用户名: 密码: 验证码:
基于遥感的淀山湖水体叶绿素a浓度估算研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
湖泊是重要的淡水资源,但是随着经济的高速发展和工业化程度的加剧以及人为活动的影响,湖泊污染和富营养化问题日益严重,加强湖泊水质的监测和治理非常有必要。常规的水质监测耗时耗力,并且很难反映湖泊的整体水质状况,而遥感技术可以快速、及时的提供整个湖区的水质状况,具有监测范围广、成本低和便于进行长期动态监测的特殊优势,在湖泊水质监测中具有巨大的应用潜力。
     内陆水体的叶绿素a浓度是水质评价重要指标之一。本文在总结分析国内外叶绿素a浓度遥感估算已有的理论、技术和方法的基础上,运用半经验模型和人工神经网络,利用2010年8月23、9月7日和9月8日的野外实测数据、实测光谱数据和环境1号星、MODIS卫星遥感影像,探讨了淀山湖水体叶绿素a浓度的估算模型。主要研究内容和结论如下:
     1)基于实测光谱数据,构建了叶绿素a的半分析模型。通过迭代,选取三个波段,以[Rrs-1(663)-Rrs-1(689)]×Rrs(759)为自变量构建模型,线性和曲线模型的R2分别为0.519和0.87。
     2)针对不同卫星数据源构建半经验析模型。环境1号星高光谱数据的三波段组合[Rrs-1(70)-Rrs-1(77)]×Rrs(88)所建立的线性和曲线模型的R2分别为0.934和0.955,进行对叶绿素a的监测是可行的。但是无论是环境1号星还是MODIS卫星,基于多光谱数据的半经验模型用于内陆湖泊水质研究还有一定的困难。
     3)基于人工神经网络建立估算叶绿素a浓度的模型。高光谱数据三波段输入的神经网络模型的决定系数R2最大为0.938。基于环境1号星高光谱数据、多光谱数据和MODIS的人工神经网络模型的R2最大为0.992、0.87和0.91。对于不同的遥感数据源,人工神经网络模型的精度均优于半分析模型。表明人工神经网络更加有利于反映和提取淀山湖水体的基本光学特征,在光谱特征复杂的内陆水体水质参数估测中具有优越性。
     4)将溶解氧、化学需氧量、总磷、总氮也作为人工神经网络模型的输入值,构建基于实测光谱数据的改进的反演叶绿素a浓度的人工神经网络模型的R2最大为0.96,有效提高了反演精度。
     论文构建了估算淀山湖叶绿素a浓度的模型,高光谱数据模型精度较高,优于卫星多光谱数据。人工神经网络有效提高了估算精度,证明神经网络方法在复杂的内陆水体水质反演中具有较大的优越性,且在网络输入中加入溶解氧、化学需氧量、总磷、总氮因子,为叶绿素a的遥感反演提供了新的思路。
Lakes are very important in freshwater supply. At present, most of the lakes in the world are suffering from eutrophication with industrialization, economic growth, and human activities. Frequent monitoring and integrated management of lakes are neeessary. Howeve, conventional methods for monitoring in lakes which are time& money-consumed can't provide water quality information of the whole lake. With spatial and temporal information, remote sensing technique is suitable to obtain such information quickly and frequently, and it'11 be widely applied in water quality monitoring of lakes in future because of its advantage of fastness, economy and long-term dynamic monitoring.
     Chlorophlly-a(chl-a) is one of the most important indexs for estimating inland water quality. Based on the analysis of former theory, techniques and methods in eastimating chl-a concentration, this paper chooses semiempirical model and artificial neural network, using in situ measurements of chl-a concentration on Augest 27th, September 7th and 8th, the synchronous, HJ-1 and MODIS imageries and then discusses remote sensing eastimation of chl-a eastimating chl-a concentration in Dianshanhu Lake. The major contents and conclusions are introduced as following:
     1) Study on semiempirical model for estimating chl-a concentration based on spectrum data:choosing three bands to make [Rrs-1663)—Rrs-1(689)]×Rrs(759) as independent variable and build lined and curve models, which R2 are 0.519 and 0.87.
     2) The stusy develops semiempirical models based on different satellites data. To hyper spectral data of HJ-1, R2 of lined and curve models with [Rrs-1(70)—Rrs-1(77)]×Rrs(88) as independent variable are 0.934 and 0.955. To multi-spectral data, such as HJ-1 and MODIS, there lies difficulty on the application of semiempirical models.
     3) Study on estimation model based on artificial neural network. To spectrum data, the maximam of R2 of artificial neural network model is 0.938, whose input is three bands, while that of hyperspectral data and multi-spectral data of HJ-1 and MODIS are 0.992,0.87 and 0.91. The artificial neural network models' estimation precision is higher than regression models'.
     4) To improve the estimation precision of artificial neural network model, adding DO, COD, TP and TN into input data. As a result R2 is elevated to 0.96.
     This paper develops models for estimating chl-a concentration in Dianshanhu Lake, acquires good estimation precision. Hyper spectral data is batter than multi-spectral data. It is proved that the artificial neural network model for estimating water quality of complex inland water body possesses advantage. Inputing DO, COD, TP and TN factors into the neural network provides a new way for estimating chl-a concentration.
引文
[1]王志辉.基于MODIS的淡水湖泊富营养化状况遥感监测[D].武汉:华中科技大学,2007.
    [2]刘晓涛.关于城市河流治理若干问题的思考.水问题论坛,2001(3).http://www.hwcc.com.cn/newsdisplay/newsdisplay.asp?Id=21214(水信息网).
    [3]Shafique N.A., Autrey B.C., Fulk F., et al. Hyperspectral narrow wave bands selection for optimizing water quality monitoring on the Great Miami River, Ohio[J]. Journal of Spatial Hydrology,2001, 1(1):1-22.
    [4]闻建光.太湖水体叶绿素a遥感监测模型研究[D].吉林:吉林大学,2004.
    [5]王桥,杨一鹏,黄家柱.环境遥感[M].遥感技术与应用.北京:科学出版社,2004.
    [6]Dekker A.C. et al. The effect of spectrum bandwidth and positioning on the spectrum signature analysis of inland water [J]. Remote Sensing, Environ,1992 41:211-225.
    [7]Bukata R P., Jerome J.H., Kondratyev K.Y., et al. Optical Properties and Remote Sensing of Inland and Coastal Waters [M]. New York:CRC Press.1995,362.
    [8]Jerome J. H.. Remote Sensing of the Environment:An Earth Resource Perspective [M]. New Jersey:Prentice Hall,2000,380.
    [9]Gitelson A. The peak near 700nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll [J]. Int J Remote Sensing,1992,13(17):3367-3373.
    [10]Gordon H. R., M. Wang. Retrieval of water-leaving radiance and aerosol optical thickness over the ocean with SeaWiFS:A preliminary algorithm [J], Appl. Opt., 1994,33:443-452.
    [11]Lee Z.P., K.L. Carder, S. H. Hawes, R. G. Steward et al. A model for interpretation of hyperspectral remote-sensing reflectance [J]. Appl. Opt,1994, 33:5721-5732.
    [12]Dekker A.G., Detection of Optical Water Quality Parameters for EutroPhic Waters by High Resolution Remote Sensing [M]. Doctorate Thesis. Amsterdam: Vrije Universiteit,1993:22-23.
    [13]周艺,周伟奇,王世新,张蓓.遥感技术在内陆水体水质监测中的应用[J].水科学进展,2004,15(3):312-317.
    [14]吕恒,李新国等.基于反射光谱和模拟MERIS数据的太湖悬浮物遥感定量 模型[J].湖泊科学,2005,17(2):104-109.
    [15]Dekker, A.G.. Operational tools for remote sensing of water quality:A prototype tool kit. Vrije Universiteit Amsterdam, Institute for Environmental Studies [J].BCRS Report,1997:96-18.
    [16]疏小舟,尹球,匡定波.内陆水体藻类叶绿素浓度与反射光谱特征的关系[J].遥感学报,2000,4(1):41-45.
    [17]Koponen S, Pulliainen J. Lake Water quality classification with airborne hyperspectral spectrometer and simulated MERIS data [J]. Remote sensing of Environment,2002,79:51-59.
    [18]Thiemann S., Kaufmann H.. Determination of Chlorophyll Content and Trophic State of lakes using field spectrometer and IRS-IC satellite data in the Mecklenburg Lake district, Germany[J]. Remote Sensing of Environment.2000, 73(2):227-235.
    [19]疏小舟,汪骏发.航空成像光谱水质遥感研究[J].红外与毫米波学报,2000,19(4):273-276.
    [20]Kirk, J.T.O, Volume scattering function, average cosines, and the underwater light field [J]. Limnol. Oceanogr,1991,36:455-467.
    [21]吕恒,江南,李新国.内陆湖泊的水质遥感监测研究[J].地球科学进展,2005,20(2):185-191.
    [22]Lathrop R.G., Lillesand T. M., and Yandell B. S.. Testing the utility of simple multi-date Thematic Mapper calibration algorithms of monitoring turbid inland waters [J]. Int. J. Remote Sensing.1991,10:2045-2063.
    [23]Kloiber S. M., Berzonik P. L., Olmanson L. G. et al. A procedure for regional lake water clarity assessment using Landsat multispectral data [J]. Remote Sensing of Environment.2002,82:38117.
    [24]钱少猛.遥感像元分解方法及其在滇池水质监测中的应用研究[M].2003,7.
    [25]周伟奇.内陆水体水质多光谱遥感监测方法和技术研究[D].北京:中国科学院研究生院.2004,6.
    [26]Dekker A.G., Peters S.W.M.. The use of the Thematic Mapper for the analysis of eutrophic lakes:a case study in the Netherlands [J]. Int J. Remote Sensing. 1993,14:799-822.
    [27]谭衢林,邵芸.遥感技术在环境污染监测中的应用[J].遥感技术与应用.2000,1 5(4):246-250.
    [28]刘英.千岛湖水体水质参数遥感及其估测模型研究[M].2003,5.
    [29]刘玉洁,杨忠东MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001:146-150.
    [30]王桥.基于环境一号卫星的生态环境遥感监测[M].北京:科学出版社,2010.
    [31]Pulliainen J, Kallio K, Eloheimo K et al., A semi-operative approach to lake water quality retrieval from remote sensing data[J]. The Science of the Total Environment,2001,268:79-93.
    [32]Sathyendranath S., Prieur L., Morel A. A three-component model of ocean colour and its application to remote sensing of phytoplankton Pigments in coastal waters [J]. INT J. Remote Sensing,1989.10(8):1373-1394.
    [33]Lahet F, Ouillon S.. A three-component model of ocean colour and its application in the Ebro River Mouth Area [J]. Remote Sensing of Environment, 2000,72:181-190.
    [34]Kondratyev K. Ya.. Water quality remote sensing in the visible spectrum [J]. INT. J. Remote Sensing,1998,19(5):957-979.
    [35]Hoogenboom, H. J., Dekker A. G., De Haan J.F..Retrieval of chlorophyll and suspended matter in inland waters from CASI data by matrix inversion [J].Can. J. Remote Sensing,1998,24(2):144-152.
    [36]Donald C. Pierson, Niklas Strombeck. Estimation of radiance reflectance and the concentrations of optically active substances in Lake Malaren, Sweden, based on direct and inverse solutions of a simple model [J]. The Science of the Total Environment.2001,268:171-188.
    [37]Kevin George Ruddick, Herman J. Gons, et al. Optical remote sensing of chlorophyll a in case 2 waters by use of an adaptive two-band algorithm with optimal error properties [J]. Applied optics,2001,40(21):3575-3585.
    [38]Hans Hakvoort, Johan de Haan, Rob Jordans, et al. Towards airborne remote sensing of water quality in The Netherlands-validation and error analysis [J].Journal of Photogrammetry &Remote Sensing,2002,57:171-183.
    [39]Carpenter D. J., Carpenter S.M.. Modeling Inland Water quality Using Landsat Data [J]. Remote sensing of Environment,1983,13:345-352.
    [40]Pattiaratchi C., Lavery P.. Estimates of water quality in coastal waters using multi-date landsat Thematic Mapper data [J]. INT. J. Remote Sensing.1994, 15(8):1571-1584.
    [41]Sampsa Koponen, Jouni Pulliainen, Kari Kallio et al. Lake Water Quality Classification With Air-borne Hyperspectral Spectrometer and Simulated MERIS Data[J]. Remote Sensing Environment,2002,79:51-59.
    [42]Niklas Strombeck, Donald C.Pierson. The effects of Variability in the Inherent Optical Properties on Estimations of Chlorophyll a by Remote Sensing in Swedish Freshwaters [J]. The Science of the Total Environment,2001,268: 123-137.
    [43]Yuanzhi Zhang, Jouni Pulliainen, Sampsa Koponen et al. Application of an empirical neural net-work to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data[J]. Remote Sensing of Environment.2002.
    [44]Brivio P.A., Giardino C. Validation of Satellite data for quality assurance in lake monitoring applications [J]. The Science of the Total Environment,2001, 268:3-18.
    [45]Giorgio Dall'Olmo, Anatoly A. Gitelson, Donald C. Rundquist, et al. Assessing the potential of SeaWiFS and MODIS for estimating chlorophyll concentration in turbid productive waters using red and near-infrared bands[J]. Remote Sensing of Environment,2005,96(2):176-187.
    [46]李素菊.巢湖浮游植物叶绿素含量与反射光谱特征的关系[J].湖泊科学,2002,14(3):228-234
    [47]王建平,程声通.用TM影像进行湖泊水色反演研究的人工神经网络模型[J].环境科学,2003,24(2):73-76.
    [48]吴敏,王学军.应用MODIS遥感数据监测巢湖水质[J].湖泊科学,2005,17(2):110-113.
    [49]祝令亚,王世新,周艺等.应用MODIS监测太湖水体叶绿素a浓度的研究[J].遥感信息,2006,2:25-28.
    [50]王艳红,邓正栋,马荣华.基于分区的太湖叶绿素a遥感估测模型[J].河海大学学报(自然科学版),2007,35(1):86-91.
    [51]王桥,杨煜,吴传庆.环境减灾-1A卫星超光谱数据反演叶绿素a浓度的模型研究[J].航天器工程,2009,18(6):133-137.
    [52]谢国清,鲁韦坤,李蒙等.基于光谱特征和HSV变换融合MODIS影像的滇池叶绿素a浓度监测[J].生态学杂志,2010,29(6):1245-1249.
    [53]Keiner L. E., Yan X. H.. A Neural Network Model for Estimating sea surface Chlorophyll and sediments from thematic mapper imagery [J]. Remote Sensing of Environment,1998,66:153-165.
    [54]Buckton D., OMongain E.. The use of neural networks for the estimation of oceanic constituents load on the MERIS instrument [J]. International Journal of Remote Sensing,1999,20 (9):1841-1851.
    [55]Schiller H., Doerffer R.. Neural network for formulation of an inverse model-Operational derivation of case Ⅱ water properties from MERIS data [J]. International Journal of Remote Sensing,1999,20 (9):1735-1746.
    [56]Gross L., Thiria S. Applying artificial neural network methodology to ocean color remote sensing [J]. Ecological Modelling,1999,120:237-246.
    [57]Karul C., Soyupak S.. Case studies on the use of neural networks in eutrophication modelling [J]. Ecological Modelling,2000,134:145-152.
    [58]Zhang Y Z. Application of an empirical neutral network to surface water quality estimation in the gulf of Finland using combined optical data and microwave data [J]. Remote Sensing of Environment,2002,81:327-336.
    [59]詹海刚,施平,陈楚群.利用神经网络反演海水叶绿素浓度[J].科学通报,2000,45(17):1879-1884.
    [60]张亭禄,贺明霞.基于人工神经网络的一类水域叶绿素a浓度反演方法[J].遥感学报,2002,6(1):40-44.
    [61]哈斯巴干.神经网络及其组合算法的遥感数据分类研究[D].北京:中国科学院研究生院,2003:15-16.
    [62]Kritikos H., Yorinks L., Smith H.. Suspended solids analysis using ERTSA data [J], Remote Sensing of Environment,1974,3:69-80.
    [63]Klemas.V., Bartlett.D, Phllpot.W,et.al. Coastal and estuarine studies with ERTs-1 and Skylab[J].Remote Sensing.Environ,1974,3:153-177
    [64]Moor G.F., Aiken J., Lavender S. J.. The Atmospheric Correction of Water Colour And the Quantitative Retrieval of Suspended Particulate Matter in Case II Water [J]. Int. J. Remote Sensing,1999,20(9):1713-1733.
    [65]Dekker A.G., Wos R.J., Peters S.W.M.. Analytical Algorithms for Lake Water TSM Estimation for Retrospective Analyses of TM and SPOT Sensor Data [J]. INT. J. Remote Sensing,2002,23(1):15-35.
    [66]李京.水域悬浮固体浓度的遥感定量研究[J].环境科学学报,1986,6(2):166-173.
    [67]黎夏.悬浮泥沙遥感定量的统一模式及其在珠江口中的应用[J].环境遥感,1992,7(2):106-114.
    [68]James P. V. Monitoring Water Quality Conditions in a Large Western Reservoir with Landsat Imagery [J]. Photogrammetric Engineering and Remote Sensing, 1985,51(3):343-353.
    [69]Lathrop, R.G.. Landsat Thematic Mapper monitoring of turbid inland water quality [J]. Photogramm. End. Remote Sens.,1992,58:465-470.
    [70]K. Kallio, T. Kutser, T. Hannonen, et al. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons[J]. The Science of The Total Environment,2001,268(1-3):59-77.
    [71]Mahtaba A.L., Runquist D.C., Han L.H. et al. Estimation of suspended sediment concentration in water using integrated surface reflectance [J]. Geocarto International,1998,13(2):11-15.
    [72]Richard L. Miller. et al. Using MODIS Terra 250m imagery to map concentrations of total suspended matter in coastal waters [J]. Remote sensing of Environment,2004,93:259-266.
    [73]Pekka Harma, Jenni Vepsalainen, Tuula Hannonen. et al. Detection of water quality using simulated satellite data and semi-empirical algorithms in Finland [J]. The Science of The Total Environment,2001,268(1-3):107-121.
    [74]张渊智等.表面水质遥感监测研究[J].遥感技术与应用.2000,15(4):214-219.
    [75]王学军,马廷.应用遥感技术监测和评价太湖水质状态[J].环境科学,2000,21(6):65-68.
    [76]杨世植.水质的光学遥感监测技术[J].光电子技术与信息,2002,15(1):1-5.
    [77]马荣华,戴锦芳.结合Landsat ETM与实测光谱估测太湖叶绿素及悬浮物含量[J].湖泊科学,2005,17(2):97-103.
    [78]郭琳,陈植华.椒江口-台州湾悬浮泥沙分布特征遥感研究[J].武汉理工大学学报,2007,29(5):1-5.
    [79]杜聪,王世新,周艺等.太湖悬浮物浓度MODIS影像估测研究[J].武汉大学学报学报,2010,35(1):97-101.
    [80]江辉,周文斌,刘小珍.基于RBF神经网络的鄱阳湖表层水体总悬浮颗粒物浓度遥感反演[J].生态环境学报,2011,19(12):2948-2952.
    [81]马跃良,王云鹏,贾桂梅.珠江广州河段水体污染的遥感监测应用研究[J].重庆环境科学,2003,25(3):13-16.
    [82]乔平林,张继贤,林宗坚.石羊河流域水质环境遥感监测评价研究[J].国土资源遥感.2003,58(4):39-45.
    [83]赵玉芹,汪西莉,蒋赛.渭河水质遥感反演的人工神经网络模型研究[J].遥感技术与应用,2009,24(1):63-67.
    [84]阮仁良,王云.淀山湖水环境质量评价及污染防治研究[J].湖泊科学,1993,5(2):153-158.
    [85]程曦,李小平.淀山湖氮磷营养物20年变化及其藻类增长响应[J].湖泊科学,2008,20(4):409-419.
    [86]赵爱萍,刘福影,吴波,等.上海淀山湖的浮游植物[J].上海师范大学学报:自然科学版,2005,34(4):70-76.
    [87]由文辉.淀山湖水生态系统的物质循环[J].中国环境科学,1997,17(4):293-296.
    [88]李传荣,唐伶俐,胡坚等.HJ-1光学卫星应用潜力[J].科技导报,2008,26(13):56-59.
    [89]徐京.我国环境与灾害监测预报小卫星系统概况[J].中国航天,2002,7:10-15.
    [90]任平,杨存建,周介铭.HJ-1A/B星CCD多光谱遥感数据特征评价及应用研究[J].遥感技术与应用,2010,25(1):138-142.
    [91]刘闯,葛成辉.美国对地观测系统(EOS)中分辨率成像光谱仪(MODIS)遥感数据的特点与应用[J].遥感信息,2000,3:45-48.
    [92]http://modis.gsfc.nasa.gov美国美国国家航空航天局"MODIS web"网站.
    [93]刘玉洁,杨忠东MODIS遥感信息处理原理与算法[M].北京:科学出版社,2001.
    [94]郝建亭,杨武年,李玉霞等.基于FLAASH的多光谱影像大气校正应用研究[J].遥感信息,2008,1:78-81.
    [95]李国砚,张仲元,郑艳芬等MODIS影像的大气校正及在太湖蓝藻检测中的应用[J].湖泊科学,2008,20(2):160-166.
    [96]McCulloch W. S., Pits W.. A Logical Caculus of the Ideas Immanent in Nervous Activity [J]. Bulletin of Mathematical Biophysics,1943,10(5):115-133.
    [97]]Hebb D. O.. The Organization of Behavior [M]. New York:Wiley,1949.
    [98]Rosenblatt F.. The Perceptron:A Probabilistic Model for Information Storage and Organization in the Brain [J]. Psychological Review,1958,65:386-408.
    [99]Kohonen T.. Self-organization and Associative Memory [M]. Third Edition, New York:Spring-verlag,1989.
    [100]Carpenter G. A., Grossberg S.. The ART of Adaptive Pattern Recognition by Self-organizing Neural network [J], Trans. IEEE on Computer,1988,15(1): 77-88.
    [101]Hopfield J.. Computing with Neural Circuits:A Model [J], Science,1986, 233:625-637.
    [102]Schofield A. J., Mehta P. A., Stonham T. J.. A system for counting people in video images using neural networks to identify the background scene. Pattern Recognition,1996,29:1421-1428.
    [103]朱大奇,史慧.人工神经网络原理及应用[M].北京:科学出版社,2006:1-9,19,39-42.
    [104]Hagan M. T., Demuth H. B., Beale M. H.. Neural Network Design [M]. PWS Publishing Company,1996(中译本:Hagan等著;戴葵等译.神经网络设计[M].北京:机械工业出版社,2002.)
    [105]阎平凡,张长水.人工神经网络与模拟进化计算[M].北京:清华大学出版社,2005:549-609.
    [106]VAN ROOIJ A J F, JAIN L C, JOINSON R P. Neural network training using genetic algorithms [M]. Singapore:World Scientific,1996.
    [107]Simon Haykin NEURAL NETWORKS. A Comprehensive Foundation. Second Edition [M]北京:清华大学出版社,2001.
    [108]冯天瑾.神经网络技术[M].青岛:海洋大学出版社,1994.
    [109]徐丽娜.神经网络控制[M].哈尔滨:哈尔滨下业人学出版社,1998.
    [110]吕恒.太湖水质多尺度遥感定量监测研究[D].南京:中国科学院南京地理与湖泊研究所,2004.
    [111]冯春晶.基于人工神经网络的海中叶绿素浓度垂直分布特征研究[D].青岛:中国海洋大学,2004:14-17,18-19.
    [112]SNNS, Stuttgart Neural Network Simulator (SNNS) user manual, version4.2, University of Stuttgart[M]. Germany:Institute for parallel and distributed high performance systems,1998.
    [113]可华明.基于GA的BP神经网络在遥感分类中的应用研究[D].昆明:云南师范大学,2007:1-2,10-12.
    [114]潘吴,王晓勇,陈琼等.基于遗传算法的BP神经网络技术的应用[J1.计算机应用,2005,25(12):2777-2779.
    [115]王玲.基于人工神经网络的水文过程模拟研究[D].南京:河海大学,2002.
    [116]周开利,康耀红.神经网络模型及其Matlab仿真程序设计[M].北京:清华大学出版社,2005:12,67-69,75-83,89-90.
    [117]翟宜峰,李鸿雁,刘寒冰等.用遗传算法优化神经网络初始权重的方法[J].吉林大学学报(工学版),2003,33(2):45-50.
    [118]董长虹Matlab神经网络与应用[M].北京:国防工业出版社,2005:91.
    [119]闻新,周露,王丹力等Matlab神经网络应用设[M].北京:科学出版社,2002:208,231-232.
    [120]Ian Joint, Stephen B. Groom. Estimation of Phytoplankton production from space:current status and future potential of satellite remote sensing. Journal of Experimental Marine Biology and Ecology [J].2000,250:233-255.
    [121]顾亮,张玉超,钱新等.太湖水域叶绿素a浓度的遥感反演研究[J].环境科学与管理,2007,32(6):25-29.
    [122]GONS H J. Optical teledetection of chlorophyll a in turbid inland waters [J]. Environ Sci Technol,1999,33(7):1127-1132.
    [123]Gitelson A. The peak near 700nm on radiance spectra of algae and water: relationships of its magnitude and position with chlorophyll [J]. Int J Remote Sensing,1993,13(17):3367-3373.
    [124]KUTSER T, METSAMAA L, VAHTM□E E, et al. Suitability of MODIS 250 m resolution band data for quantitative mapping of cyanobacterial blooms [J]. Proceedings of the Estonian Academy of Sciences Biology Ecology,2006, 55(4):318-328.
    [125]徐京萍,张柏,李方等.基于MODIS数据的太湖藻华水体识别模式[J].湖泊科学,2008,20(2):191-195.
    [126]宋玲玲,仇雁翎,张洪恩等.淀山湖叶绿素a的高光谱遥感监测研究[J].长江流域资源与环境,2007,16(1):48-51.
    [127]马荣华,孔维娟,段洪涛等.基于MODIS影像估测太湖蓝藻暴发期藻蓝素含量[J].中国环境科学,2009,29(3):254-260.
    [128]李炎张,商少凌,张彩云等.基于可见光与近红外遥感反射率关系的藻华水体识别模式[J].科学通报,2005,50(22):2555-2561.
    [129]Sabine Thiemann, Hermann Kaufmann. Determination of Chlorophyll Content and Trophic State of Lakes Using Field Spectrometer and IRS-1C Satellite Data in the Mecklenburg Lake District, Germany [J]. Remote Sensing of Environment,2000,73(2):227-235.
    [130]K. Kallio, T. Kutser, T. Hannonen, et al. Retrieval of water quality from airborne imaging spectrometry of various lake types in different seasons[J]. The Science of The Total Environment,2001,268(1-3):59-77.
    [131]周立国,冯学智,王春玉等.太湖蓝藻水华的MODIS卫星监测[J].湖泊科学,2008:203-207.
    [132]沙慧敏,李小恕,杨文波等MODIS卫星遥感监测太湖蓝藻的初步研究 [J].海洋湖沼通报,2009:9-16.
    [133]Gordon, H. R., Brown O. B., Evans R. H., et al. A semianalytic radiance model of ocean clolor [J]. J. Geophys Res.,1988,93(D9):10909-10924.
    [134]Dall'Olmo G, Gitelson A A. Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results [J]. Applied Optics,2005,44(3):412-422.
    [135]Dall'Olmo G, Gitelson A A. Effect of bio-optical parameter variability and uncertain ties in reflectance measurements on the remote estimation of chlorophyll-a waters:modeling results concentration in turbid productive [J]. Applied Optics,2006,45(15):3577-3592.
    [136]Zimba P V, Gitelson A A. Remote estimation of chlorophyll concentration in hyper eutrophic aquatic systems:Model tuning and accuracy optimization [J]. Aquaculture,2006,256:272-286.
    [137]Quibell G, The effect of suspended sediment on reflectance from fresh water algae [J]. Int. J. Remote Sens.,1991,12:177-182.
    [138]Mittenzwey H. G., Gitelson A. A., et al., Determination of chlorophyll a of inland waters on the basis of spectral reflectance [J]. Limnol. Oceanogr,1992, 37:147-149.
    [139]Han L. H., Rundquist D. C.. The response of both surface reflectance and the underwater light field to various levels of suspended sediments:preliminary results [J]. Photogrammetric Engineering & Remote Sensing.1994,60(12): 1463-1471.
    [140]Han L.. Spectral reflectance with varying suspended sediment concentrations in clear and algae-laden waters [J].1997,63:701-705.
    [141]Pulliainen J., Kallio K., Eloheimo K., et al., A semi-operative approach to lake water quality retrieval from remote sensing data [J]. The Science of the Total Environment,2001,268:79-93.
    [142]吕恒,江南,罗潋葱.基于TM数据的太湖叶绿素A浓度定量反演[J].地球科学,2006,26(4):472-476.
    [143]龚绍琦,黄家柱,李云梅等.应用时间序列分析法对太湖叶绿素-α含量的动态研究[J].海洋与湖沼,2008:591-598.
    [144]Sun D Y, Li Y M, Wang Q, A undefined model for remotely estimating chlorophyll a in Taihu, China, based on SVM and In Situ hyperspectral data [J]. IEEE Transactions Geoscience and Remote sensing,2009,47(8):2957-2965.
    [145]程曦,李小平.淀山湖氮磷营养物20年变化及其藻类增长响应[J].湖泊科学,2008,20(4):409-419.
    [146]阮仁良,王云.淀山湖水环境质量评价及污染防治研究[J].湖泊科学.1993,5(2):153-158.
    [147]杨漪帆,朱永青,林卫青.淀山湖蓝藻水华及其控制因子的模型研究[J].环境污染与防治,2009,31(6):58-63.
    [148]焦红波.基于水面实测光谱的太湖水体叶绿素a遥感最佳波段选择与模型研究[D].南京:南京师范大学,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700