用户名: 密码: 验证码:
大功率LED封装散热性能的若干问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
LED以其体积小,全固态,长寿命,环保,省电等一系列优点,已经在汽车照明、装饰照明、手机闪光灯、大中尺寸(NB、LCD-TV等)显示屏光源模块得到广泛应用,成为21世纪最具发展前景的高技术领域之一。美国、欧盟、日本等众多国家纷纷出台计划,投入巨资加速其发展,以占领能源战略制高点。现有LED的电光转换效率约为20%~30%,而70%~80%的能量转化为无法借助辐射释放的热能。如果封装散热不良,会使芯片温度升高,引起应力分布不均、芯片发光效率降低、荧光粉转换效率下降。当温度超过一定值,器件的失效率将呈指数规律攀升。因此,大功率LED封装的散热难题是当前产业化的瓶颈技术之一,大功率白光LED封装的散热性能更是国内外的研究热点。
     本文针对目前国内外封装存在的问题,首先提出了一种新的大功率LED封装结构,然后对该结构及其材料进行了理论、实验分析和工艺研究,再对采用该结构的5W单芯片白光LED封装和5W多芯片白光LED阵列封装进行了仿真优化设计,最后设计并制备了热阻为8.05K/W的5W单芯片白光LED封装。论文取得的成果及创新点主要有:
     (1)针对目前大功率LED封装结构普遍存在散热性能不良,制备工艺复杂,成本高等缺点,通过理论分析和实验研究,我们提出了一种高功率LED兼容集成封装模块和一种自散热式发光二极管日光灯,并已申请相关专利两项。通过将绝缘层和电极层以薄膜形式直接制备在铝基板上,减少了大功率LED封装的内部热沉数量、减薄内部热沉厚度。不仅提高了大功率LED封装的散热性能,而且制备工艺简单、成本低、无污染,符合RollS标准,为解决大功率LED封装的散热难题提供了一种新的结构。
     (2)通过理论分析和比较组成散热基板、绝缘层和电极层的各种材料性能,设计并选用铝作为基板材料、氧化铝作为绝缘层材料、过渡层(Ti)/阻挡层(Ni-Cu)/电极层(Ag)的梯度膜系和ITO薄膜两种作为电极层的结构。
     (3)采用ANSYS软件对5W单芯片白光LED封装和5W多芯片白光LED阵列封装进行三维热力学仿真优化设计,研究发现5W单芯片白光LED封装的热阻为5.8K/W,当环境温度为50℃时,芯片最高的结温为73.197℃,可以满足大功率LED封装的散热要求;5W多芯片白光LED阵列封装的热阻为3.986K/W,当环境温度为50℃时,芯片最高的结温为65.994℃,可以满足大功率LED封装的散热要求;优化结构参数后采用厚度为1.1 mm的铝基板,空气对流系数为10W/(m~2·K)时,5W多芯片白光LED阵列封装的热阻为2.563 K/W。该封装结构无论是应用于单芯片还是多芯片阵列封装,都可以满足LED的散热要求。
     (4)采用硬质硫酸阳极氧化法制备了厚度为30.2um,介电强度为32.5V/um氧化铝绝缘层,通过理论研究和测试分析了绝缘层镀膜后短路的机理并指出了改进方法。
     (5)研究了电极层的材料和制备工艺,采用直流磁控溅射法制备出Ti(150nm)/Ni-Cu(400nm)/Ag(200nm)组成的梯度膜系作为电极层,其电阻率为3×10~(-6)Ω·cm,平均抗拉强度为4.22MPa,膜层表面缺陷较少,致密性好,焊接性能好,满足电极层的需求。
     (6)提出了在氧化铝绝缘层上采用射频磁控直流溅射法制备ITO薄膜作为电极层的过程中引入紫外在线辐照来降低ITO薄膜电阻率的新工艺,并申请了相关专利一项。实验表明在紫外辐照条件下制备的样品的电阻率、表面形貌和生长取向明显优于未经紫外辐照的样品,在线紫外辐照下最低方阻为5Ω/□,电阻率为2.5×10~(-4)Ω·cm,平均抗拉强度为5.3MPa,表面缺陷少,致密度好,趋于[222]的择优取向,焊接性能好,基本满足电极层的需求。
     (7)在上述研究的基础上,我们初步制备出了散热性能良好的5W白光LED单芯片封装,初测其封装热阻为8.05K/W,与第四章中的5W白光LED单芯片封装的热阻仿真结果5.8K/W比较吻合。当环境温度为50℃时,芯片最高的结温为82.2℃,可以满足大功率LED封装的散热要求。
Light emitting diode(LED),being widely used in mobile flashlight,large and medium sizes displays(NB,LCD-TV) and illumination system,has become one of the most promising high technologies in 21st century with a series of distinctive advantages such as lower-power consumption,pure light,solid-state,environmental protection.Many countries such as the United States,the European Union,Japan and China have established national strategies and invested to accelerate LED industry.The eletrophotic conversion efficiency ranges from 20%to 30%,thus the rest energy converts into thermopower which can't be released through radiation.With this low heat removal efficiency,the raise of temperature in the chip will result in non-uniform distribution of thermal stress,decline of the luminous efficiency of the chip and the maser efficiency of the phosphor,and ultimately lead to device failure. So the packaging of high-power LEDs,especially the packaging of white high-power LEDs has been the obstacles to the industrilization.
     To solve the problems of the current packaging of high-power LEDs,we put forward a new structure of packaging of high-power LEDs.Through research both theoretically and experimentally as well as processing on the structure and materials of packaging for high-power LEDs and the simulation and optimal design of 5W single-chip white LED packaging and 5W multi-chip white LEDs packaging,we designed and prepared a thermal packaging module for 5W white LEDs with the thermal resistance of 8.05K/W and the luminous efficiency of 1601m/W.The major works and innovation in this paper are as follows:
     (1) To solve the common problems about the present packaging of high-power LEDs with worse thermal performance,complicate process and high cost,we presented an integrated packaging of high-power LEDs and a packaging of fluorescent lamp composed of LEDs on the basis of both theory and experiment,and applied for two relevant patents.By preparing the insulating layer and the electrode layer directly on the aluminum plate,the amount and thickness of internal heat sinks about the packaging of high-power LEDs is reduced.Thus,these methods,which could improve the thermal performance of packaging for high-power LEDs with easy processing,lost cost and environmental protection according to RollS,could lead to a effective solution to the heat-release problem for packaging of high-power LEDs.
     (2) Through theoretical analysis and comparison about performance among the materials used for the cooling plate,the insulator layer and the electrode layer,we chose the aluminum for cooling plate,Al_2O_3 for insulator layer and Cr/Ni-Cu/Ag or ITO layer for the electrode layer.
     (3) With the simulation and optimal design of thermodynamics for packaging modules of 5W single-chip white LED and 5W multi-chip white LEDs,we found that the thermal resistance of the first packaging is 5.8K/W and This packaging,of which the highest temperature of the chip is 73.197℃when the ambient temperature is 50℃,could well satisfy heat-release needs for the high-power LED packaging.And the second packaging,of which the thermal resistance is 3.986K/W and the highest temperature of the chip is 65.994℃when the ambient temperature is 50℃,could well satisfy heat-release needs for the high-power LED packaging.The thermal resistance of the second one is 2.563K/W with aluminum plate 1.1 mm thick and the convection coefficient of 10 W/(m~2·K) after the optimal of structure parameters. The packaging both for single-chip and multi-chips could meet the heat-release requirement for high-power LEDs.
     (4)We prepared the aluminum dioxide layer with the thickness of 30.2urn and the dielectric probability of 32.5V/um by the method of hard acid anodizing.Through theoretical analysis and test,we analyzed the explanation for non-insulation about the insulator layer after coating and pointed out some improvements.
     (5) After the research about the preparation and materials of the electrode layer, we produced each layer of it as Cr/Ni-Cu/Ag.The results shown that the sample of which the resistivity achieved 3×10~(-6)Ω·cm,average bonding force up to 4.22 MPa with little surface defaults and good density and fine welding probability could meet the acquirement of the electrode layer.
     (6) We presented a new method with the introduction of online ultraviolet radiation during the preparation of ITO thin-film as electrode layer by RF magnetron sputtering and applied for a relevant patent.These results shown that the resistivity, the surface topography and the growth orientation of samples produced with UV radiation are much better than samples produced without UV radiation.The sample produced with UV radiation of which the smallest square resistance is 5Ω/□,the resistivity achieved 2.5×10~(-4)Ω·cm,average bonding force up to 5.3 MPa with little surface defaults and good density and the peak of[222]and good welding probability could meet the acquirement of the electrode layer.
     (7)Based on the study above,we prepared a packaging of 5W single-chip white LED with thermal resistance of 8.05K/W.This result is highly consistent with the predictions of the theoretical model.This packaging,of which the highest temperature of the chip is 82.2℃when the ambient temperature is 50℃,could well satisfy heat-release needs for the high-power LED packaging.
引文
[1].Robert F.Karlicek,Jr.High power LED packaging.2005 Conference on Lasers & ElectroOptics.2005:337-339
    [2].Nichia.Thermal management design of LEDs.Application note.2003:1-7
    [3].Lan Kim,Woong Joon Hwang,Moo Whan Shin.Thermal Resistance Analysis of High Power LEDs with Multi-chip Package.2006 electronic components and technology conference.2006:1073-1081
    [4].Su Da,Wang Demiao.Technical research on heat-release packaging of high-power LEDs.Semiconductor technology[J].2007,32(9):742-744,749
    [5].闵四宗.热超声倒装照明LED热分析.中南大学硕士学位论文.中南大学,2007:4-5
    [6].赵清泉.半导体发光二极管及其照明的应用.光源与照明[J],2005,3:18-19,28
    [7].陈宇彬.白光LED老化机理研究.华南师范大学硕士学位论文,华南师范大学,2007:1,42-43
    [8].候建国,陈鸣,陈建.高亮度白光发光二极管发光特性的研究.光源与照明[J],2006,2:12-14
    [9].范广涵.功率型白光LED热效应研究.华南师范大学硕士学位论文.华南师范大学.2007:1-11,37-39
    [10].Fan Chaojun.Discussing luminous efficacy of LEDs.Advanced display[J].2006,5:11-17
    [11].郑智斌.InGaAIP LED发光特性分析.液晶与显示[J].2003,18(6):450-451.
    [12].方佩敏.LED的发展概况.今日电子[J].2006,8:37-41
    [13].Admin.LED主要参数与特性.led.product365.cn.2007:1-7
    [14].吕亮,蒋晓梅,赵志丹.LED光学参数的测量技术与LED国家光度标准的研究.www.china-led.net,2008:1-10
    [15].中国光学光电子行业协会光电器件专业分会.半导体发光二极管的测试方法.2002:1-15
    [16].Wu Baoning,Li Hongguang,Yu Bing,et al.Measurement of optical parameters for LEDs.Journal of applied optics[J].2007,28(4):513-516
    [17].夏继军,江仁杰.半导体发光二极管(LED)的应用和发展前途.湖南农机[J].2002,2:12-14.
    [18]石生瑞.大功率白光LED产业化研究.长春理工大学硕士学位论文.长春理工大学.2006:4-8,14-17
    [19].王耀明.贴片式大功率LED封装散热技术研究.复旦大学本科学位论文.复旦大 学.2007:1-37
    [20].Li BingQian.Lumen efficiency of 1W-level high power white LED.Semiconductor optoelectronics[J].2005,26(4):314-316,361
    [21].戴维德.大功率LED的散热设计.今日电子[J].2007,12:69-72
    [22].谢嘉奎.电子线路线性部分[J].高等教育出版社,2003:17-18
    [23].Wang jian,Huang xian,Liu li.Effect of temperature and current on LED luminous efficiency.Chinese journal of luminescence[J].2008,29(2):258-262
    [24].马泽涛.白光高亮度发光二极管(HB-LED)封装研究.华中科技大学硕士学位论文.华中科技大学.2005:40-58
    [25].Qian Ke-yuan,Zheng daishun,Luo Yi.Thermal dispersion of GaN-based power LEDs.Semiconductor optoetectronics[J].2006,27(3):236-239
    [26].通孔垂直结构的LED,http://www.china-led.net,2007,1:1-4
    [27].Wang Yaohao,Yu binhai,Li shunmian.Analysis and simulation of thermal characteristic on die bonding materials of power LED.Journal of foshan university(natural science edition)[J].2005,23(4):14-17
    [28].Sheng Liu,Tim Lin,Xiao bing Luo,et al.A Microjet Array Cooling System For Thermal Management of Active Raders and High-Brightness LEDs.Electronic Components and Technology Conference.2006:1634-1638.
    [29].维捷斯拉夫.本达,约翰.戈沃,邓肯 A.格兰特.功率半导体器件-理论及应用[M].化学工业出版社.2005:290,306-318
    [30].吴懿平,丁汉等.电子制造技术基础[M].机械工业出版社.2005:272-273,288-289
    [31].张琴,杨邦朝,蒋明,et al.多芯片组件(MCM)的热模拟研究[J].混合微电子技术.2003,14(3-4):58-64
    [32].Yu Binhai,Wang Yaohao.Junction temperature and thermal resistance restrict the developing of high-power LED.Chinese journal of luminescence[J].2005,26(6):761-766
    [33].Kewei Wang,Peng chaohui.Study on thermal resistance of semiconductor high power light-emitting diode for applications.Journal of wuhan insititue of technology[J].2007,6(1):87-89
    [34].Liu jian,Yah Wei.Research of light-emitting diode thermal resistance tester.Electronics test [J].2008,7:51-54
    [35].中国人民共和国第四机械工业部.半导体器件用散热器在自然空气冷却状态下的热阻测试.SJ1267-77,1977:1-5
    [36].闫伟,吴洪江,张万生.LED专用测试仪器.中国照明[J].2007,2:37-38.
    [37].王德苗,苏达,徐文彬,et al.高功率LED兼容集成封装模块.中国.发明专利.专利申请号:CN 200710067900.8,公开号:CN101043029A.
    [38].王德苗,苏达,金浩,et al.自散热式发光二极管日光灯.中国.发明专利.专利申请号:CN200810063733.4.
    [39].朱祖芳.铝合金阳极氧化与表面处理技术[M].化学工业出版社.2004:1-5.
    [40].赵志远.铝和铝合金牌号与金相图谱速用速查及金相检验技术创新应用指导手册[M].中国知识出版社.2005:3-7
    [41].吴懿平,丁汉等.电子制造技术基础[M].机械工业出版社.2005:272-273,288-289.
    [42].维捷斯拉夫.本达,约翰.戈沃,邓肯 A.格兰特.功率半导体器件-理论及应用[M].化学工业出版社.2008:90,306-318
    [43].Yang Huanxin,Song beibei,Yan Shaojun.Effect of preparation condition on the film thickness of anodic alumina film.Chemical engineer[J].2006,(5):10-13
    [44].马元远.铁氧体陶瓷无害金属化技术的研究.浙江大学硕士学位论文.浙江大学.2008:1-81
    [45].Wang Demiao,Dong Shurong,Ren Gaochao.Metallization of SMD inductor of ferrite ceramics by magnetron sputtering.Journal of Vacuum Science and Technology[J].2006,26:87-90
    [46].LU Yan-ping,GAO Long-qiao.Surface metallization and welding of AlN ceramic.Vacuum Science and Technology[J].2000,24(3):190-193
    [47].Honma H,Kouchi Y.Electroless Nickel Plating on Alumina Ceramics[J].Plating and Surface Finishing[J].1990,6:54-58
    [48].M.A.Martinez,J.Herrero,M.T.Gutierrez,Thin solid films.1995,269:80.
    [49].X.Wu,W.P.Mulligan and T.J.Coutts,Thin Solid Films,1996,286:274
    [50].CH.Y.Wang,V.Cimalla,Th.Kups,et al.Electrial and optical properties of In2O3 nanoparticles prepared by MOCVD.2nd IEEE international nanoelectronics conference,2008:100
    [51].朱伯芳.有限单元法原理与应用[M].北京:水利出版社,1979:50-300
    [52].秦允豪.普通物理学教程热学(第二版)[M].北京:高等教育出版社,2004:75-90.
    [53].贾力,方肇洪,钱兴华.高等传热学[M].高等教育出版社.2003:2-15
    [54].张朝晖.ANSYS 8.0 热分析教程与实例解析[M].中国铁道出版社.2005:13-14
    [55].Yi-Cheng Hsu,Yu-Kuan Lin,Ming-Hung Chen,et al.Failure machinisms associated with lens shape of high-power LED modules in aging test[C].IEEE transactions on electron devices.2008,55(2):689-694
    [56].Thomas Zahnor.Thermal management and thermal resistance of high power LEDs.Therminic 2007[C],2007:195
    [57].王海潮.铝阳极氧化膜的制备及其应用研究.大连理工大学硕士学位论文.大连理工大学,2005:5-35
    [58].Xu Junli,Shi Zhongning,Gao Binglian,et al.Bubble behavior on metal anode of aluminum electrolysis.The Chinese Journal of Nonferrous Metals[J],2004,14(2):298-301
    [59].YAN Kangping,TU Mingjing.Preparation and properties of ultra fine porous anodic oxidized aluminum film.Function materials[J].2000.31(3):294-295
    [60].Wang Lixian,Pan Anjian,Yan Zhiqiang,et al.The formation Mechanism and the structural adjustment of nano aluminum anodic oxide film.Journal of Shanghai Institute of technology [J],2004,4(4):238-242
    [61].Chen M,Pei ZL,Wang X,et al.instrinsic limit of electrical properties of the transparent conductive oxide films.Journal of physics D,2000,33:2538-2548
    [62].杨田林,韩圣浩,高绪团.溅射氩分压对ITO透明导电薄膜光电特性的影响.光电子技术.2003,23(2):78-82
    [63].E.Terzini,G.Nobile,T.Polichetti,et al.Development and application of low temperature RF magnetron sputtering ITO thin films for α-Si:H based p/i/n junction solar cells.26th PVSC,1997:667-681
    [64].芯片特性.芯片数据手册.www.luxeonstar.com,2008:17069

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700