用户名: 密码: 验证码:
山西灵空山辽东栎林群落特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辽东栎林是暖温带落叶阔叶林区域典型地带性植被类型之一。在山西分布很广,是山西森林的主要组成部分。本研究以辽东栎群落为研究对象,应用植被生态学数量分析方法和生物地理统计学方法进行定量分析,并将定性和定量分析方法相结合,重点剖析典型地区不同群落类型的辽东栎的个体适应、种群分布格局及群落特征、动态,总结其在暖温带生态系统条件下的适应规律,分析其内在机理,从而为保护和扩大辽东栎种质资源及可持续经营提供科学依据。
     在灵空山地区辽东栎林共有种子植物49科、122属、182种,其中裸子植物2科、4属、4种,被子植物47科、118属、178种。该地区种子植物科、属、种的数目分别占山西地区的31.01%、16.74%和7.01%;占太岳山地区的48.04%、22.68%和12.97%。其中,科的地理分布类型中,世界分布科最多,占42.86%,各科所含属数、种数差异较为悬殊;属的地理分布类型中,按大小的顺序排列为温带分布属>热带分布属>世界分布>中国特有分布属;可以充分地说明本区具有明显的温带特性。
     从不同类型辽东栎群落结构特征可以初步判断该区辽东栎群落结构(径级结构、垂直结构)较为稳定,但辽东栎种群出现幼苗贮备不足的现象。而在群落的外貌分析中,灵空山辽东栎林生活型谱以高位芽植物占有绝对优势;叶的性质是由纸质、锯齿的中型单叶为主构成。将生活型与叶的性质相结合分析可得出,灵空山地区辽东栎林中的小型和中型纸质单叶的高位芽植物是决定群落外貌的主要成分,具有典型的暖温带落叶阔叶林外貌特征。
     应用方差分析对辽东栎天然群体叶性状表型特征进行了定量分析。结果显示,辽东栎不同部位叶性状在8个指标上具有显著差异,特别是上部叶片与中、下部叶片具有显著差异,而且同源种群不同个体的叶片性状之间也表现出显著差异;为了揭示辽东栎种群空间分布格局的形成机制、种群分布规律和动态变化,将种群分布格局类型判定与分形特征相结合的方法分别对不同群落类型辽东栎种群进行了格局分析。结果证明,在不同群落类型中辽东栎种群多表现为集群分布,而且辽东栎纯林表现出该区域最为成熟的群落类型;除此之外,为了阐明辽东栎林主要树种竞争规律,采用生态位理论、Lotka-Volterra竞争方程以及单木竞争指数模型进行了定量分析。结果说明,辽东栎种群在林中处于优势地位,与油松共优,充分体现出典型暖温带森林群落类型。而且从竞争方程的预测来看,随着群落的发育辽东栎种群将在松栎林中逐渐显示出主导优势。从辽东栎群落种内、种间的竞争关系来看,辽东栎种内竞争强度大于种间强度,表明在对其种群动态的影响中,自疏作用大于他疏作用。
     辽东栎不仅能利用种子繁殖,而且伐根有很强的萌芽能力,但其实生更新困难,主要以萌芽更新为主。结合辽东栎群落结构特征,发现与以往栎属研究相似,在灵空山地区辽东栎种群径级结构中,实生种群除在幼苗占有很高的比例外,总体上在中径级阶段存在着明显的“瓶颈现象”,而由于萌生种群成活率高、生长快等特性,使辽东栎林中的辽东栎植株种群数量能够顺利地通过“瓶颈”,并在“瓶颈”之后数个径级保持相对稳定,从而解决了出现在辽东栎林更新过程中“更新苗匮乏”的现象,因此,本研究就辽东栎伐桩径、高以及萌枝的数量、高度、基径等指标,分析了辽东栎萌芽更新规律,并结合单木竞争指数模型对伐桩内萌芽条之间的竞争强度进行了定量分析。
     采用多样性指数、均匀度指数和优势度指数对灵空山地区不同辽东栎群落类型及不同层物种多样性进行测算。结果发现,物种多样性指数在不同群落之间存在差异,这种差异与群落发育阶段、所处的生境条件有关;而且不同层次物种多样性指数也存在着一定的波动,表现出灌木层大于乔木层的规律。综合不同群落、不同层次物种多样性指数可以推断不同辽东栎群落类型的稳定性差异,从分析结果可知,辽东栎纯林是灵空山地区较为稳定的辽东栎群落类型,相比之下辽东栎-核桃楸群落的稳定性表现较差。
     通过对辽东栎林林隙干扰状况调查,分析辽东栎林林隙形成特征、林隙大小和年龄对物种多样性的影响以及林隙内外群落特征变化情况,力求从动态规律的角度分析辽东栎林林隙特征。结果表明,形成林隙的主要原因为虫害,林隙形成木主要由辽东栎和山杨构成,林隙形成以25~50 m2的面积居多,而且小于5年的林隙所占比例最大,并且以倒木形成的林隙以及径级介于12~16 cm的形成木最多;林隙中,乔木更新苗、灌木以及草本的物种多样性受林隙大小影响较大,总体上表现出随林隙面积的增加而增大,与此同时其也受到林隙年龄的影响,总体上表现出随林隙年龄的增大有逐渐下降的趋势;除此之外,林隙内外物种的种类组成以及多样性存在明显差异,林隙内的物种数明显要多于林隙外的物种数。
Quercus liaotungensis Koidz. forest is one of the typical vegetation types in deciduous broad-leaved forest regions in the warm temperate zone. It is a major component of forests and widely distributed in north China’s Shanxi Province. We chose the community of Q. liaotungensis as our research object. Methods of quantitative vegetation analysis and biogeographic statistics were adopted. We studied the individual adaptation of Q. liaotungensis in different communities of typical areas, the population distribution pattern and community characteristics and trends, summarized its adaptation rule under ecosystem conditions of warm temperate zone and analyzed its inherent mechanism. Our study can offer some scientific references for protection and expansion of germplasm resources and sustainable management of Q. liaotungensis.
     There exist 182 seed plant species, belonging to 122 genera and 49 families in the Lingkong Mountain, accounting for 31.01%, 16.74% and 7.01% of the total species in Shanxi respectively and for 48.04%, 22.68% and 12.97% of the total in the Taiyue Mountain. Of all the seed plant species, gymnosperm shares four species, four genera of two families, while angiosperm has 178 species, 118 genera of 47 families. World-widely distributed families dominate the flora of the Lingkong Mountain, making up 42.86%. There are significant differences between the number of species and genera that each plant family includes. The distribution types of plant genera in the Q. liaotungensis communities follow an order TempG>TG>PG>ECHG. This well suggests that there are clear temperate characteristics in this area.
     From structural characteristics of different community types, it can be found that the community structures such as size-class structure and height structure of Q. liaotungensis were rather steady. However, we noted that there was an insufficient reserve of seedlings of Q. liaotungensis population. In the analysis of the community profile, phanerophytes occupied a dominant position in the community among all life form spectra of Q. liaotungensis. The leaves were composed mainly of papery and serrated single leaves. It can be concluded from the analysis of leaf properties and life forms that the phanerophytes with papery single leaves of microphylls and mesophylls in the Q. liaotungensis forest dominate the community profile, having typical features of deciduous broad-leaved forests in warm temperate zone.
     Analysis of variance (ANOVA) was used in the quantitative analysis on morphological traits of leaves of natural populations of Q. liaotungensis. The result showed that morphological traits of Q. liaotungensis on different parts in the tree differed significantly in eight indices, especially that the upper leaves differed remarkably from the meddle and lower leaves. Leaf morphological traits of different individuals in homologous populations also demonstrated obvious differences. In order to explore the forming mechanism, the law of population distribution and dynamic change of spatial distribution pattern of Q. liaotungensis populations, we analyzed the population pattern of Q. liaotungensis of different community types by combining the methods of fractal feature and judgment of distribution pattern. The result proved that the clumped distribution pattern was dominant in different community types, and the pure forest of Q. liaotungensis showed to be the maturest community type in this area. In addition, in order to expound the competition rule of the main tree species in the forest of Q. liaotungensis, we used niche theory, Lotka-Volterra competition equation and individual tree competition index model for quantitative analysis. The Q. liaotungensis populationwas in a dominant position altogether with Chinese pine, well exhibiting the typical forest community type in the temperate zone. According to prediction of the competition equation, Q. liaotungensis population gradually demonstrated its leading advantage in the pine-oak mixed forest with the development of the community. According to intraspecific and interspecific competition in the community of Q. liaotungensis, intraspecific competition is greater than interspecific competition in the Q. liaotungensis. It indicated that the effect of self-thinning on population dynamics was greater than that of alien-thinning.
     Q. liaotungensis can not only utilize seeds to breed but also has very strong sprouting ability from stumps. As the regeneration from seedling trees is difficult, the regeneration of Q. liaotungensis relies mainly on sprout regeneration. It can be found that structural characteristics of the Q. liaotungensis community remained similar to those in previous studies. Except for the high percentage of seedling individuals, bottleneck phenomenon can be found to occur in the medium diameter-class structure of Q. liaotungensis seedling tree population in the Lingkong Mountain. Because of the high survival rate and fast growth of seedling population, population quantity of Q. liaotungensis can break smoothly through "the bottleneck". Diameter classes keep relatively stable after "bottleneck", thus solving the problem of "the scarcity of seedling regeneration" in the regeneration of Q. liaotungensis. Sprouting regeneration regulation was analyzed with the indices of basal diameter and height of stumps, height, number and basal diameter of sprouts. The competition intensity among sprouting branches was quantitatively analyzed by the single tree competition index model.
     The species diversity of Q. liaotungensis in different communities and layers was measured by the methods of Shannon-Wiener index, Simpson index and Pielou evenness index. The result showed that the species diversity indices were different among communities, which resulted from the difference in development periods and the habitat conditions within community; the species diversity indices fluctuated among the different layers, and fluctuation range in shrub layers was larger than that in arbor layers. Q. liaotungensis pure forest was more stable than Q. liaotungensis-Juglans mandshurica community in Lingkong Mountain, which was deduced by analysis of species diversity indices in different communities and layers.
     Through our investigation on gap disturbance, the formation features of Q. liaotungensis, the impact of gap size and gap age on species diversity and the changes of community characteristics inside and outside gap were analyzed. The result showed that the gap formation was mainly because of the pest damage and the gaps were mainly caused by the fallen Q. liaotungensis or Populus davidiana trees. Most of the gap areas were about 25-50 m2, and the age of gaps less than five years had the highest proportion and those gaps were mainly formed by fallen trees with diameter of 12-16 cm. The gap sizehad greater impact on species diversity of seedlings, shrubs and herbages. Species diversity increased with the enlargement of gap area , generally, and influenced by gap age. Species diversity gradually declined as the gap age increased. In addition, the species composition and diversity were obvious different between inside and outside gap. The number of species inside gaps was significantly larger than that of outside gap.
引文
[1] E. P. Odum. 1952, 孙儒泳等译. 生态学基础[M]. 北京: 人民教育出版社,1981.
    [2] J. P. 金明仕. (文剑平译). 森林生态学[M]. 北京: 中国林业出版社, 1987, 324-326.
    [3] Peilou, E. C. 1985, 卢泽愚译. 数学生态学(第二版)[M]. 北京: 科学出版社,1991.
    [4] 曹文强, 韩海荣, 马钦彦, 等. 山西太岳山辽东栎夏季树干液流通量研究[J]. 林业科学,2004, 40(2):174-177.
    [5] 陈兰荪. 数学生态学模型与研究方法[M]. 北京: 科学出版社,1988.
    [6] 陈灵芝, 鲍显诚, 陈清朗. 北京山区的栎林[J]. 植物生态学与地植物学丛刊,1985,9(2):101 -111.
    [7] 陈灵芝主编. 暖温带森林生态系统结构与功能的研究[M]. 北京: 科学出版社,1997.
    [8] 陈世镶. 进化论与分类学[M]. 北京: 科学出版社, 1978.
    [9] 丛沛桐, 于景华, 赵则海, 等. 东灵山辽东栎林植物生态场研究[J]. 植物研究, 2001,21(1): 147-151.
    [10] 丛沛桐, 赵则海, 张文辉, 等. 东灵山辽东栎群落演替的连续时间马尔可夫过程研究[J], 木本植物研究,2000,4: 438-443.
    [11] 党承林.植物群落的冗余结构—对生态系统稳定性的一种解释[J].生态学报,1998,18(6):665 -672.
    [12] 方坚, 王孝安, 郭华, 等. 黄土高原马栏林区辽东栎林种内、种间竞争研究[J]. 西北植物学报,2007,27(2): 334-339.
    [13] 高贤明, 陈灵芝. 北京山区辽东栎(Quercus liaotungensis)群落物种多样性的研究[J]. 植物生态学报,1998,22(1): 23-32.
    [14] 高贤明, 陈灵芝. 植物生活型分类系统的修订及中国暖温带森林植物生活型谱分析[J]. 植物学报,1998,40(6): 553-559.
    [15] 高贤明, 马克平, 陈灵芝. 暖温带若干落叶阔叶林群落物种多样性及其与群落动态的关系[J]. 植物生态学报,2001,25(3):283-290.
    [16] 高贤明, 王巍, 杜晓军, 等. 北京山区辽东栎林的径级结构、种群起源及生态学意义[J]. 植物生态学报, 2001,25(6): 673-678.
    [17] 韩海荣, 贺顺钦, 张学培, 等. 辽东栎苗木早期生长与光的关系[J]. 北京林业大学学报,2000, 22(4):97-100.
    [18] 韩海荣. 短柄枹栎成树林伐根的萌芽发生状态. 见: 铁铮, 颜帅, 吴斌. 青年林业科学家论丛[M]. 北京: 中国林业出版社,1994,58-61.
    [19] 贺金生, 陈伟烈. 陆地植物群落物种多样性的梯度变化特征[J]. 生态学报,1997,17(1):91-99.
    [20] 贺军钊, 叶永忠, 马克平, 等. 东灵山主要群落类型的植物生活型谱和区系谱的主成分分析. 见: 陈宜瑜主编. 生物多样性与人类未来[M]. 北京: 中国林业出版社,1998,269-274.
    [21] 洪伟, 林成来, 吴承祯, 等. 福建建溪流域常绿阔叶防护林物种多样性特征研究[J]. 生物多样性,1999,7(3): 208-213.
    [22] 洪伟, 吴承祯, 蓝斌. 邻体干扰指数通用模型及其应用[J]. 植物生态学报,1997,2(2): 149-154.
    [23] 侯继华, 黄建辉, 马克平. 东灵山辽东栎林主要树种种群 11 年动态变化[J]. 植物生态学报, 2004,28(5): 609-615.
    [24] 贾黎明, 翟明普, 尹伟伦. 油松、辽东栎混交林中生化他感作用的研究[J]. 林业科学,1995,31(6): 491-498.
    [25] 江洪. 云杉种群生态学[M]. 北京: 中国林业出版社,1992.33-78.
    [26] 蒋有绪, 郭泉水, 马娟, 等. 中国森林群落分类及其群落学特征[M]. 北京: 中国林业出版社, 1998.119-127.
    [27] 金则新, 朱小燕, 林恒琴. 浙江天台山甜槠种内与种间竞争研究[J]. 生态学杂志,2004,23(2): 22-25.
    [28] 康峰峰, 马钦彦, 牛德奎, 等. 山西太岳山地区辽东栎林夏季热量平衡的研究[J]. 江西农业大学学报,2003,25(2):209-214.
    [29] 康永祥, 岳军伟, 张巧明. 黄龙山林区辽东栎群落类型划分及其生物多样性研究[J]. 西北林学院学报,2007,22(3): 7-10.
    [30] 李俊清主编. 森林生态学[M]. 北京: 高等教育出版社,2006,328-330.
    [31] 李明辉, 何风华, 刘云, 等. 天山云杉种群空间格局与动态[J]. 生态学报, 2005,25(5):1000-10 06.
    [32] 李文英, 顾万春. 蒙古栎天然群体表型多样性研究[J]. 林业科学,2005,41(1):49-56.
    [33] 李先琨, 黄玉清, 苏宗明. 元宝山南方红豆杉种群分布格局及动态[J]. 应用生态学报, 2000, 11(2):169-172.
    [34] 李育才主编. 面向 21 世纪的林业发展战略[M]. 北京: 中国林业出版社, 1996.
    [35] 李卓玉, 张峰, 上官铁梁, 等. 太岳山种子植物区系的初步分析[J]. 山西大学学报(自然科学版),1993,16(1): 101-106.
    [36] 蔺琛, 马钦彦, 韩海荣, 等. 山西太岳山辽东栎的光合特性[J]. 生态学报, 2002,22(9): 1399-1406.
    [37] 马克明, 祖元刚. 植被格局的分形特征[J]. 植物生态学报, 2000,24(1):111-117.
    [38] 马克明, 祖元刚, 倪红伟. 兴安落叶松种群格局的分形特征——关联维数[J]. 生态学报,1999, 19(3):353-358.
    [39] 马克平, 黄建辉, 于顺利, 等. 北京东灵山地区植物群落多样性的研究Ⅱ——丰富度、均匀度和物种多样性指数[J]. 生态学报,1995,15(3):268-277.
    [40] 马克平, 刘玉明. 生物群落多样性的测度方法Ⅰ:α多样性的测度方法(下)[J]. 生物多样性, 1994,2(4):231-239.
    [41] 马克平, 于顺利, 高贤明. 东灵山地区的植物区系分析.见:陈灵芝(主编). 暖温带森林生态系统结构与功能的研究[M]. 北京: 科学出版社,1997,38-55.
    [42] 马克平. 生物群落多样性的测度方法[J]. 生物多样性,1994,2(3): 162-168.
    [43] 马克平. 试论生物多样性的概念[J]. 生物多样性,1993,1(1):20-22
    [44] 马晓勇, 上官铁梁, 庞军柱. 太岳山森林群落优势种群生态位研究[J]. 山西大学学报(自然科学版本),2004,27(2):209-212.
    [45] 马晓勇, 上官铁梁. 太岳山森林群落物种多样性[J]. 山地学报,2004,22(5):606-612.
    [46] 马子清主编. 山西植被[M]. 北京: 中国科学技术出版社, 2001.
    [47] 彭少麟著. 南亚热带森林群落动态学[M]. 北京: 科学出版社,1996,2-8.
    [48] 祁建, 马克明, 张育新. 辽东栎(Quercus liaotungensis)叶特性沿海拔梯度的变化及其环境解释[J]. 生态学报,2007,27(3):930-937.
    [49] 尚玉昌, 蔡晓明. 普通生态学[M]. 北京: 北京大学出版社,1995.
    [50] 尚玉昌. 现代生态学的生态位重叠[J]. 生态学进展,1988,(2):77-84.
    [51] 宋永昌. 植被生态学[M]. 上海: 华东师范大学出版社,2002
    [52] 孙儒泳, 李博, 诸葛阳, 等. 普通生态学[M]. 北京: 高等教育出版社,1993,104-112.
    [53] 孙书存, 陈灵芝. 不同生境中辽东栎的构型差异[J]. 生态学报, 1999,19(3): 359-364.
    [54] 孙书存, 陈灵芝. 东灵山地区辽东栎的叶群体统计[J]. 植物生态学报, 1998,22(6): 538-544.
    [55] 孙书存, 陈灵芝. 东灵山地区辽东栎叶的生长及其光合作用[J]. 生态学报, 2000,20(2):212 -217.
    [56] 孙书存, 陈灵芝. 东灵山地区辽东栎叶养分的季节动态与回收效率[J]. 植物生态学报,2001, 25(1): 76-82.
    [57] 孙书存, 陈灵芝. 东灵山地区辽东栎种子库统计[J]. 植物生态学报,2000,24(2):215-221.
    [58] 孙书存, 陈灵芝. 动物搬运与地表覆盖物对辽东栎种子命运的影响[J]. 生态学报,2001,21(1): 80-85.
    [59] 孙书存, 陈灵芝. 辽东栎植冠的构型分析[J]. 植物生态学报, 1999,23(5): 433-440.
    [60] 孙书存. 东灵山地区辽东栎种群生物学研究[D]. 北京: 中国科学院植物研究所,1998.
    [61] 滕崇德, 上官铁梁, 张峰. 太原地区植物区系的初步分析[J]. 武汉植物学研究,1991,9(4): 347-354.
    [62] 田丽, 王孝安, 郭华, 等. 黄土高原马栏林区辽东栎更新特性研究[J]. 广西植物,2007, 27(2):191-196
    [63] 王本洋, 余世孝. 种群分布格局的多尺度分析[J]. 植物生态学报, 2005,29(2):235-241.
    [64] 王伯荪, 李鸣光, 彭少麟. 植物种群学[M]. 广州: 广东高等教育出版社, 1995,132-148.
    [65] 王伯荪, 马曼杰. 鼎湖山自然保护区森林群落的演变[J]. 热带亚热带森林生态系统研究, 1982,1: 142-156.
    [66] 王伯荪, 彭少麟. 鼎湖山森林群落分析 V:群落演替的线性系统[J]. 中山大学学报,1985,4:75 -80.
    [67] 王伯荪主编. 植物群落学[M]. 北京: 高等教育出版社,1987,22-24,67-68.
    [68] 王刚. 植物群落学中生态位重叠的计测[J]. 植物生态学与地植物学丛刊,1984,8(4): 329-335.
    [69] 王荷生. 植物区系地理[M]. 北京: 科学出版社,1992,1-180.
    [70] 王荷生主编. 华北植物区系地理[M]. 北京: 科学出版社,1997,38-52.
    [71] 王九龄. 我国混交林营造的研究现状[J]. 林业科技通报,1986,11: 1-4.
    [72] 王良民, 任宪威, 刘一樵. 我国落叶栎的地理分布[J]. 北京林学院学报,1985(2): 57-69.
    [73] 王巍, 李庆康, 马克平. 东灵山地区辽东栎幼苗的建立和空间分布[J]. 植物生态学报, 2000, 24(5): 595-600.
    [74] 王巍, 刘灿然, 马克平, 等. 东灵山两个落叶阔叶林中辽东栎种群结构和动态[J]. 植物学报,1999,41(4): 425-432.
    [75] 王巍, 马克平, 高贤明. 东灵山地区脊椎动物对辽东栎坚果捕食的时空格局[J]. 植物学报,2000,42(3):289-293.
    [76] 王文斗, 李凤日, 那冬晨, 等 .辽东栎单木生长模型的研究[J]. 林业科技,2005,30(2): 11-13.
    [77] 王政权, 王军邦, 孙志虎等. 水曲柳苗木地下竞争与地上竞争的定量研究[J]. 生态学报,2003, 23(8):1512-1518.]
    [78] 吴承祯, 洪伟, 廖金兰. 马尾松中幼龄林种内竞争的研究[J]. 福建林学院学报, 1997,17(4): 289-292.
    [79] 吴刚. 长白山红松阔叶混交林林冠空隙树种更新动态规律的研究[J]. 应用生态学报,1998,9(5):449-452.
    [80] 吴巩胜, 王政权. 水曲柳落叶松人工混交林中树木个体生长的竞争效益模型[J]. 应用生态学报,2000,11(5):646-650.
    [81] 吴征镒, 王荷生. 中国自然地理—植物地理(上册)[M]. 北京: 科学出版社,1983.1-125.
    [82] 吴征镒, 周浙昆, 李德铢, 等. 世界种子植物科的分布区类型系统[J]. 云南植物研究, 2003, 25(3): 245-257.
    [83] 吴征镒. 论中国植物区系的分区问题[J]. 云南植物研究,1979,1(1): 1-22.
    [84] 吴征镒. 中国种子植物属的分布区类型[J]. 云南植物研究,1991(增刊 4): 1-139.
    [85] 吴征镒主编. 中国植被[M]. 北京: 科学出版社,1980.
    [86] 谢晋阳, 陈灵芝. 暖温带落叶阔叶林的物种多样性特征[J]. 生态学报,1994,14(4): 337-344.
    [87] 谢晋阳, 陈灵芝. 中国暖温带若干灌丛群落多样性问题的研究[J]. 植物生态学报,1997,21(3): 197-207.
    [88] 谢宗强, 陈伟烈, 刘正宇, 等. 银杉种群的空间分布格局[J]. 植物学报, 1999,41(1):95-101.
    [89] 谢宗强. 银杉林林窗更新的研究[J]. 生态学报. 1999,19(6):775-779.
    [90] 徐秀梅. 宁夏六盘山辽东栎林群落特征分析[J]. 宁夏农林科技,1997(2): 15-18.
    [91] 颜忠诚. 生态型与生活型[J].生物学通报. 2001,36(5): 4-5.
    [92] 阳含熙等. 长白山阔叶红松林马氏模型[J]. 生态学报,1988,8(3): 211-219.
    [93] 杨继. 植物种内形态变异的机制及其研究方法[J]. 武汉植物学研究,1991,9(2):186-194
    [94] 杨效文, 马继盛. 生态位有关术语的定义及计算公式评述[J]. 生态学杂志,1992,11(2):44-49.
    [95] 尹爱国, 苏志尧, 李彩红. 广东石门台自然保护区山顶矮林优势种群分布格局及动态[J]. 生态学杂志, 2006,25(1):55-59.
    [96] 岳明. 秦岭及陕北黄土区辽东栎林群落物种多样性特征[J]. 西北植物学报,1998,18(1): 124-131.
    [97] 臧润国, 郭忠凌, 高文韬. 长白山自然保护区阔叶红松林林隙更新的研究[J]. 应用生态学报, 1998,9(4):349-353.
    [98] 臧润国, 刘静艳, 董大方. 林隙动态与森林生物多样性[J]. 北京: 中国林业出版社, 1999,73 -200.
    [99] 臧润国, 刘世荣, 蒋有绪. 森林生物多样性保护原理概述[J]. 林业科学,1999,35(4):71-79.
    [100] 臧润国, 刘涛, 郭忠凌, 等. 长白山自然保护区阔叶红松林林隙干扰状况的研究[J]. 植物生态学报,1998,22(2):135-142.
    [101] 张宝琛, 白雪芳, 顾立华, 等. 生化他感作用与高寒草甸上人工草场自然退化现象的研究[J]. 生态学报,1989,9: 115-120.
    [102] 张大勇, 姜新华, 雷光春, 等. 理论生态学研究[M]. 北京: 高等教育出版社,2000.
    [103] 张大勇, 赵松龄, 张鹏云, 等. 青杄林恢复演替过程中的邻体竞争效应及邻体干扰指数的改进模型[J]. 生态学报,1989,9(1): 53-58.
    [104] 张绘芳, 李霞. 塔里木河下游胡杨种群空间分布格局分析[J]. 西北植物学报,2006,26(10): 2125-2130.
    [105] 张金屯, 孟东平. 芦芽山油松—辽东栎林优势树种空间分布格局研究[J]. 西北植物学报, 2006,26(8): 1682-1685.
    [106] 张金屯. 植被数量生态学方法[M]. 北京: 中国科学技术出版社,1995:1-370.
    [107] 张谧, 熊高明, 赵常明, 等. 神农架地区米心水青冈-曼青冈群落的结构与格局研究[J]. 植物生态学报, 2003,27(5):603-609.
    [108] 张巧明. 辽东栎林天然更新特征的研究[D]. 杨凌:西北农林科技大学,2007.
    [109] 张树杰, 李登武, 温仲明, 等. 黄土高原地区辽东栎群落区系研究[J]. 水土保持研究,2005,12 (1):22-25.
    [110] 张文辉, 赵则海, 孙海芹, 等. 东灵山辽东栎林优势林木种群直径结构的研究[J]. 植物研究, 2002,22(1): 84-90.
    [111] 张跃西. 邻体干扰模型的改进及其在营林中的应用[J]. 植物生态学与地植物学学报,1993,17 (4): 325-357.
    [112] 赵秀海, 张春雨, 郑景明. 阔叶红松林林隙结构与树种多样性关系研究[J]. 应用生态学报, 2005,16(12):2236-2240.
    [113] 赵则海, 杨逢建, 丛沛桐, 等. 东灵山辽东栎林木本植物多样性的研究[J]. 植物研究,2002, 22(4): 439-433.
    [114] 赵则海. 辽东栎林植被格局的非线性生态学模型[D].哈尔滨: 东北林业大学,2000.
    [115] 中国植物志编辑委员会. 中国植物志(第二十二卷)[M]. 北京: 科学出版社, 1998. 211-213.
    [116] 钟章成. 常绿阔叶林生态学研究[M]. 重庆: 西南师范大学出版社,1988,387-412.
    [117] 钟章成编. 植物生态学(第二篇)[M]. 北京: 高等教育出版社,1986.
    [118] 周浙昆. 中国栎属的起源演化和分布[M]. 昆明: 中国科学院昆明植物研究所,1990.
    [119] 周浙昆. 中国栎属的起源演化及其扩散[J]. 云南植物研究,1992,14(3):227-236.
    [120] 朱华. 东亚暖温带落叶阔叶林的起源[J]. 植物研究,1997,17(4):389-396.
    [121] 朱志诚. 关于秦岭及陕北黄土高原区辽东栎林的初步研究[J]. 植物生态学与地植物学丛刊, 1982,6(2): 95-104.
    [122] 朱志诚. 陕北黄土高原辽东栎林的类型和演替[J]. 西北大学学报,1991,21(1): 57-71.
    [123] 祖元刚, 马克明, 张喜军. 植被空间异质性的分形分析方法[J]. 生态学报,1997,17(3):333 -337.
    [124] 祖元刚. 非线性生态模型[M]. 北京: 科学出版社,2004,181-341.
    [125] Andersson C. The effect of weevil and fungal attacks on the germination of Quercus robur acorns [J]. Forest Ecology and Management, 1992,50:247-251.
    [126] Bazzaz F A. Plant species diversity in old-field successional ecosystem in southern Illinois[J]. Ecology, 1975,56:485-488.
    [127] Canham C D et al. Light regimes beneath closed canopies and tree-fall gaps in temperate and tropical forests[J]. Canadian Journal of Forest Research, 1990,20(5):620-631.
    [128] Chechowitz N, Chappell D M, Guttman S I et al. Morphological, electrophoretic, and ecological analysis of Qureus macrocarpa population in the Black Hills of South Dakota and Wyoming[J]. Can I Bot, 1990,(68):2185-2194.
    [129] Daubenmire R. Plant Communities: A Textbook of Plant Synecology[M]. New York: Harper & Row ,1968,62-67.
    [130] Denslow J S. Canopy gap in forest ecosystems: an introduction[J]. Canadian Journal of Forest Research, 1990,20(5):619.
    [131] Elsner G. Morphological variability of oak stands(Quercus petraea and Q. robur)in northern Germany[J]. Annals forest Science,1993,50:228-232.
    [132] Espelta J M, Riba M, Retana J. Patterns of seedling recruitment in West-Mediterranean Quercus ilex forests in fluenced by canopy development[J]. Veg. Sci., 1995,6:465-472.
    [133] Fisher R A et al. The relation between the number of species and the number of individuals in arandom sample of an animal population[J]. Anim. Ecol, 1943,12 :42-58.
    [134] Gartlan J S, Newbery D M, Thomas KW et al. The influence of topography and soil phosphorous of the vegetation of Korup Forest Reserve[J]. Cameroun Vegetation, 1986,65: 131-148.
    [135] Gause G, Witt A. Behavior of mixed populations and the problem of natural selection[J]. American Naturalist, 1935,69:596-609.
    [136] Grinnell J. The niche relationship of the California Thrasher[J]. Auk, 1917,34: 427-433.
    [137] Halle F O, ldeman R A A, Tomlinson P B. Tropical trees and forests: an architectural analysis[M]. Berlin: Springer-Verlag. 1978.
    [138] Hegyi. Individual tree growth derived from diameter distribution models[J]. For Sci, 1974, 26(3): 626-632.
    [139] Horn H S. Forest succession[J]. Scientific American,1975, 232: 90-98.
    [140] Horn H S. Succession. In May, R. ed. Theoretical Ecology[M]. Oxford: Blackwell, 1976,187- 204.
    [141] Hurlbert S H. The measurement of niche overlap and some relatives[J]. Ecology, 1978, 59(1): 67-77.
    [142] Huston M A. Biological diversity along elevational gradients in the Philippines: an assessment of patterns and hypotheses[J]. Global Ecology and Biogeography, 1994,10:15-39.
    [143] Kenkel N C. Pattern of self-thinning in jack pine: testing the random mortality hypothesis[J]. Ecology, 1988,69(4):1017-1024.
    [144] Kershaw K A, Looney J H H. Quantitative and Dynamic Plant Ecology. 3rd ed[M]. London: Edward Arnold, 1985.
    [145] Lawton R O and F E Putz. Natural disturbance and gap-phase regeneration in a wind-exposed tropical cloud forest[J]. Ecology, 1988,69(3):764-777.
    [146] Levins R. Evolutinn changing environments: some theoretical explorations[M]. Princeton: Princeton University Press, 1968.
    [147] Lodhi M A K. Allelopathic effects of decaying litter of dominant trees and their associated soil in a lowland forest community[J]. Amer. J. Bot., 1978, 65: 340-344.
    [148] Lodhi M A K. Role of allelopathy as expressed by dominating trees in a lowland forest in controlling productivity and pattern of herbaceous growth[J]. Am. J. Bot., 1979, 63: 1-8.
    [149] Lodhi M A K. The influence and comparison of individual forest trees on soil properties and possible inhibition of nitrification due to intact vegetation[J]. Amer. J. Bot., 1977, 64(3): 260-264.
    [150] Magurran A E. Ecology Diversity and its Measurement[M]. New Jersey: Princeton University Press, 1988.
    [151] Mook C D. Tree species diversity in the eastern deciduous forest with particular reference to north central Florida[J]. Am. Nat., 1967, 101: 173-187.
    [152] Paijmans K. An analysis of four tropical rain forest sites in New Guinea[J]. Journal of Ecology, 1970,8:77-101.
    [153] Palmer M W. The coexistence of species in fractal landscapes[J]. American Naturalist. 1992, 139:375-397.
    [154] Palmer M M. Fractal geometry: a tool for describing spatial patterns of plant communities[J]. Vegetation, 1988, 75: 91-102.
    [155] Peterson C J, Squers E R. An unexpected changes in spatial pattern across 10 years in an aspen-white-pine forest[J]. Journal of Ecology, 1995,83: 847-855.
    [156] Pielou E C. Ecological diversity [M]. New York: John Wiley and Sonslnc, 1975.
    [157] Poulson T L and P1att W J. Gap light regimes influence canopy tree diversity[J]. Ecology, 1989,70(3):553-555.
    [158] Raunkiaer C. The life forms of plants and statistical plant geography[M]. New York :Oxford University Press,1934,2-104.
    [159] Rohde K. Latitudinal gradients in species diversity: the search for the primary cause[J]. Oikos, 1992, 65: 514-527.
    [160] Runkle J R. Comparison of methods for determining fraction of land area in tree-fall gaps[J]. For. Sci, 1985,31:15-19.
    [161] Schaal B A, O'Kane S L, Rogstad S H. DNA variation in plant populations[J]. Trends in Ecology and Evolution, 1991,6:329-333.
    [162] Sharpe P J H, Walker J et al. A physiologically-based continuous time markov approach to plant growth modelling in semi-arid woodlands[J]. Ecol Mod, 1985,9: 189-213.
    [163] Simpson E H. Measurement of diversity[J]. Nature,1949,163:688.
    [164] Tomlinson P B. Architectual of tropical plants[J]. Ann. rev. ecol. syst. 1978,18: 1-21.
    [165] Waggers P E. and Stephens G R. Transition probabilities for a forest[J]. Nature, 1970,225: 1160-1161.
    [166] Watt A S. Pattern and process in the plant communities[J]. Journal of Ecology. 1947,35:1-22.
    [167] Whitmore T C. Gaps in the forest canopy. In: P B Tomlinson and M H Zimmerman(eds). Tropical trees as living systems[M]. London: Cambridge University Press, 1978.639-655.
    [168] Whittaker P H. Vegetation of the Siskiyou Mountain, Oregon and California[J]. Ecology Monograph, 1960, 30:279-338.
    [169] Whittaker R H. Communities and Ecosystems[M]. New York: Macmillan Company, 1970, 6-17.
    [170] Willis J C A. A dictionary of the flowering plants and 7th edition[M]. Revised by H. K. Airy Shaw. Cambridge University Press, 1973.
    [171] Wu H, Sharpe PJ H et al. Ecological field theory(EFT): A spatial analysis of resource interference among plants[J]. Ecol Mod, 1985, 29: 215-243.
    [172] Wu X P, Zheng Y, Ma K P. Population Distribution and Dynamics of Quercus liaotungensis, Fraxinusrhynchophylla and Acer mono in Dongling Mountain, Beijing[J]. Acta Botanica Sinica, 2002, 44(2): 212-223.
    [173] Borman F H. and Likens G E. Pattern and process in a forested ecosystem[M]. Berlin: Springer-Verlag, 1979.
    [174] Veblen T T. Regeneration dynamics. in Glennlewin D C et al. (eds) Plant succession: theory and prediction[M]. London: Chapman & Hall, 1992.152-177.
    [175] 橋詰隼人, 索鯵, 李廷炓 , 等. ナラ類の育種に関する基礎的研究(Ⅱ)——カシフ, ユナラすよびミズナラの中間型個體の葉と果的形質にフハて[J]. 日林論,1994,105:325-328.
    [176] 生方正俊. 北海道におけるミズナラの地理的変異[J]. 林木の育種·論説·報文,2001:No201.
    [177] 田中京子. 分布北限付近のユナラ集团における遗传的多样性[J]. 北方林业,1997,49(4):15 -17.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700