用户名: 密码: 验证码:
P2P流媒体系统的理论建模与协议优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着用户接入宽带的快速增长、个人计算机性能的不断提升以及网民规模的日益扩大,P2P流媒体系统以其巨大的系统容量、稳定的服务质量、良好的可扩展性以及低廉的部署成本,迅速发展成最热门的互联网应用之一,能支持数以百万的用户同时观看高清视频,极大地推动了资讯在互联网上的快速传播。在获得迅猛发展的同时,P2P流媒体系统还存在着诸多等待解决的问题,如服务质量的特性未揭示、带宽资源的分配不合理以及信令开销太大等。针对上述问题,本文从理论建模、网络测量及协议设计这三个方面开展工作,取得的主要研究成果如下:
     (1)针对P2P点播系统中服务质量与关键参数的数学关系未披露,演播中断的特性未揭示的问题,建立了针对演播中断的服务质量评估模型。该模型首先利用带漂移的布朗运动对节点的下载过程和视频的演播过程分别进行建模,然后建立了演播流畅度与视频码率、节点下载速度以及预取数据量之间的数学关系,最终推导了中断概率、首次中断时间以及中断次数的精确数学表达式。由上述模型可得,下载速度与演播码率的动态性是降低演播质量的主要原因;增大预取数据量或下载速度都可提高演播流畅度,但前者可使中断推迟发生。在视频的演播过程中,起始阶段发生中断的概率很高;在一次演播过程中,发生多次中断的现象是存在的,但其概率很小。为验证播放中断的性质,对PPLive点播系统的数百万个用户展开了为期5天的网络测量且实测结果与上述结论是一致的。上述模型不仅揭示了P2P点播系统的特性,更为新带宽分配算法的设计奠定了理论基础。
     (2)针对P2P点播系统中由于各节点分得的带宽资源与节点实际需求之间的匹配度低、联动性差(节点分得的带宽资源不能随节点需求量的变化而实时改变)而导致节点演播质量严重分化的问题,建立了一个节点带宽需求模型,给出了节点期望带宽与预取数据量、播放码率以及演播流畅度之间的数学表达式。基于该模型,提出了一种分布式上载带宽分配算法,该算法可以实现系统带宽资源在异构节点之间的实时动态分配,使预取数据量多或所观看视频码率低的节点释放多余的带宽,并将释放的带宽分配给预取数据量少或所观看视频码率高的节点,最终使所有节点都能获得较高的演播流畅度。仿真分析表明,与传统的贪心策略相比,该算法既能缩短节点的启动延时又能降低服务器的带宽消耗。
     (3)针对P2P点播系统中由于节点无预取限制而导致节点演播质量两极分化的问题,提出了一种基于视频分块的适度预取策略。在该策略中,预取数据量大的节点会主动停止下载并将腾出的带宽分配给预取数据量小的节点,从而使得低下载能力节点也能获得与高下载能力节点同样的演播质量。针对该策略建立了一个性能评估模型,由该模型可得,该策略可使节点获得适度的预取数据量以及较高的演播流畅度。最后,将该策略部署到PPLive点播系统中,实测结果表明,PPLive点播系统可获得高达95%的服务器带宽节省率,而未采用该策略的P2P点播系统UUSee的服务器带宽节省率只有70%。且PPLive点播系统的平均中断次数仅为0.8次,即视频播放非常流畅。总之,基于视频分块的适度预取策略既能降低服务器带宽又能提高节点演播质量。
With the increase of user access bandwidth and the number of Internet users, as well as the improvement of PC capacity, P2P streaming media system becomes one of the most popular Internet applications, due to its huge system capacity, stable quality of service (QoS), outstanding scalability and low deployment cost. P2P streaming media system can support millions of users watching high definition video at the same time and then greatly speed up the transmission of information over Internet. Though gaining rapid development, P2P streaming media system still has some pending issues, for instance, the QoS characteristic has not been revealed, the assignment of bandwidth resource between peers is not reasonable and the signal overhead is too high. Towards these issues, we study P2P streaming media system in terms of theoretical modeling, network measurement and protocol design. The main achievement is below:
     (1) Towards issues in P2P VoD (Video-on-Demand) system that the relationship between QoS and important parameters is not revealed and the playback interruption characteristic is not disclosured, we establish a QoS evaluation model towards playback interruption. In this model, we first use the Brownian motion with drift to model the peer downloading process and video playback process, then establish the mathematical relationship among playback continuity, video playback rate, peer download rate and prefetched data amount (PDA) and finally get the mathematical expression of the playback interruption probability, the first interruption time and the number of interruptions during a viewing process. From above models, it is observed that the dynamics of peer download speed and video playback rate is the main cause of QoS decline; increasing PDA or download speed can improve playback continuity but the former delays the playback interruption. During a viewing process, the interruption occurs at the beginning with great probability; many interruptions may happen with small probability. To verify the playback interruption characteristic, we do a network measurement towards PPLive VoD system with millions of users for continuous five days and the measurement results are consistent with the conclusion derived from the model, which not only reveals the unique characteristic of P2P VoD system, but also lays the foundation for new bandwidth assignment algorithms.
     (2) Towards the issue that different users in P2P VoD system have different watching experience because the bandwidth obtained by one peer is not consistent with the bandwidth required by that peer (namely the bandwidth obtained by one peer can not dynamically and in real time change with the bandwidth requirement of that peer), we establish a peer bandwidth demand model, which shows the mathematical relationship among expected bandwidth, PDA, playback rate and playback continuity. Based on this model, a distributed upload bandwidth assigning algorithm is proposed. This algorithm achieves real-time and dynamic bandwidth assignment among heterogeneous peers; specifically, this algorithm makes peers with too much prefetched data or lower playback rate release some bandwidth, which then is assigned to those peers with too little prefetched data or higher playback rate. In this way, all peers in P2P VoD system can obtain the same playback continuity. Simulation results show that compared with traditional greedy strategy this algorithm gains shorter startup delay and less server bandwidth.
     (3) Towards the polarization of peer QoS due to no prefetching limitation in P2P VoD system, we propose a moderate prefetching strategy based on video slicing mechanism. In this strategy, peers with more prefetched data will stop downloading content and the released bandwidth is assigned to those peers with less prefetched data. In this way, low download capacity peers can gain the same playback continuity as the high download capacity peers. Towards this strategy, we propose a performance evaluation model from which it is observed that under this strategy peers can obtain moderate prefetched content and high playback continuity. Finally, this strategy is applied to PPLive VoD system and the measurement results show that the server bandwidth saving rate of PPLive VoD system is as high as95%but that of UUSee VoD system is just70%. Also, the average number of interruptions during a viewing process in PPLive VoD system is as small as0.8, which means that the user viewing experience is wonderful. In a word, this strategy not only reduces server bandwidth but also improves the system QoS.
引文
[1]Milojicic S., Kalogeraki V., Lukose R., et al. Peer-to-Peer Computing [R]. PaloAlto: HP Laboratories, 2002.
    [2]刑小良.P2P技术及其应用[M].北京:人民邮电出版社,2008.
    [3]Liu Yong, Guo Yang, Liang Chao. A survey on peer-to-peer video streaming systems [J]. Peer-to-Peer Networking and Applications,2008, 1(1):18-28.
    [4]Abboud Osama, Pussep Konstantin, Kovacevic Aleksandra. Enabling resilient P2P video streaming: survey and analysis [J]. Multimedia Systems,2011,17(3):177-197.
    [5]Kang Cai. Survey of search and optimization of P2P networks [J]. Peer-to-Peer Networking and Applications, 2011,4(3):211-218.
    [6]http://www.napster.com/
    [7]http://www.bittorrent.com/
    [8]Jacob Chakareski and Pascal Frossard. Adaptive systems for improved media streaming experience [J]. IEEE Communications Magazine,2007,45(1):77-83.
    [9]张丽.流媒体技术大全[M].北京:中国青年出版社,2001.
    [10]Fahmi, H., Latif, M., Sedigh-Ali, S., et al. Proxy servers for scalable interactive video support [J]. IEEE Computer,2001,34(9):54-60.
    [11]Vakali, A., Pallis, G., Content delivery networks:status and trends [J]. IEEE Internet Computing, 2003, 7(6):68-74.
    [12]Passarella Andrea. A survey on content-centric technologies for the current Internet: CDN and P2P solutions [J]. Computer Communications,2012, 35(1):1-32.
    [13]Hasslinger Gerhard, Hartleb Franz. Content delivery and caching from a network provider's perspective [J]. Computer Networks, 2011,55(18):3991-4006.
    [14]Diot, C, Levine, B.N., Lyles, B., et al. Deployment issues for the IP multicast service and architecture [J]. IEEE Network, 2000,14(1):78-88.
    [15]Dai Fusheng, Bao Xuecai, Han Weizhan. Reliability Evaluation Method for IP Multicast Communication under QoS Constraints [J]. China Communications, 2011,8(5):79-87.
    [16]Bikfalvi Alex, Garcia-Reinoso Jaime, Vidal Ivan, etc. P2P vs. IP multicast: Comparing approaches to IPTV streaming based on TV channel popularity [J]. Computer Networks, 2011, 55(6):1310-1325.
    [17]B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework for delivering multicast to end users [C]//IEEE INFOCOM 2002. New York:IEEE,2002:1366-1375.
    [18]Chu Y. H., Rao S. G., Seshan S., et al. A case for end system multicast [J]. IEEE Journal on Selected Areas in Communications(JSAC),2002,20(8):1456-1471.
    [19]Deshpande H., Bawa M. and Garciacla M. Streaming live Media over a Peer-to-Peer network [R]. Palo Alto, California: Stanford Univeristy, 2000.
    [20]Padmanabhan V. N., Wang H. J. and Chou P. A. Resilient Peer-to-peer Streaming [C]//IEEE International Conference on Network Protocols 2003. Atlanta: IEEE,2003:16-27.
    [21]Castro M., Druschel P. and Kermarrec A M. Splitstream:High-bandwidth multicast in coooperative environments [C]//The 19 ACM Symposium on Operating Systems Principles. New York: ACM,2003:298-313.
    [22]Stoica I., Morris R., David L., et al. Chord: A scalable peer-to-peer lookup service for internet applications [J]. Computer Communication Review, 2001,31(4):149-160.
    [23]Zhao B. Y, Huang L. and Stribling J. Tapestry:A Resilient Global-scale Overlay for Service Deployment [J]. IEEE Journal on Selected Areas in Communications(JSAC), 2004,22(1):41-53.
    [24]Rowstron A. and Druschel P. Pastry:Scalable decentralized object location and routing for large-scale peer-to-peer systems [C]//IFIP/ACM Middleware 2001. Heidelberg: ACM, 2001: 329-350.
    [25]Zhang X. Y, Liu J. C, Li B., et al. CoolStreaming/DONet: A Data-driven Overlay Network for Peer-to-Peer Live Media Streaming [C]//IEEE INFOCOM 2005. Miami:IEEE, 2005:2102-2111.
    [26]http://www.pptv.com
    [27]http://www.ppstream.com
    [28]http://www.uusee.com
    [29]Hei X, Liu Y, and Ross K W. Inferring network-wide quality in P2P live streaming systems [J]. IEEE JSAC,2007,25(10):1640-1645.
    [30]Huang Y, Fu T Z J, Chiu D M, et al. Challenges, Design and Analysis of a Large-scale P2P VoD System [C]//ACM SIGCOMM 2008, Seattle: ACM, 2008:375-388.
    [31]Huang Yan, Xu Ke and Li HaiTao. Large-scale P2P VOD system:Focusing on clients [J]. Science China-Information Sciences,2011,54(8):1677-1690.
    [32]姜志宏,王晖,樊鹏翼.基于爬行器的大规模P2P IPTV测量[J].软件学报,2011,22(6):1373-1388.
    [33]Thomas Silverston, Lorand Jakab, Albert Cabellos-Aparicio, et al. Large-scale measurement experiments of P2P-TV systems insights on fairness and locality [J]. Signal Processing: Image Communication,2011,26(7):327-338.
    [34]Ignacio Bermudez, Marco Mellia and Michela Meo. Investigating Overlay Topologies and Dynamics of P2P-TV Systems:The Case of SopCast [J]. IEEE Journal on Selected Areas in Communications,2011,29(9):1863-1871.
    [35]http://www.sopcast.org
    [36]Xiaojun Hei, Chao Liang, Jian Liang, et al. A Measurement Study of a Large-Scale P2P IPTV System [J]. IEEE Transactions on Multimedia,2007, 9(8):1672-1687.
    [37]Young J. Won, James Won-Ki Hong and POSTECH Mi-Jung Choi. Measurement of Download and Play and Streaming IPTV Traffic [J]. IEEE Communications Magazine,2008, 46(10):154-161.
    [38]Long Vu, Indranil Gupta, Klara Nahrstedt, et al. Understanding Overlay Characteristics of a Large-scale Peer-to-Peer IPTV System [J]. ACM Transactions on Multimedia Computing, Communications and Applications. 2010, 6(4):1-24.
    [39]Li Chunxi, Chen Changjia. Measurement-based study on the relation between users' watching behavior and network sharing in P2P VoD systems [J]. Computer Networks, 2010, 54(1):13-27.
    [40]Lu C T, Zhang H Y and Sheng L J. Research and Design on Peer Selection Strategy of P2P Streaming [C]//The 5th International Conference on Wireless Communications, Networking and Mobile Computing(WiCOM'09), Beijing:IEEE, 2009:4p.
    [41]Adler M, Kumar R, Ross K W, et al. Optimal Peer Selection for P2P Downloading and Streaming [C]//IEEE INFOCOM 2005. Miami:IEEE, 2005:1538-1549.
    [42]Jiang J and Nahrstedt K. Randpeer: Membership Management for Qos Sensitive Peer-to-Peer Applications [C]//IEEE INFOCOM 2006. Barcelona: IEEE, 2006:1471-1480.
    [43]Liao X, Jin H, Liu Y, Ni L M, and Deng D. Anysee:Peer-to-peer live streaming [C]//IEEE INFOCOM 2006. Barcelona:IEEE,2006:2411-2420.
    [44]Xie Haiyong, Y. Richard, Krishnamurthy and Arvind. P4P: Provider portal for applications [C]//ACM SIGCOMM 2008. Seattle: ACM,2008:351-362.
    [45]Chao Liang, Yang Guo and Yong Liu. Is Random Scheduling Sufficient in P2P Video Streaming? [C]//IEEE ICDCS. Beijing: IEEE, 2008:53-60.
    [46]Yipeng Zhou, Dah-Ming Chiu, Lui, J.C.S. A Simple Model for Chunk-Scheduling Strategies in P2P Streaming [J]. IEEE/ACM Transactions on Networking, 2011,19(l):42-54.
    [47]Tewari, S. and Kleinrock, L. Proportional Replication in Peer-to-Peer Networks [C]//IEEE INFOCOM. Barcelona:IEEE, 2006:12p.
    [48]Yipeng Zhou, Fu, T.Z.J. and Dah Ming Chiu. Statistical Modeling and Analysis of P2P Replication to Support VoD Service [C]//IEEE INFOCOM 2011. Shanghai:IEEE, 2011:945-953.
    [49]Haitao Li, Xu Ke and Seng, J. Towards Health of Replication in Large-Scale P2P-VoD Systems [C]//IEEE IPCCC 2009. Arizona: IEEE, 2009:323-330.
    [50]Boyar Joan, Ehmsen Martin R., Kohrt Jens S., etc. A theoretical comparison of LRU and LRU-K [J]. ACTAINFORMATICA,2010,47(7-8):359-374.
    [51]Ting Wei, Guangqing Deng, Changjia Chen, etc. Model of Downloading Strategy from Peers and Server for Saving Server Bandwidth in P2P VoD System [J]. Journal of China Universities of Posts and Telecommunications,2011,18(5):76-86.
    [52]Chen Feng, Baochun Li, Bo Li. Understanding the Performance Gap between Pull-based Mesh Streaming Protocols and Fundamental Limits [C]//IEEE INFOCOM 2009. Brazil:IEEE,2009: 891-899.
    [53]Kumar, R, Yong Liu, Ross, K. Stochastic Fluid Theory for P2P Streaming Systems [C]//IEEE INFOCOM 2007. Alaska:IEEE,2007:919-927.
    [54]Di Wu, Yong Liu, Ross and K.W. Queuing Network Models for Multi-Channel P2P Live Streaming Systems [C]//IEEE INFOCOM 2009. Brazil:IEEE, 2009:73-81.
    [55]Can Zhao, Xiaojun Lin and Chuan Wu. The streaming capacity of sparsely-connected P2P systems with distributed control [C]//IEEE INFOCOM 2011. Shanghai:IEEE, 2011:6p.
    [56]Di Wu, Chao Liang, Yong Liu. View-Upload Decoupling: A Redesign of Multi-Channel P2P Video Systems [C]//IEEE INFOCOM 2009. Brazil:IEEE, 2009:2726-2730.
    [57]A. Ramamoorthy, J. Shi, and R. Wesel. On the capacity of network coding for random networks [J]. IEEE Transactions on Information Theory, 2005,51(8):2878-2885.
    [58]Laurent Massoulie, Andy Twigg, Christos Gkantsidis, et al. Randomized decentralized broadcasting algorithms [C]//IEEE INFOCOM 2007. Paris:IEEE, 2007:1073-1081.
    [59]He Y and Liu Y H. VOVO:VCR-Oriented Video-on-Demand in Large-Scale Peer-to-Peer Networks [J]. IEEE Transactions on Parallel and Distributed Systems, 2009, 20(4): 528-539.
    [60]Westerink, P. H., Rajagopalan, R. and Gonzales, C. A. Two-pass MPEG-2 variable-bit-rate encoding [J]. IBM Journal of Research and Development. 1999, 43(4):471-488.
    [61]M. W. Garrett and W. Willinger. Analysis, Modeling and Generation of Self-similar VBR Video Traffic [C]//ACM SIGCOMM 1994, London: ACM,1994:269-280.
    [62]S. Karlin, H. M. Taylor. A first course in stochastic processes [M]. New York: Academic Press, 1975.
    [63]柳金甫,孙洪祥,王军.应用随机过程[M].北京:北京交通大学出版社,2006.
    [64]Crovella M and Bestravos A. Self-similarity in world wide web traffic: evidence and possible causes [J]. IEEE/ACM Trans, on Networking, 1997, 5(6):835-846.
    [65]Azzouna N B and Guillemin F. Experimental analysis of the impact of peer-to-peer applications on traffic in commercial ip networks [J]. European Transactions on Telecommunications:Special Issue on P2P Networking and P2P Services, 2004, 15(6): 511-522.
    [66]Wang H Y, Liu J C and Xu K. Measurement and enhancement of BitTorrent-based video file swarming [J]. Peer-to-Peer Networking and Applications,2010, 3(3):237-253.
    [67]Guo L, Chen S Q, Xiao Z, et al. Measurements, Analysis, and Modeling of BitTorrent-like Systems [C]//Internet Measurement Conference (IMC) 2005. Berkeley: ACM, 2005:14p.
    [68]Yusuo Hu and Jiang Li. Analyzing the Aggregate Download Bandwidths in Peer-to-peer Live Streaming Systems [C]//IEEE GLOBECOM 2009. Hawaii:IEEE, 2009:7p.
    [69]Jonathan E. Ingersoll, Jr. Theory of financial decision making [M]. New Haven: Rowman& Littlefield Publishers,1987.
    [70]J. Michael. Harrison. Brownian motion and stochastic flow systems [M]. New York: Krieger Publishing Company,1985.
    [71]M. Domine. Moments of the first passage time of a Wiener process with drift between two elastic barriers [J]. Journal of Applied Probability, 1995, 32(4):1007-1013.
    [72]Wei Liang, Jingping Bi, Rong Wu, et al. On Characterizing PPStream: Measurement and Analysis of P2P IPTV under Large-Scale Broadcasting [C]//IEEE GLOBECOM 2009. Hawaii: IEEE, 2009:6p.
    [73]Zimu Liu, Chuan Wu, Baochun Li and Shuqiao Zhao. UUSee:Large-Scale Operational On-Demand Streaming with Random Network Coding [C]//IEEE INFOCOM 2010. San Diego: IEEE, 2010:9p.
    [74]Alhaisoni Majed and Liotta Antonio. Characterization of signaling and traffic in Joost [J]. Peer-to-Peer Networking and Applications,2009,2(1):75-83.
    [75]Lei Jun, Shi Lei and Fu Xiaoming. An experimental analysis of Joost peer-to-peer VoD service [J]. Peer-to-Peer Networking and Applications, 2010, 3(4):351-362.
    [76]Baset SA and Schulzrinne HG An analysis of the Skype peer-to-peer internet telephony protocol [C]//IEEE INFOCOM 2006. Barcelona:IEEE, 2006:11 p.
    [77]http://www.kazaa.com/
    [78]Guangqing Deng, Ting Wei, Changjia Chen, etc. A Playback Interruption Model of P2P VoD Streaming System [C]//IEEE GLOBECOM 2011. Houston: IEEE,2011:5p.
    [79]Alessandra Carta, Marco Mellia, Michela Meo, et al. Efficient Uplink Bandwidth Utilization in P2P-TV Streaming Systems [C]//IEEE GLOBECOM 2010. Miami:IEEE, 2010:6p.
    [80]Tzu-Meng Chung, Shih-Chieh Huang, Chung-Ta King, et al. Optimising upload bandwidth for quality of VCR operations in P2P VoD systems [J]. International Journal of Ad Hoc and Ubiquitous Computing, 2010,5(4): 201-208.
    [81]Xiaolong Xu and Ruchuan Wang. P2P network traffic control mechanism based on global evaluation values [J]. Journal of China Universities of Posts and Telecommunications, 2009, 16(3):66-70.
    [82]Iordanis Koutsopoulos and George Iosifidis. A framework for distributed bandwidth allocation in peer-to-peer networks [J]. Performance Evaluation, 2010, 67(4):285-298.
    [83]Zhengjun Chen, Kaiping Xue, Peilin Hong, et al. Differentiated Bandwidth Allocation for Reducing Server Load in P2P VOD [C]//IEEE GCC 2009. Lanzhou: IEEE, 2009:31-36.
    [84]Lee Choonhwa, Kim Eunsam. Adaptive Push-Pull Protocols for P2P-Based Video Streaming[J]. IEICE Transactions on Communications, 2011, E94B(10):2755-2758.
    [85]Jo, Duhwan, Helal Sumi, Kim Eunsam, etc. Adaptive push-pull protocols for P2P-based video streaming [J]. IEICE Transactions, 2011, E94B(10):2759-2762.
    [86]Da Silva, Ana Paula Couto, Leonardi Emilio, etc. Chunk distribution in mesh-based large-scale P2P streaming systems:A fluid approach [J]. IEEE Transactions on Parallel and Distributed Systems,2011,23(3):451-463.
    [87]Liu, Yong. Delay bounds of chunk-based peer-to-peer video streaming [J]. IEEE/ACM Transactions on Networking,2010, 18(4):1195-1206.
    [88]Tieying Zhang, Zhenhua Li, Xueqi Cheng and Xianghui Sun. Multi-Task Downloading for P2P-VoD: An Empirical Perspective [C]//IEEE ICPADS 2010. Shanghai:.IEEE, 2010:484-491.
    [89]Tianyin Xu, Weiwei Wang, Baoliu Ye, etc. Prediction-based Prefetching to Support VCR-like Operations in Gossip-based P2P VoD Systems [C]//IEEE ICPADS 2009. Shenzhen:IEEE,2009:8p.
    [90]Yifeng He, Ling Guan. Prefetching Optimization in P2P VoD Applications [C]//IEEE MMEDIA 2009. Colmar: IEEE,2009:110-115.
    [91]盛骤,谢式千,潘承毅.概率论与数理统计[M].北京:高等教育出版社,2001.
    [92]http://download.pptv.com/computer/pc/
    [93]R. Rivest. The MD5 Message-Digest Algorithm [S]. IETF RFC 1321,1992.
    [94]Guangqing Deng, Ting Wei, Changjia Chen, etc. Distributed Upload Bandwidth Assigning Algorithm in P2P VoD System [J]. Journal of China Universities of Posts and Telecommunications, 2011,18(6):78-88.
    [95]T. Silverston and O. Fourmaux. Measuring p2p iptv systems [C]//The International Workshop on Network and Operating System Support for Digital Audio and Video (NOSSDAV'07). Urbana-Champaign:ACM, 2007:6p.
    [96]Chunxi Li, Changjia Chen. Measurement based PPStream client behavior analysis [C]//IEEE CCCM 2009. Sanya: IEEE, 2009:341-345.
    [97]B.Liu. Study of run-length coding algorithm [J]. Journal of Tianjin Institute of Technology, 2011,17(4):77-81.
    [98]Guangqing Deng, Chunxi Li, Changjia Chen, etc. A bitmap coding method for P2P streaming protocols [C]//IEEE CAR 2010. Wuhan:IEEE, 2010:369-372.
    [99]C. X., Li, C.J. Chen and D.M Chiu. Relevant Window based Buffer-map Compression in P2P Streaming Media System [EB/OL]. [2011-12-05]. http://arxiv.org/abs/1108.6293.
    [100]C.X., Li, C.J. Chen and D.M Chiu. Compression and Quantitative Analysis of Buffer Map Message in P2P Streaming System [EB/OL]. [2011-12-06]. http://arxiv.org/abs/1108.6290.
    [101]J. Ziv, A. Lempel. A Universal Algorithm for Sequential Data Compression [J]. IEEE Transactions on Information Theory, 1977, 23(3):337-343.
    [102]J. Ziv, A. Lempel. Compression of individual sequences via variable rate coding [J]. IEEE Transactions on Information Theory, 1978, 24(5):530-535.
    [103]Golomb SW. Run-length encodings [J]. IEEE Transactions on Information Theory, 1966, 12(3):399-401.
    [104]D.A. Huffman. A Method for the Construction of Minimum-Redundancy Codes [J]. Proceedings of the Institute of Radio Engineers, 1952, 40(9):1098-1102.
    [105]http://www.wireshark.org/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700