technology of Concrete, 2006 (302-303) : 610-617
    [35] Van Gils M A J, Van Driel W D, Zhang G Q, Van Silfhout R B R, Ernst L J. Prediction of crack growth in IC passivation layers [J]. Microelectronics Reliability, 2004, 44 (12) : 2003-2009
    [36] Lee Sang-Ho, Yoon Young-Cheol. Numerical prediction of crack propagation by an enhanced element-free Galerkin method [J]. Nuclear Engineering and Design, 2004, 227 (3) : 257-271
    [37] Isaksson P, Stahle P. Prediction of shear crack growth direction under compressive loading and plane strain conditions [J]. International Journal of Fracture, January, 2002, 113 (2) : 175-194
    [38] Richard H A, Fulland M, Sander M. Theoretical crack path prediction [J]. Fatigue and Fracture of Engineering Materials and Structures, 2005, 28 (1-2) : 3-12
    [39]柳春图,张瑞重. Reissner型板中应力强度因子的近似方程和近似解法[J].力学学报, 1988, 20 (6) : 515- 521
    [40] Seyedi Mohammad, Taheri Said, Hild Francois. Numerical modeling of crack propagation and shielding effects in a striping network [J]. Nuclear Engineering and Design, 2006, 236 (9) : 954-964
    [41] Kwak Hyo-Gyoung, Ha Soo-Jun. Non-structural cracking in RC walls: Part II. Quantitative prediction model [J]. Cement and Concrete Research, 2006, 36 (4) : 761-775
    [42]黎之奇,柳春图,胡振威.含表面裂纹尖端应力强度因子的三维光弹分析[J].实验力学, 1991, 6 (4) : 347- 354
    [43] Saintier N, Cailletaud G, Piques R. Multiaxial fatigue life prediction for a natural rubber [J]. International Journal of Fatigue, 2006, 28 (5-6) : 530-539
    [44] Choi S R, Nemeth N N, Gyekenyesi J P. Slow crack growth of brittle materials with exponential crack velocity under cyclic fatigue loading [J]. International Journal of Fatigue, 2006, 28 (2) : 164-172
    [45] Lin S-H, Pan J, Wung P, Chiang J. A fatigue crack growth model for spot welds under cyclic loading conditions [J]. International Journal of Fatigue, 2006, 28 (7) : 792-803
    [46] Zuo Q H, Addessio F L, Dienes J K, Lewis M W. A rate-dependent damage model for brittle materials based on the dominant crack [J]. International Journal of Solids and Structures, 2006, 43 (11-12) : 3350-3380
    [47] Zine Adil, Benseddiq N, Nait Abdelaziz M, Ait Hocine N, Bouami D. Prediction ofrubber fatigue life under multiaxial loading [J]. Fatigue and Fracture of Engineering Materials and Structures, 2006, 29 (3) : 267-278
    [48] Huo C Y, Yang X B, Zhang Z, Maitirouzi J, Feng Y R, Zhang C J. The FEM simulation and full-scale blast tests for crack deceleration in gas pipeline [J]. Fracture and Strength of Solids, 2006 (6) : 85-90
    [49] Myotyri E, Pulkkinen U, Simola K. Application of stochastic filtering for lifetime prediction [J]. Reliability Engineering and System Safety, 2006, 91 (2) : 200-208
    [50] Zhang X B, Ma S, Recho N, Li J. Bifurcation and propagation of a mixed-mode crack in a ductile material [J]. Engineering Fracture Mechanics, 2006, 73 (13) : 1925-1939
    [51] Kim Sang Tae, Tadjiev Damir, Yang Hyun Tae. Fatigue life prediction under random loading conditions in 7475-T7351 aluminum alloy using the RMS model [J]. International Journal of Damage Mechanics, 2006, 15 (1) : 89-102
    [52] Choi D H, Choi H Y, Lee D. Fatigue life prediction of in-plane gusset welded joints using strain energy density factor approach [J]. Theoretical and Applied Fracture Mechanics, 2006, 45 (2) : 108-116
    [53] Wu ZhiXue. The shape of a surface crack in a plate based on a given stress intensity factor distribution [J]. International Journal of Pressure Vessels and Piping, 2006, 83 (3) : 168-180
    [54] Datsyshyn O P, Kadyra V M. A fracture mechanics approach to prediction of pitting under fretting fatigue conditions [J]. International Journal of Fatigue, 2006, 28 (4) : 375-385
    [55] Sumant P S, Maiti S K. Crack detection in a beam using PZT sensors [J]. Smart Materials and Structures, 2006, 15 (3) : 695-703
    [56] Yatomi M, O’Dowd N P, NikBin K M, Webster G A. Theoretical and numerical modelling of creep crack growth in a carbon-manganese steel [J]. Engineering Fracture Mechanics, 2006, 73 (9): 1158-1175
    [57] Nara Y, Kaneko K. Sub-critical crack growth in anisotropic rock [J]. International Journal of Rock Mechanics and Mining Sciences, 2006, 43 (3) : 437-453
    [58] Lam P-S, Kim Y, Chao Y J. The non-constant CTOD/CTOA in stable crack extension under plane-strain conditions [J]. Engineering Fracture Mechanics, 2006, 73 (8) : 1070-1085
    [59] Lados Diana A, Apelian Diran. The effect of residual stress on the fatigue crack growth behavior of Al-Si-Mg cast alloys - Mechanisms and corrective mathematical models [J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37(1): 133-145
    [60] Yoon Kee Bong, Park Tae Gyu, Saxena Ashok. Elevated temperature fatigue crack growth model for DS-GTD-111 [J]. Strength, Fracture and Complexity, 2006, 4 (1): 35-40
    [61] Tvergaard Viggo, Legarth Brian Nyvang. Crack growth resistance for anisotropic plasticity with non-normality effects [J]. International Journal of Solids and Structures, 2006, 43 (7-8) : 2160-2173
    [62] Link Richard E. Analysis of dynamic fracture and crack arrest of an HSLA steel in an SE(T) specimen [J]. Journal of ASTM International, 2006, 3 (1) : 63-88
    [63] Tabuchi M, Ha J C, Yokobori Jr A T. Creep crack growth properties of welded joints for 12Cr ferritic steel [J]. Strength, Fracture and Complexity, 2006, 4(1): 47-54
    [64] Feng Miaolin, Ding Fei, Jiang Yanyao. A study of loading path influence on fatigue crack growth under combined loading [J]. International Journal of Fatigue, 2006, 28 (1): 19-27
    [65] Yeh H-Y, Cheng J-H. Forming limits prediction of the sheet metal forming process by the energy-based damage model [J]. Journal of Mechanics, 2006, 22 (1) : 43-50
    [66] Suyitno, Eskin D G, Katgerman L. Hermal contraction of AA5182 for prediction of ingot distortions [J]. Fracture and Strength of Solids, 2006 (6) : 977-982
    [67] Heyder M, Kuhn G. 3D fatigue crack propagation: Experimental studies [J].International Journal of Fatigue, 2006, 28 (5-6) : 627-634
    [68] Tanaka Keisuke, Takahash Hiroki, Akiniwa Yoshiaki. Fatigue crack propagation from a hole in tubular specimens under axial and torsional loading [J]. International Journal of Fatigue, 2006, 28 (4) : 324-334
    [69] Xie De, Biggers Jr, Sherrill B. Strain energy release rate calculation for a moving delamination front of arbitrary shape based on the virtual crack closure technique. Part I: Formulation and validation [J]. Engineering Fracture Mechanics, 2006, 73 (6) : 771-785
    [70] Yang Zhenjun. Fully automatic modelling of mixed-mode crack propagation using scaled boundary finite element method [J]. Engineering Fracture Mechanics, 2006, 73 (12) : 1711-1731
    [71] Wormsen A, Fjeldstad A, Harkegard G. The application of asymptotic solutions to a semi-elliptical crack at the root of a notch [J]. Engineering Fracture Mechanics, 2006, 73 (13) : 1899-1912
    [72]靳志和,余寿文.理想弹塑性材料平面应力I型裂纹尖端的弹塑性场[J].力学学报, 1987, 19 : 483- 487
    [73] Kalnaus Sergiy, Jiang Yanyao. Fatigue life prediction of copper single crystals using a critical plane approach [J]. Engineering Fracture Mechanics, 2006, 73 (6) : 684-696
    [74] Rinaldi A, Peralta P, Krajcinovic D, Lai Y-C. Prediction of scatter in fatigue properties using discrete damage mechanics [J]. International Journal of Fatigue, 2006, 28 (9) : 1069-1080
    [75] Spatschek Robert, Hartmann Miks, Brener Efim, Muller-Krumbhaar Heiner, Kassner Klaus. Phase field modeling of fast crack propagation [J]. Physical Review Letters, 2006, 96 (1) : 015502
    [76]高玉臣.理想塑性介质中裂纹定常扩展的弹塑性场[J].力学学报, 1980, 12 (1) : 48- 56
    [77] Lu Shuanlu, Han Yong, Qin Changyi, Yuan Pengbin, Zhao Xinwei, Luo Jinheng.Crack and fitness-for-service assessment of ERW crude oil pipeline [J]. Engineering Failure Analysis, 2006, 13 (4) : 565-571
    [78] Cao G, Kou S. Predicting and reducing liquation-cracking susceptibility based on temperature vs. fraction solid [J]. Welding Journal (Miami, Fla), 2006, 85 (1) : 9-s-18-s
    [79] Bae Y-H, Leet J-H, Yoon Y-S. Prediction of shear strength in high-strength concrete beams considering size effect [J]. Magazine of Concrete Research, 2006, 58 (4) : 193-200
    [80] Jayadevan K R, Berg Espen, Thaulow Christian, Ostby Erling, Skallerud Bjorn. Numerical investigation of ductile tearing in surface cracked pipes using line-springs [J]. International Journal of Solids and Structures, 2006, 43 (7-8) : 2378-2397
    [81]高玉臣,张晓堤,黄克智.幂强化材料中III型扩展裂纹的奇异场[J].力学学报, 1981, 12 (5) : 452- 464
    [82] Wang Xiaodu, Qian Chunjiang. Prediction of microdamage formation using a mineral-collagen composite model of bone [J]. Journal of Biomechanics, 2006, 39 (4) : 595-602
    [83]唐立强,蔡艳红.蠕变材料I型动态扩展裂纹尖端场[J].力学学报, 2005, 37 (5) : 573 - 578
    [84] Morris Peter H, Dux Peter F. Crack depths in desiccating plastic concrete [J]. ACI Materials Journal, 2006, 103 (2) : 90-96
    [85] Li R, Kardomateas George A. A solution to the thermo-elastic interface crack branching in dissimilar anisotropic bi-material media [J]. International Journal of Solids and Structures, 2006, 43 (5) : 913-942
    [86] Tahir S M, Ariffin A K. Simulation of crack propagation in metal powder compaction [J]. International Journal of Computational Methods in Engineering Science and Mechanics, 2006, 7 (4) : 293-302
    [87] Ariffin A K, Tahir S M. Modelling of crack propagation in metal powder compact [J]. Fracture and Strength of Solids, 2006 (6) : 97-102
    [88] Nikbin K M. Development of a creep/fatigue crack growth testing Code of Practice for components [J]. Strength, Fracture and Complexity, 2006, 4 (1) : 3-14
    [89] Guechichi H, Castex L. Fatigue limits prediction of surface treated materials [J]. Journal of Materials Processing Technology, 2006, 172 (3) : 381-387
    [90] Pham Huy Binh, Al-Mahaidi Riadh. Prediction models for debonding failure loads of carbon fiber reinforced polymer retrofitted reinforced concrete beams [J]. Journal of Composites for Construction, 2006, 10 (1) : 48-59
    [91] Davies G A O, Hitchings D, Ankersen J. Predicting delamination and debonding in modern aerospace composite structures [J]. Composites Science and Technology, 2006, 66 (6) : 846-854
    [92]唐立强,蔡艳红,刘长海.粘弹性材料III型动态扩展裂纹尖端场[J].哈尔滨工程大学学报, 2002, 23 (1) : 108 - 112
    [93]王振清.弹黏塑性材料的动态裂尖场[J].力学学报, 1993, 25 (3) : 159 ~ 168
    [94] Sinha Sunil K, Fieguth Paul W. Automated detection of cracks in buried concrete pipe images [J]. Automation in Construction, 2006, 15 (1) : 58-72
    [95] Khandelwal Ratnesh, Kishen J M Chandra. Complex variable method of computing Jk for bi-material interface cracks [J]. Engineering Fracture Mechanics, 2006, 73 (11) : 1568-1580
    [96] Kwak Hyo-Gyoung, Kim Do-Yeon. Cracking behavior of RC panels subject to biaxial tensile stresses [J]. Computers and Structures, 2006, 84 (5-6) : 305-317
    [97] Hunter L L, Skala D M, Levey B S. Investigation of sidewall cracking in PMMA LIGA structures [J]. Journal of Micromechanics and Microengineering, 2006, 16 (7) : 1181-1188
    [98] Jia Junhui, Davalos Julio F. An artificial neural network for the fatigue study of bonded FRP - Wood interfaces [J]. Composite Structures, 2006, 74 (1) : 106-114
    [99] Flesher Nathan D, Herakovich Carl T. Predicting delamination in composite structures [J]. Composites Science and Technology, 2006, 66 (6) : 745-754
    [100] Xiao Zhi-Gang, Yamada Kentaro, Inoue Jirou, Yamaguchi Kouta. Fatigue cracks in longitudinal ribs of steel orthotropic deck [J]. International Journal of Fatigue, 2006, 28 (4) : 409-416
    [101] Rodopoulos C A. Evolution of fatigue damage using the fatigue damage map method [J]. Theoretical and Applied Fracture Mechanics, 2006, 45 (3) : 252-265
    [102] Chang Jun, Xu Jin-Quan, Mutoh Yoshiharu. A general mixed-mode brittle fracture criterion for cracked materials [J]. Engineering Fracture Mechanics, 2006, 73 (9) : 1249-1263
    [103] Loutridis S J. Instantaneous energy density as a feature for gear fault detection [J]. Mechanical Systems and Signal Processing, 2006, 20 (5) : 1239-1253
    [104] Chan Kwai S, Koike Marie, Okabe Toru. Grindability of Ti alloys [J]. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2006, 37 (4) : 1323-1331
    [105] Zhou Shunxin, Liu Guanglian, Cao Yuanfeng. Discussion of theoretical methods to predict scale thickness in hot rolling of steel strips [J]. Steel Research International, 2006, 77 (5) : 336-341
    [106] Schijve J. Statistical distribution functions and fatigue of structures [J]. International Journal of Fatigue, 2005, 27 (9) : 1031-1039
    [107] Gimenes Evandro, Fernandez Gabriel. Hydromechanical analysis of flow behavior in concrete gravity dam foundations [J]. Canadian Geotechnical Journal, 2006, 43 (3) : 244-259
    [108] Tlemat H, Pilakoutas K, Neocleous K. Modelling of SFRC using inverse finite element analysis [J]. Materials and Structures/Materiaux et Constructions, 2006, 39 (286) : 221-233
    [109] Nowell David, Dini D, Hills D A. Recent developments in the understanding offretting fatigue [J]. Engineering Fracture Mechanics, 2006, 73 (2) : 207-222
    [110] Cui Y Q, Yang W. Interplay between fracture and domain switching of ferroelectrics [J]. Fracture and Strength of Solids, 2006 (6) : 501-510
    [111] Taylor David, Cornetti Pietro, Pugno Nicola. The fracture mechanics of finite crack extension [J]. Engineering Fracture Mechanics, 2005, 72 (7) : 1021-1038
    [112] Gaier Christian. A statistical measure of the non-proportionality of stresses -investigations and applications [J]. Materialpruefung/Materials Testing, 2006, 48 (3) : 94-98
    [113] Zacharopoulos D A. Stability analysis of crack path using the strain energy density theory [J]. Theoretical and Applied Fracture Mechanics, 2004, 41 (1-3) : 327-337
    [114] Monnickendam Alan. The Paddington bridge project - Reconstruction of Bishop's bridge road overbridge [J]. Concrete (London), 2006, 40 (5) : 24-25
    [115] Sumpter J D G, Kent J S. Fracture toughness of grade D ship steel [J]. Engineering Fracture Mechanics, 2006, 73 (10) : 1396-1413
    [116] Jin Z-H, Sun C T. A comparison of cohesive zone modeling and classical fracture mechanics based on near tip stress field [J]. International Journal of Solids and Structures, 2006, 43 (5) : 1047-1060
    [117] Tan K H, Cheng G H. Size effect on shear strength of deep beams: Investigating with strut-and-tie model [J]. Journal of Structural Engineering, 2006, 132 (5) : 673-685
    [118] Yi Tianyi, Moon Franklin L. Lateral load tests on a two-story unreinforced masonry building [J]. Journal of Structural Engineering, 2006, 132 (5) : 643-652
    [119] Wang Jianxin, Landis Chad M. Domain switch toughening in polycrystalline ferroelectrics [J]. Journal of Materials Research, 2006, 21 (1) : 13-20
    [120] MacDougall Colin, Green Mark F, Shillinglaw Scott. Fatigue damage of steel bridges due to dynamic vehicle loads [J]. Journal of Bridge Engineering, 2006, 11 (3) : 320-328
    [121] Homan J J. Fatigue initiation in fibre metal laminates [J]. International Journal of Fatigue, 2006, 28 (4) : 366-374
    [122] Molleda F, Mora J, Molleda F J, Carrillo E, Mellor B G. Stress trajectories for Mode I fracture [J]. Materials Characterization, 2005, 54(1): 9-12
    [123] Pineau Andre. Development of the local approach to fracture over the past 25 years: Theory and applications [J]. International Journal of Fracture, 2006, 138 (1-4) : 139-166
    [124] Rajasankar J, Lyer Nagesh R. A probability-based model for growth of corrosion pits in aluminium alloys [J]. Engineering Fracture Mechanics, 2006, 73 (5) : 553-570
    [125] Rao B N, Rahman S. A continuum shape sensitivity method for fracture analysis of isotropic functionally graded materials [J]. Computational Mechanics, 2006, 38 (2) : 133-150
    [126] Campagne Laurence, Daridon Loic, Ahzi Said. A physically based model for dynamic failure in ductile metals [J]. Mechanics of Materials, 2005, 37 (8) : 869-886
    [127] Schumacher Ann, Nussbaumer Alain. Experimental study on the fatigue behaviour of welded tubular K-joints for bridges [J]. Engineering Structures, 2006, 28 (5) : 745-755
    [128] Leicester R H. Application of linear fracture mechanics to notched timber elements [J]. Progress in Structural Engineering and Materials, 2006, 8 (1) : 29-37
    [129] Zhang Yongqiang, Lu Yong, Ma Guowei. Investigation of dynamic response of brittle materials under high-rate loading [J]. Mechanics Research Communications, 2006, 33 (3) : 359-369
    [130] Susmel Luca, Taylor David. A simplified approach to apply the theory of critical distances to notched components under torsional fatigue loading [J]. International Journal of Fatigue, 2006, 28 (4) : 417- 430
    [131] Lee Jae Bong, Park Jai Hak, Lee Sung Ho, Kim Hong-Deok, Chung Han-Sub. Prediction of crack growth in steam generator tubes using monte carlo simulation [J]. CMES - Computer Modeling in Engineering and Sciences, 2006, 11(1) : 9-16
    [132] Carpinteri Alberto, Paggi Marco, Pugno Nicola. Numerical evaluation of generalized stress-intensity factors in multi-layered composites [J]. International Journal of Solids and Structures, 2006, 43 (3-4) : 627-641
    [133] Negre P, Steglich Dirk, Brocks W. Crack extension at an interface: Prediction of fracture toughness and simulation of crack path deviation [J]. International Journal of Fracture, 2005, 134 (3-4) : 209-229
    [134] Pokrovskii V V, Ezhov V N, Sidyachenko V G. Theoretical-experimental model for predicting crack growth rate in structural alloys of aircraft gas turbine engine disks with regard to fatigue and creep [J]. Strength of Materials, 2005, 37 (6) : 558-565
    [135] Hampton Roy W, Nelson Drew. Stable crack growth and instability prediction in thin plates and cylinders [J]. Engineering Fracture Mechanics, 2003, 70 (3-4) : 469-491
    [136] Murtagian G R, Ernst H A. Dynamic axial crack propagation in steel line pipes. Part II: Theoretical developments [J]. Engineering Fracture Mechanics, 2005, 72 (16) : 2535-2548
    [137] Ma Lifeng, Korsunsky Alexander M. On the use of vector J-integral in crack growth criteria for brittle solids [J]. International Journal of Fracture, 2005, 133 (4) : L39-L46
    [138] Serebrinsky S, Ortiz M. A hysteretic cohesive-law model of fatigue-crack nucleation [J]. Scripta Materialia, 2005, 53 (10) : 1193-1196
    [139] Nairn John A. Simulation of crack growth in ductile materials [J]. Engineering Fracture Mechanics, SPEC. ISS., 2005, 72 (6) : 961-979
    [140] Tarantino Angelo Marcello. Crack propagation in finite elastodynamics [J]. Mathematics and Mechanics of Solids, 2005, 10 (6) : 577-601
    [141] Park J S, Kim S J, Kim K H, Park S H, Lee C S. A microstructural model for predicting high cycle fatigue life of steels [J]. International Journal of Fatigue, 2005, 27 (9) : 1115-1123
    [142] Gowhari-Anaraki A R, Hardy S J, Adibi-Asl R. Stress intensity factors for radial cracks in annular and solid discs under constant angular velocity [J]. Journal of Strain Analysis for Engineering Design, 2005, 40 (2) : 217-223
    [143] Muskhelishvili N I. Singular Integral Equations [M]. Groningen Noordhoff, 1953
    [144] Bueckner H F. Field singularities and related integral representations in Methods of Analysis and Solutions of Crack Problems [M]. Leyden Noordhoff, 1973
    [145] Brockenbrough John R, Bray Gary H. Prediction of S-N fatigue curves using various long-crack-derivedΔKeff fatigue crack growth curves and a small crack life prediction model [J]. ASTM Special Technical Publication, 1999(1360) : 388-402
    [146] Lin S H, Pan J. Fatigue life prediction for spot welds in coach-peel and lap-shear specimens with consideration of kinked crack behaviour [J]. International Journal of Materials and Product Technology, 2003, 20 (1-3) : 31-50
    [147] Zhang Q, Chen D L. A model for the low cycle fatigue life prediction of discontinuously reinforced MMCs [J]. International Journal of Fatigue, 2005, 27 (4) : 417-427
    [148] Lee Hyungyil, Choi JinYoung. Overload analysis and fatigue life prediction of spot-welded specimens using an effective J-integral [J]. Mechanics of Materials, 2005, 37 (1) : 19-32
    [149] Narvydas Evaldas. Modelling of damage in stress concentration zones under low cycle fatigue [J]. Materialpruefung/Materials Testing, 2006, 48 (5) : 251-255
    [150] Glancey Christopher D, Stephens Robert R. Fatigue crack growth and life predictions under variable amplitude loading for a cast and wrought aluminum alloy [J]. International Journal of Fatigue, 2006, 28(1) : 53-60
    [151] Kulkarni Salil S, Sun L, Moran B, Krishnaswamy S, Achenbach J D. A probabilisticmethod to predict fatigue crack initiation [J]. International Journal of Fracture, 2006, 137(1-4): 9-17
    [152] Saintier N, Cailletaud G, Piques R. Crack initiation and propagation under multiaxial fatigue in a natural rubber [J]. International Journal of Fatigue, 2006, 28(1) : 61-72
    [153] Menzel B C, Dauskardt R H. Stress-life fatigue behavior of a Zr-based bulk metallic glass [J]. Acta Materialia, 2006, 54 (4) : 935-943
    [154] Fricke W. Effects of residual stresses on the fatigue behaviour of welded steel structures [J]. Materialwissenschaft und Werkstofftechnik, 2005, 36 (11) : 642-649
    [155]丁遂栋,孙利民.断裂力学[M].机械工业出版社, 1997
    [156]杨卫.宏微观断裂力学[M].国防工业出版社, 1995
    [157] Rice J R, Drucker D C. Energy changes in stresses bodies due to void and crack growth [J]. International Journal of Fracture Mechanics, 1967, 3 (1) : 19-27
    [158]刘鸿文.材料力学[M].高等教育出版社, 1998
    [159] Sumi Y, Nemat– Nasser S, Keer L M. On crack path stability in a finite body [J]. Engng. Fracture Mech., 1985 (22) : 759 - 771
    [160]范天佑.断裂动力学引论[M].北京理工大学出版社, 1990
    [161] Bilby B A, Cardew G E. The crack with a kinked tip [J]. International Journal of Fracture, 1975 (11) : 708 -712
    [162]李尧臣,王自强.平面应变I型非先性裂纹问题的高阶渐进解[J].中国科学A辑, 1986, 29 : 941- 955
    [163]罗学富,黄克智.可压缩弹塑性扩展裂纹尖端场问题的正确提法及其解[J].中国科学A辑, 1988, 31 : 1275- 1282
    [164]范天佑.断裂理论基础[M].科学出版社, 2003

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700