用户名: 密码: 验证码:
普洱季风常绿阔叶林恢复生态学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
季风常绿阔叶林是云南省南部普洱地区重要的森林类型之一,是热带季雨林、雨林向亚热带常绿阔叶林过渡的植被类型,生物多样性较为丰富。由于过度的森林砍伐和不合理的土地利用导致森林面积的大规模减少,形成不同恢复阶段的退化生态系统。由原始林破坏后发展起来的天然和人工次生林已成为普洱地区重要的森林资源。以往对云南省季风常绿阔叶林的认识局限在原始林的群落结构、物种组成、土壤种子库及生物量上,而对人为干扰过的退化植被则了解甚少。本文以普洱地区不同恢复阶段的季风常绿阔叶林森林砍伐后自然恢复和人工恢复下的群落以及残存的原始林为研究对象,在共计25块样地(2.25hm2)野外群落学调查的基础上,通过比较不同类型群落的组成、结构、多样性、生态位、种间联结、种子库和功能群特征来探讨退化季风常绿阔叶林自然和人工恢复的动态规律,为该地区植被恢复策略的制定提供科学参考。本文的主要结果包括:
     1.以野外样方调查数据为基础,对普洱地区季风常绿阔叶林分布海拔范围内的不同恢复群落类型进行数量分类。结果表明:应用TWINSPAN可将季风常绿阔叶林分布海拔范围内恢复群落划分为5个植被类型:季风常绿阔叶林、针阔混交林、针叶林、西南桦林及桉树林,分属原始林、次生林及人工林。恢复方式可分为自然恢复与人工恢复两个恢复序列。自然恢复:恢复15年群落——恢复30年群落——原始林;针叶林——针阔混交林——原始林。从植物区系组成成分看,恢复群落中世界分布科的百分比均高于原始林,由于种源地相同,恢复群落大都处于向季风常绿阔叶林原始林群落的恢复阶段,因此,科、属组成的相似性程度较高,种的组成上既有相似之处,也有一些不同,原始林中国特有种要显著大于恢复群落。原始林与自然恢复群落的生活型谱的相关大于与人工恢复群落,针叶林中一年生植物要多于其它群落类型。原始林的小型叶的比例要小于恢复群落,而叶型则没有反映出群落的恢复程度。
     2.通过对云南普洱地区季风常绿阔叶林皆伐后人工和天然恢复15年及30年群落的调查,并以原始林群落为对照,对比分析了恢复方式和恢复时间对季风常绿阔叶林恢复群落的结构和多样性的影响。结果表明:恢复方式对科、属、物种、乔木、灌木、藤本等物种组成和多样性情况无显著影响,而恢复时间则具有显著的影响。科、属、物种、乔木及灌木物种丰富度随着恢复时间的延长呈现先减后增的趋势。所有群落物种丰富度均随径级和高度级的增加而呈现倒“J”型分布,多度则随径级增加呈现偏峰曲线,而随高度级的增加呈现倒“J”型分布。恢复方式和恢复时间与群落结构与多样性变量之间的相关性分析及回归分析表明,恢复时间与多数变量之间具有显著的相关性,而恢复方式则仅与藤本多度具有显著相关性,这说明与恢复方式相比,恢复时间是影响该地区恢复群落结构和多样性的主要因子。
     3.通过对云南普洱地区季风常绿阔叶林群落的调查,探讨了不同演替阶段群落物种–面积关系的变化。结果表明:不同演替阶段群落中,取样面积与总物种数、乔木、灌木、藤本物种数均具有极显著相关性,其变化解释率均超过94%;总物种和乔木的物种累积速率(Z )在演替30年的群落中最低,分别为0.334和0.394,灌木(0.437)和藤本(0.326)的Z值则在演替15年的群落中最低;总物种、乔木、灌木、藤本的物种–面积曲线截距在不同演替阶段中无显著变化,但总物种及藤本物种–面积曲线的决定系数(R2)为原始林中显著高于演替15年和30年群落。演替15年群落中,初始乔木及灌木物种丰富度解释了Z值变化的99.97%,但其他演替阶段群落中初始乔木、灌木、藤本及总物种丰富度与Z值均无显著相关性。
     4.生态位和种间联结是群落动态研究的焦点之一,物种间相互作用影响着群落的恢复和演替。本文在对云南普洱地区不同恢复阶段(恢复15年、恢复30年和原始林群落)季风常绿阔叶林群落的野外调查基础上,采用生态位宽度、生态位重叠、方差比率(VR)和基于2×2联列表的χ2检验、联结系数(AC)的方法,分析了不同恢复阶段各种群之间的变化趋势。结果表明:3种群落类型中物种的重要值与相对应的生态位宽度之间存在着显著的正相关,恢复15年群落有78.22%的种对之间的生态位重叠值在0.4—0.8之间,说明其群落优势物种存在较强的资源利用性竞争,而恢复30年和原始林群落结构则具有一定的稳定性,多数生态位宽度较大的物种之间的生态位重叠要大于生态位较小的物种,反映出优势物种具有较强的竞争能力。恢复15年和恢复30年群落物种间总体呈不显著正联结,原始林群落则呈不显著负联结。3种群落231种对中,绝大多数种对联结系数未达显著水平,种对间的独立性相对较强,群落中物种间正负联结对数占总种的比例随恢复进程而出现下降趋势。不同恢复阶段群落中联结系数与生态位重叠值之间存在显著正相关,生态位重叠值越大,其联结系数也越大。
     5.通过对云南普洱地区不同恢复阶段(恢复15年、30年和原始林群落)季风常绿阔叶林群落的野外调查及土壤种子库的萌发实验,探讨其土壤种子库和幼苗库的基本特征、变化规律及与地上植被的关系。结果表明:在8个样地的土壤种子库中共有2645粒种子(分属37科72属83种)萌发;土壤中种子密度由小到大依次为原始林群落(148±23粒/m~2)<恢复15年群落(362.33±77.05粒/m~2)<恢复30年群落(424±91.53粒/m~2)。原始林群落中种子主要集中在0—2cm层和5—10cm,恢复15年与30年群落在3层间差异不显著;恢复30年群落的Shannon-Wiener指数显著高于恢复15年和原始林群落。3种类型土壤种子库生活型主要以草本植物组成,其中恢复30年群落中多年生草本种子密度显著高于恢复15年和原始林群落,恢复15年群落中一年生草本种子密度要显著高于恢复30年和原始林群落。原始林幼苗库密度要显著大于恢复15年群落,幼苗库密度与土壤种子库种子密度(P<0.05)和林分密度(P<0.01)存在显著负相关,与土壤容重及pH值之间存在显著正相关(P<0.05)。土壤种子库与地上植被的相似性普遍较低,在0.0375—0.1538之间;土壤种子库与草本层的相似性系数要高于土壤种子库与乔木层,幼苗库与乔木层的相似性系数要高于其它类型的相似性系数。
     6.藤本植物是森林生态系统的重要组成部分,影响群落的恢复与演替。本文通过对云南普洱地区不同恢复阶段(恢复15年、30年和原始林群落)季风常绿阔叶林群落的野外调查,分析了不同恢复阶段藤本植物的物种丰富度、密度、多度、径级分布、多样性指数及攀援方式,并探讨藤本植物与支持木的关系。结果表明:在0.81hm~2的调查样地中,共发现DBH≥0.1cm的藤本植物1292株(分属34科51属64种)。原始林群落的藤本物种丰富度、密度(DBH<1cm)、胸高断面积和平均胸高断面积都显著高于恢复阶段,原始林和恢复15年群落的密度(DBH≥1cm)、平均胸径和平均长度之间无显著差异,但都显著高于恢复30年。3种群落类型中藤本植物的物种组成和径级分布有显著差异,原始林中藤本植物物种更多,而且大径级(DBH≥10cm)的藤本植物仅出现在原始林及恢复30年的群落。单株藤本攀援的支持木在3种群落类型中均占多数,藤本植物与支持木的胸径存在显著的正相关(P<0.001),原始林群落中DBH≥15cm的支持木更易被攀援,而恢复阶段则相反。茎缠绕藤本植物对原始林的负面影响要显著少于恢复15年及30年群落,而卷须类藤本植物也反映出原始林正处于一个动态变化的阶段,同时根攀缘和搭靠类藤本植物物种组成和多度变化可以反映出干扰后季风常绿阔叶林的恢复程度。森林砍伐是影响不同恢复阶段藤本植物的物种组成和分布的主要因素。
     7.附生维管植物是季风常绿阔叶林物种丰富度的重要组成部分。本文通过对云南普洱地区不同恢复阶段(恢复15年、30年和原始林群落)季风常绿阔叶林群落内附生维管植物的调查,分析了不同恢复阶段附生维管植物的物种丰富度、多度、分布和相似性关系,并探讨附生维管植物与宿主的关系。结果表明:(1)在0.81hm~2的调查样地中,共发现附生维管植物3116株(分属9科20属22种);(2)原始林中附生维管植物的物种丰富度(17种)要显著高于恢复30年(7种)和15年(5种)群落;(3)原始林与不同恢复阶段群落中附生维管植物的物种组成有显著不同,恢复15年群落中的附生植物主要由蕨类植物组成,兰科(Orchidaceae)植物是原始林附生植物的主要物种组成,有些物种仅出现在原始林中,可以作为季风常绿阔叶林恢复程度的指示物种;(4)原始林附生维管植物的多度要显著高于恢复阶段;(5)3个群落类型中的附生维管植物在水平方向都为聚集分布,恢复15年群落主要分布在0—5m,原始林中分布可达到20m;(6)原始林中附生维管植物物种丰富度和多度与宿主的胸径之间存在显著正相关,而2个恢复阶段森林中不存在相关性。
The monsoonal broad-leaved evergreen forest is an important vegetation type of the Puer area which located in the Southern Yunnan province, P.R. China. It is a land of enriched biodiversity and considered a transitional vegetation type between the tropical monsoonal rain forest and the subtropical broad-leaved evergreen forest. Due to the extensive deforestation and long-term intensive agricultural landuses, the primary forests have significantly decreased. Thus formed a spectrum of degraded ecosystem of different restoration stages. Therefore, the secondary forests that developed after the natural and artificial restoration by the destruction of primary forests in this region which has become an important forest resources. However, past ecological studies of monsoonal broad-leaves evergreen forest in Yunnan were mainly conducted in community structure, species composition, soil seed bank and biomass of the primary forests, and we still know little about those degraded vegetation after anthropogenic. In this study, field investigations were conducted in totally 25 plots (2.25hm~2) of recovery vegetation and primary forests. The recovery vegetation included different stages of natural restoration and aritficial restoration. On the basis of those field investigations, we analyzed the community composition, structure, diversity, niche, interspecific association, seed banks and the functional group and explored dynamic law of recovery strategy. The goal is to provide science reference for vegetation restoration. The main results are as follows:
     1.Analyze the characteristics of the monsoonal broad-leaved evergreen forest and its restoration communities, quantitaitve classification were conducted by TWINSPAN based on field investigation plots. The investigated plots were classified into 7 communities by TWINSPAN, they are primary monsoonal broad-leaved evergreen forest,community of 15 year restoration (15a), community of 30 year restoration (30a), mixed needle broad-leaved forest, needle-leaved forest and eucalyptus forest. recovery types can be divided into natural restoration and artificial restoration: natural recovery: 15a——30a——the primary forest, needle-leaved forest——mixed needle broad-leaved forest——the primary forest. Floristic composition indicated cosmopolitan percentage of restoration communities were higher than the primary forest at familiy level. Because of same species source, restoration communities were at a restoration stage form restoration communities to primary forest. Therefore, the similarity of families and genera were higher degree. the composition of species had some differences. endemic species of the primary forest communities were significantly greater than the recstoration communities. The life-form spectrum bettween restoration communites and primary forest had signicantly correlation, and natural restoration were larger than artificial restoration. Needle-leaved forest had more annuals in all communities. The percentage of microphyll of the primary forest is less than restoration communities, and leaf type did’t reflect restoration degree of community.
     2.In the present study, the effect of restoration strategy and time on community structure and diversity were analyzed by investigating species composition, structure, and diversity of different restoration strategy and time community. The results showed that restoration strategy had no effect on species composition and diversity of family, genera, species, tree, shrub, and liana, however, restoration time had significant effect on species composition and diversity. Species richness of family, genera, species, tree, and shrub decreased at the early stage and then increased with community succession. Species richness showed an inverse J-shape with DBH increasing in all community types, while abundance showed single peak curve with DBH increasing and an inverse J-shape with height increasing. The correlation and regression analysis among restoration strategy and time and variables of community structure and diversity showed that there were significant correlation between restoration time and variables of community structure and diversity, and no significant correlation were found between restoration strategy and most of variables of community structure and diversity, which indicated that restoration time was the major factor that affects structure and diversity of community restored.
     3.Species-area relationships are one of the most fundamental and most studied problems in all of ecology. However, whether the species-area relationships properties, especially species-area relationships slopes, remain constant through succession time, even though the ecosystem characteristics change on seasonal to evolutionary time scales, is a controversial problem. Focusing on disturbed broad-leaved evergreen forest ecosystems, we analyzed the species-area relationships in different succession stage communities (15a, 30a, and primary forest). Investigation was performed in Pu’er, Yunnan Province. Three plots (30 m×30 m) were located in the 15a, the 30a and the primary forest respectively. Each plot was divided into 36 subplots of 5 m×5 m for the vegetation surveys. Within each subplot all stems of height (H)>1.3 m were counted, measured and identified to the species level. We also recorded environment factors such as crown density, elevation, and slop. Species richness of tree, shrub, liana and total species in the 15a, the 30a and the primary forest were calculated respectively. The species-area relationships, the accumulate rate ( Z ) and the coefficients of determination (R2) of tree, shrub, liana and total species in each succession stage community were studied. We found that the number of total species, trees, shrubs, and lianas had a highly significant correlation with the sample area in different succession stage communities, the area explained over 94% of the total variation in the number of species, trees, shrubs, and lianas. The Z of total species(0.334) and trees(0.394) were the lowest in the 30a, whereas, the Z of shrubs(0.437) and lianas(0.326) were the lowest in the 15a. No significant difference were found for the intercepts of the species-area curve of species, trees, shrubs, and lianas among different succession stage communities, however, the coefficients of determination (R2) of the species-area curve of species and lianas were the highest in the primary forest. A fitted regression line of trees and shrubs explained 99.97% of the variance of Z-value in the 15a, but there were no significant correlation between trees, shrubs, lianas, and total species richness and Z-value in the 30a and the primary forest.
     4.Niche and interspecific association is a focus of community dynamics. Interspecific interactions affect restoration and succession of community. Field data collection was biased on 0.81hm~2 plot (including 9 subplots) in different restoration stages (15a, 30a and primary monsoonal broad-leaved evergreen forest) which distributed in Pu'er city,Yunnan province. A series of techniques including niche breadth,niche overlap, the variance ratio (VR),chi-square test,association coefficient (AC) based on 2×2 contingency table were used to analyze change trend of tree population of different restoration stages. The results shown that:There was significant positive correlation (P<0.001) between the importance value and corresponding to niche breadth in 3 communites. 78.22% of species pairs had a niche overlap were between 0.4 and 0.8 in 15a,which indicated a strong resource utilization competition in dominant species. Simultaneously,community structure of 30a and primary forest was stability. The niche breadth increased with niche overlap,and vice versa,which reflected that the dominant species had strong competitiveness. There was a significant positive correlation in total on VR in the 15a and 30a,while the primary forest was no-significant negative association. For chi-square test,Most species pairs did not show significant association in 3 communities,which may show stronger independent distribution. The proportion of positive and negative association decreased from 15a to primary forest. There was a significant positive correlation between association coefficient and niche overlap. Generally speaking, the more niche overlap,the more association coefficient.
     5.Soil seed bank and seedling bank is considered an important source for natural restoration in forest ecosystems. Soil seed bank is a dynamic biotic component of plant communities that represents the population’s memory in relation to selective events and seedling plays an important role for numerous tree species. Field data was based on 0.72hm~2 plot (including 8 subplots) in different restoration stages (15a, 30a) and primary monsoon broad-leaved evergreen forest which distribute in Caiyanghe nature reserve, Yixiang township and Xinfang reservoir, Puer city, Yunnan, China. Germination experiments carried out in the greenhouse, which lasted 7 months. On the basis of analyzing soil seed bank and seedling bank density and its relation to the above-ground vegetation. The results were summarized as follows: 2645 seeds germinated in all soil samples, 83 species in72 genera and 37 families were recorded. Total seed density of 30a (424±91.53 seeds/m~2) was significantly higher than primary forest (148±23 seeds/m~2). There was no significant difference between 15a (362.33±77.05 seeds/m~2) and other two types. Seed density of 0-2cm and 5-10cm layer was significantly higer than 2-5cm layer in pirmary forest, while no significant difference among 3 layers in 15a and 30a. Compositae was most abundant species in three community types,because of their wind dispersal way. Shannon-Wiener index of 30a was signifcantly higher than 15a and primary forest, but species richness was not significant difference in three types (including three layer). The seed density of herb was significantly higher than other life form in 3 community types. Seed density of perennial herb of 30a was significantly higher than 15a and primary and seed density of annual herb of 15a was signicantly higer than 30a and primary.and seed density of herb plant and fern plant of 30a was significantly higer than the primary forest. Dicranopteris pedata was most abundant species in restoration stages, especially in 30a. Annual herb offen emerged in early stages of restoration, such as Lindernia nummularifolia, which had short distance to tea park and farm land and had richness seed source. Castanopsis echidnocarpa is dominat species of monsoon broad-leaved evergreen forest, which was most abundant seedling of 30a and primary. Castanopsis calathiformis was most abundant seedling species of 15a. Tree seedlings were more than shrub seedlings. Tree seedling was main composition in all seedling bank, because of survival strategy of seed. Seedling bank density of primary was significantly higher than 15a, which had signifant negative correlation with soil seed bank density (P<0.05)and stand density(P<0.01), had signifantly positive correlation with soil bulk desity and Ph (P<0.05). The similarity coefficient (from 0.0375 to 0.1538) between soil seed bank and above-ground vegetation was generally low in three community types. Similarity coefficient between soil seed bank and herb was higher than soil seed bank and tree layer. Seedling bank was more similar with tree layer than soil seed bank, so forest restoration of monsoon broad-leaved evergreen forest mainly relyed on seed rain of tree layer.
     6.Liana is important component of forest ecosystem, which usually affects restoration and succession of the communities. Relationship between liana and host tree has significant implications for forest conservation and sustainable management. Field data collection was based on 0.81hm~2 plot (including 9 subplots) in different restoration stages (15a, 30a and primary monsoonal broad-leaved evergreen forest distribute in Caiyanghe nature reserve, Yixiang Township and Xinfang reservoir, Pu’er city, Yunnan, China. On the basis of analyzing liana species richness, density, abundance, size structure, diversity indices and the climbing mechanism in the different restoration period, the relationship between liana and host tree was discussed. The results shown that: 1292 climbing lianas (DBH≥0.1cm), belonging to 64 species in 51 genera and 34 families were recorded in all plots. The liana richness,density(DBH<0.1cm), basal area at breast height and mean basal area at breast height in primary forest were significantly higher than restoration stages. There was no significant difference of density (DBH≥1cm), average DBH and average length between primary forest and 15a, though both were significantly higher than that of 30a. Species composition and DBH class distribution of lianas varied significantly in the three community types. Mucuna macrocarpa,Celastrus monospermus and Gnetum montanum are most abundant species. These species were found in all restoration stages and primary forest.Mucuna macrocarpa is an early successional species which needs intensive light environment and Gnetum montanum is a late successional species. Species-area curve showed that primary forest had higher species richness than 15a and 30a, which confirmed that primary forest played an important role in biodiversity conservation of lianas. Liana abundance decreased significantly while its DBH class increased. DBH of more than 95% lianas was less than 5cm. The lianas of large diameter class (DBH≥10cm) were found only in primary forest and 30a. One liana per host tree was most abundant in three community types. Host trees were more likely to be infested by lianas when their DBH was larger than 15cm in primary forest and liana-host tree relationship showed different trends in restoration stages. Large tree was more susceptible to be climbed by liana. There was a significant positive correlation (P<0.001) between the liana DBH and host tree DBH. DBH of liana increased with the growth of DBH of host tree in primary and 15a. Stem twining caused more mechanical damage in 4 climbing ways, and the damage for primary forest were significantly lower than that for restoration stages. Density of tendril climber showed that primary forest was undergoing a dynamic process. Species composition and abundance change of root climber and hook climber can be used as an indicator to reflect restoration level of monsoonal broad-leaved evergreen forest of post-disturbance. Primary forest had more Piper flaviflorum than 15a and 30a and Fissistigma acuminatissimum did not appeare in the restoration stages. Deforestation is main factor that affects liana species composition and distribution and reduces lianas abundance and richness significantly. Restoration time has an important effect on regeneration of lianas.
     7.Vascular epiphytes are important components of species richness in monsoonal broad-leaved evergreen forest. Field data collection vascular epiphytes was based on 0.81hm~2 plot (including 9 subplots) in different restoration stages (15a, 30a and primary monsoonal broad-leaved evergreen forest distribute in Caiyanghe nature reserve, Yixiang Township and Xinfang reservoir, Pu’er city, Yunnan, China. On the basis of analyzing vascular epiphytes species richness, abundance, distribution, similarity coefficient, the relationship between epiphytes and phorophytes was discussed. The results shown that: (1) 3116 vascular epiphytes, belonging to 22 species in 20 genera and 9 families were recorded in all plots. (2) Diversity of vascular epiphytes was lower in restoration stages (15a, 5 spp. And 30a, 7 spp.) compared to primary forest (17 spp.). (3) Epiphytes species composition in primary forest and restoration stages differed markedly: community of 15a restoration harboured no orchid species but more fern species and primary forest hold more orchid species. Probably the families occurring only in primary forest sites of our study may be useful as bioindicators to determine the degree of restoration in monsoonal broad-leaved evergreen forest. (4) Epiphytes abundance were also lower in restoration stages. The decrease in species numbers and abundance as well as the differences in species composition was mainly due to the less diverse phorophyte structure and less differentiated microclimate in the disturbed and secondary vegetation compared to the primary forest. S?rensen coefficient between 15a and primary forest was higher than between 30a and primary forest. (5) The vascular epiphytes were clumped horizontally in 3 community types. Vertically, vascular epiphytes of 15a were mainly distributed at 0~5m and primary forest was up to 20m. (6) Vascular epiphytes species richness and abundance were both significantly positively correlated with host tree size but restoration stages didn’t have.
引文
[1]彭少麟.热带亚热带恢复生态学研究与实践.北京:科学出版社, 2003.
    [2]宋永昌.中国常绿阔叶林分类试行方案.植物生态学报, 2004, 28(4): 435—448.
    [3]吴征镒.中国植被.北京:科学出版社, 1980, 341.
    [4]王志高,叶万辉,曹洪麟,等.鼎湖山季风常绿阔叶林物种多样性指数空间分布特征.生物多样性, 2008, 16(5): 454—461.
    [5]Zhou G Y, Guan L L, Wei X H, et al. Litterfall production along successional and altitudinal gradients of subtropical monsoon evergreen broadleaved forests in Guangdong, China. Plant Ecology, 2007, 188(1): 77—89.
    [6]唐旭利,周国逸,温达志,等.鼎湖山南亚热带季风常绿阔叶林C储量分布.生态学报, 2003, 23(1): 90—97.
    [7]宋永昌,陈小勇,王希华.中国常绿阔叶林研究的回顾与展望.华东师范大学学报(自然科学版), 2005, 1: 1-8.
    [8]Tilman D, Cassman K G, Matson P A, et al. Agricultural sustainability and intensive production practices. Nature, 2002, 418(6898): 671-677.
    [9]Tilman D. Forecasting agriculturally driven global environmental change. Science, 2001, 292(5515): 281-284.
    [10]Laurance W F, Albernaz K M, Fearnside P M, et al. Deforestation in amazonia. Science, 2004, 304(5674): 1109.
    [11]Nepstad D C, Verssimo A, Alencar A, et al. Large-scale impoverishment of amazonian forests by logging and fire. Nature, 1999, 398(6727): 505-508.
    [12]Foley J A. Global consequences of land use. Science, 2005, 309(5734): 570-574.
    [13]Chazdon R L. Tropical forest recovery: legacies of hunman impact and natural disturbances. Perspectives in Plant Ecology, Evolution and Systematics, 2003, 6(1/2): 51-57.
    [14]Palmer M A, Filoso S. Restoration of ecosystem services for environmental markets. Science, 2009, 325 (5940): 575-576.
    [15]Jackson S T, Hobbs R J. Ecological restoration in the light of ecological history. Science, 2009,325(5940): 567-568.
    [16]Harris J A, Hobbs R J, Higgs E, et al. Ecological restoration and global climate change. Restoration Ecology, 2006, 14(2): 170-176.
    [17]Sayer J, Chokkalingam U, Poulsen J. The restoration of forest biodiversity and ecological values. Forest Ecology and Management, 2004, 201(1): 3-11.
    [18]Chazdon R L. Beyond deforestation: restoring forests and ecosystem services on degraded lands. Science, 2008, 320(5882): 1458-1460.
    [19]Liu J G, Diamond J. China's environment in a globalizing world. Nature, 2005, 435(7046): 1179-1186.
    [20]Zhang Y X, Song C H. Impacts of afforestation, deforestation, and reforestation on forest cover in China from 1949 to 2003. Journal of Forestry, 2006, 104(7): 383-387.
    [21]Trac C J, Harrell S, Hinckley T M, et al. Reforestation programs in southwest China: reported success, observed failure, and the reasons why. Journal of Mountain Science, 2007, 4(4): 275-292.
    [22]Li W H. Degradation and restoration of forest ecosystems in China. Forest Ecology and Management, 2004, 201(1): 33-41.
    [23]刘国华,傅伯杰,陈利顶,等.中国生态退化的主要类型、特征及分布.生态学报, 2000, 20(1): 13-19.
    [24]杨宇明,王娟,王建皓,等.云南生物多样性及其保护研究.北京:科学出版社, 2008.
    [25]吴征镒,朱彦丞,姜汉桥.云南植被.北京:科学出版社, 1987.
    [26]Powers J S, Becknell J M, Irving J, et al. Diversity and structure of regenerating tropical dry forests in Costa Rica: Geographic patterns and environmental drivers. Forest Ecology and Management, 2009, 258(6): 959-970.
    [27]Summerville K S. Species diversity and persistence in restored and remnant tallgrass prairies of North America: a function of species' life history, habitat type, or sampling bias. Journal of Animal Ecology, 2008, 77(3): 487-494.
    [28]温远光,元昌安,李信贤,等.大明山中山植被恢复过程植物物种多样性的变化.植物生态学报, 1998, 22(1): 33-40.
    [29]Baer S G, Blair J M, Collins S L, et al. Plant community responses to resource availability and heterogeneity during restoration. Oecologia, 2004, 139(4): 617-629.
    [30]Zahawi R A, Augspurger C K. Tropical forest restoration: tree islands as recruitment foci in degradedlands of Honduras. Ecological Applications, 2006, 16(2): 464-478.
    [31]刘庆,吴彦,何海,等.川西亚高山人工针叶林生态恢复过程的种群结构.山地学报, 2004, 22(5): 591-597.
    [32]Bassett I E, Simcock R C, Mitchell N D. Consequences of soil compaction for seedling establishment: Implications for natural regeneration and restoration. Austral Ecology, 2005, 30(8): 827-833.
    [33]Crain C M, Albertson L K, Bertness M D. Secondary succession dynamics in estuarine marshes across landscape-scale salinity gradients. Ecology, 2008, 89(10): 2889-2899.
    [34]何海,乔永康,刘庆,等.亚高山针叶林人工恢复过程中生物量和材积动态研究.生态学报, 2004, 15(5): 748-463.
    [35]Hill J G, Summerville K S, Brown R L. Habitat associations of ant species (Hymenoptera : Formicidae) in a heterogeneous Mississippi landscape. Environmental Entomology, 2008, 37(2): 453-463.
    [36]郭晋平,张芸香.森林景观恢复过程中景观要素空间分布格局及其动态研究.生态学报, 2002, 22(12): 2021-2029.
    [37]Borders B D, Pushnik J C, Wood D M. Comparison of leaf litter decomposition rates in restored and mature riparian forests on the Sacramento River, California. Restoration Ecology, 2006, 14(2): 308-315.
    [38]Gamboa A M, Hidalgo C, Leon F d, et al. Nutrient addition differentially affects soil carbon sequestration in secondary tropical dry forests: early-versus late-succession stages. Restoration Ecology, 2008, 18(2): 252-260.
    [39]叶万辉,曹洪麟,黄忠良,等.鼎湖山南亚热带常绿阔叶林20公顷样地群落特征研究.植物生态学报, 2008, 32(2): 274-286.
    [40]施济普,朱华.西双版纳热带山地季风常绿阔叶林的群落生态学研究.云南植物研究, 2003, 25(5): 513-520.
    [41]柴勇,李玉媛,方波,等.菜阳河自然保护区天然植被物种多样性研究.福建林学院学报, 2004, 24(1): 75-79.
    [42]Guariguata M R, Ostertag R. Neotropical secondary forest succession: changes in structural and functional characteristics. Forest Ecology and Management, 2001, 148(1): 185-206.
    [43]Sletvold N, Rydgren K. Population dynamics in Digitalis purpurea: the interaction of disturbance and seed bank dynamics. Journal of Ecology, 2007, 95(6): 1346-1359.
    [44]Guariguata M R, Ostertag R. Neotropical secondary forest succession: changes in structural andfunctional characteristics. Forest Ecology and Management, 2001, 148: 185-206.
    [45]姜金波,姚国清,胡万良.森林采伐对森林生态因子的影响.辽宁林业科技, 1995, 3: 21-30.
    [46]Matthews J W, Peralta A L, Flanagan D N, et al. Relative influence of landscape vs. local factors on plant community assembly in restored wetlands. Ecological Applications, 2009, 19(8): 2108-2123.
    [47]朱教君.次生林经营基础研究进展.应用生态学报, 2002, 13(12): 1689-1694.
    [48]朱教君,刘世荣.次生林概念与生态干扰度.生态学杂志, 2007, 26(7): 1085-1093.
    [49]Wright S J. Tropical forests in a changing environment. Trends in Ecology and Evolution, 2005, 20(10): 553-560.
    [50]Fahey T J, Woodbury P B, Battles J J, Goodale C L, Hamburg S P, Ollinger S V, Woodall C W. Forest carbon storage: ecology, management, and policy. Frontiers in Ecology and the Environment, 2010, 8(5): 245-252.
    [51]Brown S, Lugo A E. Tropical secondary forests. Journal of Tropical Ecology, 1990, 6(1): 1-32.
    [52]Holl K D. Factors limiting tropical rain forest regeneration in abandoned pasture: seed rain, seed germinaiton, microclimate, and soil. Biotropica, 1999, 31(2): 229-242.
    [53]Hooper E R, Legendre P, Condit R. Factors affecting community composition of forest regeneration in deforested, abandoned land in Panma. Ecology, 2004, 85(12): 3313-3326.
    [54]Loreau M, Naeem S, Inchausti P, et al. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science, 2001, 294(5543): 804-808.
    [55]陈小勇,宋永昌.受损生态系统类型及影响其退化的关键因素.长江流域资源与环境, 2004, 13(1): 78-83.
    [56]Parrotta J A, Knowles O H. Restoration of tropical moist forests on bauxite-mined lands in the Brazilian amazon. Restoration Ecology, 1999, 7(2): 103-116.
    [57]Lamb D, Erskine P D, Parrotta J A. Restoration of degraded tropical forest landscapes. Science, 2005, 310(5754): 1628-1633.
    [58]Covington W W, Fule P Z, Moore M M, et al. Restoring ecosystem health in ponderosa pine forests of the southwest. Journal of Forestry, 1997, 95(4): 23-29.
    [59]Pe?a-Claros M. Changes in forest structure and species composition during secondary forest succession in the Bolivian Amzaon. Biotropica, 2003, 35(4): 450-461.
    [60]Laughlin D C, Bakker J D, Daniels M L, et al. Restoring plant species diversity and communitycomposition in a ponderosa pine-bunchgrass ecosystem. Plant Ecology, 2008, 197(1): 139-151.
    [61]Hubbell S P. The unified neutral theory of biodiversity and biogeography Princeton,NJ: Princeton University Press, 2001, 67-84.
    [62]Denslow T C. Functional groups diversity and recovery from disturbance. Biodiversity and Ecosystem Processes in Tropical Forests, ed. Orinas G H,Cushman J H Berlin: Springer-Verlag, 1996.
    [63]Aide T M, Zimmerman J K, Pascarella J B, Rivera L, Marcano-Vega H. Forest regeneration in a chronosequence of tropical abandoned pastures: implications for restoration ecology. Restoration Ecology, 2000, 8(4): 328-338.
    [64]Bruelheide H, B?hnke M, Both S, et al. Community assembly during secondary forest succession in a Chinese subtropical forest. Ecological Monographs, 2011, 81(1): 25-41.
    [65]Condit R, Hubbell S P, Foster R B. Recruitment near conspecific adults and the maintenance of tree and shrub diversity in a neotropical forest. The American Naturalist, 1992, 140(2): 261-268.
    [66]Brown K A, Gurevitch J. Long-term impacts of logging on forest diversity in Madagascar. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(16): 6045-6049.
    [67]Rondon X J, Gorchov D L, Cornejo F. Tree species richness and composition 15 years after strip clear-cutting in the Peruvian Amazon. Plant Ecology, 2009, 201(1): 23-37.
    [68]丁易,臧润国.海南岛霸王岭热带低地雨林植被恢复动态.植物生态学报, 2011, 35(5): 577-586.
    [69]Keeley J E. Relating species abundance distributions to species-area curves in two Mediterranean-type shrublands. Diversity and Distributions, 2003, 9(4): 253-259.
    [70]Carey S, Harte J, Moral R d. Effect of community assembly and primary succession on the species-area relationship in disturbed ecosystems. Ecography, 2006, 29(6): 866-872.
    [71]He F L, Duncan R P. Density-dependent effects on tree survival in an old-growth Douglas fir forest. Journal of Ecolgoy, 2000, 88(4): 676-688.
    [72]Finegan B. Pattern and process in neotropical secondary rain forests:the first 100 years of succession. Trends in Ecology and Evolution, 1996, 11(3): 119-124.
    [73]Finegan B, Delgado D. Structural and floristic heterogeneity in a 30-year-old Costa Rican rain forest restored on pasture through natural secondary succession. Restoration Ecology, 2000, 8(4): 380-393.
    [74]Dalling J W, Hubbell S P, Silvera K. Seed dispersal,seedling establishment and gap partitioning among tropical pioneer trees. Journal of Ecolgoy, 1998, 86(4): 674-689.
    [75]Laurance W F, Pérez-Salicrup D, Delam?nica P, et al. Rain forest fragmentation and the structure of Amazonian liana communities. Ecology, 2001, 82(1): 105-116.
    [76]Huston M, Smith T. Plant succession: life history and competition. The American Naturalist, 1987, 130(2): 168-198.
    [77]Breugel M V, Bongers F, Martínez-Ramos M. Species dynamics during early secondary forest succession:recruitment,mortality and species turnover. Biotropica, 2007, 35(5): 610-619.
    [78]周小勇,黄忠良,史军辉,等.鼎湖山针阔混交林演替过程群落组成和结构短期动态研究.热带亚热带植物学报, 2004, 12(4): 323-330.
    [79]方炜,彭少麟.鼎湖山马尾松群落演替过程物种变化之研究.热带亚热带植物学报, 1995, 3(4): 30-37.
    [80]Wardle D A, Zackrisson O. Effects of species and functional group loss on island ecosystem properties. Nature, 2005, 435(7043): 806-810.
    [81]Lavorel S, Garnier E. Predicting changes in community composition and ecosystem functioning from plant traits: revisiting the Holy Grail. Fouctional Ecology, 2002, 16(5): 545-556.
    [82]邓福英,臧润国.海南岛热带山地雨林天然次生林的功能群划分.生态学报, 2007, 27(8): 3241-3250.
    [83]胡楠,范玉龙,丁圣彦,等.陆地生态系统植物功能群研究进展.生态学报, 2008, 28(7): 3302-3311.
    [84]Skarpe C. Plant functional types and climate in a southern African savanna. Journal of Vegetation Science, 1996, 7(3): 397-404.
    [85]Lin L X, Cao M. Edge effects on soil seed banks and understory vegetation in subtropical and tropical forests in Yunnan,SW China. Forest Ecology and Management, 2009, 257(4): 1344-1352.
    [86]Pywell R F, Bullock J M, Roy D B, et al. Plant traits as predictors of perormance in ecological restoration. Journal of Applied Ecology, 2003, 40(1): 65-77.
    [87]柳新伟,申卫军,张桂莲,等.南亚热带森林演替植物幼苗生态适应度模拟.北京林业大学学报, 2006, 28(1): 1-6.
    [88]雷泞菲,苏智先,宋会兴,等.缙云山常绿阔叶林不同演替阶段植物生活型谱比较研究.应用生态学报, 2002, 13(3): 267-270.
    [89]Condit R, Watts K, Bohlman S A, Pérez R, Foster R B, Hubbell S P. Quantifying the deciduousness oftropical forest canopies under varying climates. Journal of Vegetation Science, 2000, 11(5): 649-658.
    [90]丁易,臧润国.海南岛热带低地雨林刀耕火种弃耕地恢复过程中落叶树种的变化.生物多样性, 2008, 16(2): 103-109.
    [91]Dewalt S J, Schnitzer S A, Denslow J S. Density and diversity of lianas along a chronosequence in a central Panamanian lowland forest. Journal of Tropical Ecology, 2000, 16(1): 1-19.
    [92]Madeira B G, Espírito-Santo M M, Neto S D ?, et al. Changes in tree and liana communities along a successional gradient in a tropical dry forest in south-eastern Brazil. Plant Ecology, 2009, 201(1): 291-304.
    [93]Ding Y, Zang R G. Effects of logging on the diversity of lianas in a lowland tropical rain forest in Hainan island,South China. Biotropica, 2009, 41(5): 618-624.
    [94]Wolf J H D. The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management, 2005, 212(1/3): 376-393.
    [95]Silvertown J. Plant coexistence and the niche. Trends in Ecology and Evolution, 2004, 19(11): 605-611.
    [96]Wright S J. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia, 2002, 130(1): 1-14.
    [97]Hubbell S P. Neutral theory and the evolution of ecological equivalence. Ecology, 2006, 87(6): 1387-1398.
    [98]Bell G. The distribution of abundance in neutral communities. The American Naturalist, 2000, 155(5): 607-617.
    [99]Levine J M, HilleRisLambers J. The importance of niches for the maintenance of species diversity. Nature, 2009, 164(7261): 254-258.
    [100]Comita L S, Hubbell S P. Local neighborhood and species' shade tolerance influence survival in a diverse seedling bank. Ecology, 2009, 90(2): 328-334.
    [101]Vandermeer J H. Niche theory. Annual Review of Ecology and Systematics, 1972, 3: 107-132.
    [102]Feinsinger P, Spears E E. A simple measure of niche breadth. Ecology, 1981, 62(1): 27-32.
    [103]王祥福,郭泉水,巴哈尔古丽,等.崖柏群落优势乔木种群生态位.林业科学, 2008, 44(4): 6-13.
    [104]Mckane R B, Johnson L C, Shaver G R, et al. Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature, 2002, 415(6867): 68-72.
    [105]Nakashizuka T. Species coexistence in temperate,mixed deciduous forests. Trends in Ecology andEvolution, 2001, 16(4): 205-210.
    [106]牛克昌,刘怿宁,沈泽昊,等.群落构建的中性理论和生态位理论.生物多样性, 2009, 17(6): 579-593.
    [107]Lavorel S, Chesson P. How species with different regeneration niches coexist in patchy habitats with local disturbances. Oikos, 1995, 74(1): 103-114.
    [108]Zhu Y, Mi X C, Ren H B, et al. Density dependence is prevalent in a heterogenous subtropical forest. Oikos, 2010, 119(1): 109-119.
    [109]Volkov I, Banavar J R, He F L, et al. Density dependence explains tree species abundance and diversity in tropical forests. Nature, 2005, 438(7068): 658-661.
    [110]祝燕,米湘成,马克平.植物群落物种共存机制:负密度制约假说.生物多样性, 2009, 17(6): 594-604.
    [111]Lambers J H R, Clark J S, Beckage B. Density-dependent mortality and the latitudinal gradient in species diversity. Nature, 2002, 417(6890): 732-735.
    [112]Webb C O, Peart D R. Seedling density dependence promotes coexistence of Bornean rain forest trees. Ecology, 1999, 80(6): 2006-2017.
    [113]周淑荣,张大勇.群落生态学的中性理论.植物生态学报, 2006, 30(5): 868-877.
    [114]Volkov I, Banavar J R, Hubbell S P, et al. Neutral theory and relative species abundance in ecology. Nature, 2003, 424(6952): 1035-1037.
    [115]Harpole W S, Tilman D. Non-neutral patterns of species abundance in grassland communities. Ecology Letters, 2006, 9(1): 15-23.
    [116]Leibold M A, Mcpeek M A. Coexistence of the niche and neutral perspectives in community ecology. Ecology, 2006, 87(6): 1399-1410.
    [117]Gravel D, Canham C D, Beaudet M, et al. Reconciling niche and neutrality:the continum hypothesis. Ecology Letters, 2006, 9(4): 399-409.
    [118]Adler P B, HilleRisLambers J, Levine J M. A niche for neutrality. Ecology Letters, 2007, 10(2): 95-104.
    [119]李小双,刘文耀,陈军文,等.哀牢山湿性常绿阔叶林及不同类型次生植被的幼苗更新特征.生态学杂志, 2009, 28(10): 1921-1927.
    [120]Sansevero J B B, Prieto P V, Moraes L F D d, et al. Natural regeneration in plantations of native trees inlowland Brazilian atlantic forest: community structure,diversity,and dispersal syndromes. Restoration Ecology, 2011, 19(3): 379-389.
    [121]Li X S, Liu W Y, Tang C Q. The role of the soil seed and seedling bank in the regeneration of diverse plant communities in the subtropical Ailao mountains,southwest China. Ecological Research, 2010, 25(6): 1171-1182.
    [122]Du X J, Guo Q F, Gao X M, et al. Seed rain,soil seed bank,seed loss and regeneration of Castanopsis fargesii(Fagaceae) in a subtropical evergreen broad-leaved forest. Forest ecology and management, 2007, 238(1/3): 212-219.
    [123]Holmes P M, Cowling R M. Diversity, composition and guild structure relationships between soil-stored seed banks and mature vegetation in alien plant-invaded South African fynbos shrublands. Plant ecology, 1997, 133(1): 107-122.
    [124]Chang E R, Jefferies R L, Carleton T J. Relationship between vegetation and soil seed banks in an arctic coastal marsh. Journal of Ecology, 2001, 89(3): 367-384.
    [125]Shen Y X, Liu W Y, Cao M, et al. Seasonal variation in density and species richness of soil seed-banks in karst forests and degraded vegetation in central Yunnan, SW China. Seed science research, 2007, 17(2): 99-107.
    [126]Looney P B, Gibson D J. The relationship between the soil seed bank and above-ground vegetation of a coastal barrier island. Journal of vegetation science, 1995, 6(6): 825-836.
    [127]Bekker R M, Bakker J P, Grandin U, et al. Seed size, shape and vertical distribution in the soil: indicators of seed longevity. Functional ecology, 1998, 12(5): 834-842.
    [128]Thompson K, Band S R, Hodgson J G. Seed size and shape predict persistence in soil. Functional Ecology, 1993, 7(2): 236-241.
    [129]Walck J L, Baskin J M, Baskin C C, et al. Defining transient and persistent seed banks in species with pronounced seasonal dormancy and germination patterns. Seed science research, 2005, 15(3): 189-196.
    [130]Cox R D, Allen E B. Composition of soil seed banks in southern California coastal sage scrub and adjacent exotic grassland. Plant Ecology, 2008, 198(1): 37-46.
    [131]Arroyo M T K, Cavieres L A, Carmen C, et al. Persistent soil seed bank and standing vegetation at a high alpine site in the central Chilean Andes. Oecologia, 1999, 119(1): 126-132.
    [132]Decocq G, Valentin B, Toussaint B, et al. Soil seed bank composition and diversity in a managedtemperate deciduous forest Bioversity and conservation, 2004, 13(13): 2845-2509.
    [133]Zobel M, Kalamees R, Püssa K, et al. Soil seed bank and vegetation in mixed coniferous forest stands with different disturbance regimes. Forest ecology and management, 2007, 250(1/2): 71-76.
    [134]Bossuyt B, Heyn M, Hermy M. Seed bank and vegetation composition of forest stands of varying age in central Belgium:consequences for regeneration of ancient forest vegetation. Plant ecology, 2002, 162(1): 33-48.
    [135]Aguilera M O, Lauenroth W K. Seedling establishment in adult neighbourhoods--intraspecific constraints in the regeneration of the bunchgrass Bouteloua gracilis. Journal of Ecolgoy, 1993, 81(2): 253-261.
    [136]黄忠良,彭少麟,易俗.影响季风常绿阔叶林幼苗定居的主要因素.热带亚热带植物学报, 2001, 9(2): 123-128.
    [137]Sork V L. Effects of predation and light on seedling establishment in Gustavia Superba. Ecology, 1987, 68(5): 1341-1350.
    [138]Hardesty B D, Parker V T. Community seed rain patterns and a comparison to adult community structure in a west african tropical forest. Plant Ecology, 2002, 164(1): 49-64.
    [139]Andresen E, Levey D J. Effects of dung and seed size on secondary dispersal,seed predation,and seedling establishment of rain forest trees. Oecologia, 2004, 139(1): 45-54.
    [140]López-Mari?o A, Luis-Calabuig E, Fillat F, et al. Floristic composition of established vegetation and the soil seed bank in pasture communities under different traditional management regimes. Agriculture,Ecosystems and Environment, 2000, 78(3): 273-282.
    [141]Dalling J W, Swaine M D, Garwood N C. Dispersal patterns and seed bank dynamics of pioneer trees in moist tropical forest. Ecology, 1998, 79(2): 564-578.
    [142]Howlett B E, Davidson D W. Effects of seed availability, site conditions, and herbivory on pioneer recruitment after logging in Sabah,Malaysia. Forest Ecology and Management, 2003, 184(1/3): 369-383.
    [143]Pearson T R H, Burslem D F R P, Mullins C E, et al. Germination ecology of neotropical pioneers:interacting effects of environmental conditions and seed size. Ecology, 2002, 83(10): 2798-2807.
    [144]Marcante S, Schwienbacher E, Erschbamer B. Genesis of a soil seed bank on a primary succession inthe Central Alps(?tztal, Austria). Flora, 2009, 204(6): 434-444.
    [145]Walters M B, Reich P B. Seed size,nitrogen supply,and growth rate affect tree seedling survival in deep shade. Ecology, 2000, 81(7): 1887-1901.
    [146]何永涛,曹敏,唐勇,等.云南省哀牢山中山湿性常绿阔叶林萌生现象的初步研究.武汉植物学研究, 2000, 18(5): 523-527.
    [147]丁圣彦.浙江天童常绿阔叶林演替系列栲树和木荷成为优势种的原因.河南大学学报(自然科学版), 2001, 31(1): 79-83.
    [148]丁圣彦,宋永昌.常绿阔叶林演替过程中马尾松消退的原因.植物学报, 1998, 40(8): 755-760.
    [149]彭少麟,陆宏芳.恢复生态学焦点问题.生态学报, 2003, 23(7): 1249-1257.
    [150]宋永昌,陈小勇,中国东部常绿阔叶林生态系统退化机制和生态恢复北京:科学出版社, 2007.
    [151]臧润国,丁易,张志东,等,海南岛热带天然林主要功能群保护与恢复的生态学基础.科学出版社:北京, 2010.
    [152]李明辉,彭少麟,申卫军,等.景观生态学与退化生态系统恢复.生态学报, 2003, 23(8): 1622-1628.
    [153]周小勇,黄忠良,欧阳学军,等.鼎湖山季风常绿阔叶林锥栗-厚壳桂-荷木群落演替.生态学报, 2005, 25(1): 37-44.
    [154]尹光彩,周国逸,唐旭利,等.鼎湖山不同演替阶段的森林土壤水分动态.吉首大学学报(自然科学版), 2003, 24(3): 62-68.
    [155]欧阳学军,黄忠良,周国逸,等.鼎湖山南亚热带森林群落演替对土壤化学性质影响的累计效应研究.水土保持学报, 2003, 17(4): 51-54.
    [156]周传艳,周国逸,闫俊华,等.鼎湖山地带性植被及其不同演替阶段水文学过程长期对比研究.植物生态学报, 2005, 29(2): 208-217.
    [157]唐旭利,周国逸.南亚热带典型森林演替类型粗死木质残体贮量及其对碳循环的潜在影响.植物生态学报, 2005, 29(4): 559-568.
    [158]彭少麟,李跃林,余华,等.鼎湖山森林群落不同演替阶段优势种叶生态解剖特征研究.热带亚热带植物学报, 2002, 10(1): 1-8.
    [159]彭少麟,方炜.鼎湖山植被演替过程优势种群动态研究Ⅲ.黄果厚壳桂和厚壳桂种群.热带亚热带植物学报, 1994, 2(4): 79-87.
    [160]彭少麟,方炜.鼎湖山植被演替过程中锥栗和荷木种群的动态.植物生态学报, 1995, 19(4):311-318.
    [161]康冰,刘世荣,温远光,等.广西大青山南亚热带次生林演替过程的种群动态.植物生态学报, 2006, 30(6): 931-940.
    [162]周先叶,王伯荪,李鸣光,等.广东黑石顶自然保护区森林次生演替过程中群落的种间联结性分析.植物生态学报, 2000, 24(3): 332-339.
    [163]任海,彭少麟.鼎湖山森林生态系统演替过程中的能量生态特征.生态学报, 1999, 19(6): 817-823.
    [164]张德强,叶万辉,余清发,等.鼎湖山演替系列中代表性森林凋落物研究.生态学报, 2000, 20(6): 938-944.
    [165]官丽莉,周国逸,张德强,等.鼎湖山南亚热带常绿阔叶林凋落物量20年动态研究.植物生态学报, 2004, 28(4): 449-456.
    [166]王峥峰,王伯荪,张军丽,等.广东鼎湖山3个树种在不同群落演替过程中的遗传多样性.林业科学, 2004, 40(2): 32-37.
    [167]王峥峰,王伯荪,李鸣光,等.锥栗种群在鼎湖山三个群落中的遗传分化研究.生态学报, 2001, 21(8): 1308-1313.
    [168]黄忠良,孔国辉,魏平,等.南亚热带森林不同演替阶段土壤种子库的初步研究.热带亚热带植物学报, 1996, 4(4): 42-49.
    [169]周先叶,李鸣光,王伯荪,等.广东黑石顶自然保护区森林次生演替不同阶段土壤种子库的研究.植物生态学报, 2000, 24(2): 222-230.
    [170]丁圣彦,宋永昌.常绿阔叶林植被动态研究进展.生态学报, 2004, 24(8): 1765-1766.
    [171]李冬,唐建维,罗成坤,等.西双版纳季风常绿阔叶林的群落特征.山地学报, 2006, 24(3): 257-267.
    [172]Zhu H, Shi J P, Zhao C J. Species composition, physiognomy and plant diversity of the tropical montane evergreen broad-leaved forest in southern Yunnan. Biodiversity and Conservation, 2005, 14: 2855—2870.
    [173]朱华.论滇南西双版纳的森林植被分类.云南植物研究, 2007, 29(4): 377-387.
    [174]李庆辉,朱华.西双版纳季风常绿阔叶林植物区系初步分析.广西植物, 2007, 27(5): 741-747.
    [175]唐勇,曹敏,张建侯,等.西双版纳热带森林土壤种子库与地上植被的关系.应用生态学报, 1999, 10(3): 279-282.
    [176]党承林,吴兆录.季风常绿阔叶林短刺栲群落的生物量研究.云南大学学报(自然科学版), 1992, 14(2): 95-107.
    [177]朱华,李保贵,邓少春,等.思茅菜阳河自然保护区热带季节雨林及其生物地理意义.东北林业大学学报, 2000, 28(5): 87-93.
    [178]Burke A. Classification and ordination of plant communities of the Naukluft Mountains, Namibia. Journal of Vegetation Science, 2001, 12(1): 53-60.
    [179]宋永昌,植被生态学.上海:华东师范大学出版社, 2001.
    [180]吴征镒.中国植被.科学出版社:北京, 1980.
    [181]张金屯,数量生态学.北京:科学出版社, 2004.
    [182]王希华,闫恩荣,严晓,等.中国东部常绿阔叶林退化群落分析及恢复重建研究的一些问题.生态学报, 2005, 25(7): 1796-1803.
    [183]包维楷,刘照光,刘朝禄,等.中亚热带原生和次生湿性常绿阔叶林种子植物区系多样性.云南植物研究, 2000, 22(4): 408-418.
    [184]Wang G H, Zhou G S, Yang L M, et al. Distribution, species diversity and life-form spectra of plant communities along an altitudinal gradient in the northern slopes of Qilianshan Mountains, Gansu, China. Plant Ecology, 2002, 165(2): 169-181.
    [185]郑景明,桑卫国,马克平.种子的长距离风传播模型研究进展.植物生态学报, 2004, 28(3): 414-425.
    [186]吴征镒.中国种子植物属的分布区类型.云南植物研究, 1991,增刊(IV): 1-139.
    [187]吴征镒.中国植物属的分布区类型的增刊和勘误.云南植物研究, 1993,增刊(IV): 141-179.
    [188]邹碧,王刚,杨富权,等.华南热带区不同恢复阶段人工林土壤持水能力研究.热带亚热带植物学报, 2010, 18(4): 343-349.
    [189]朱华,赵崇奖,王洪,等.思茅菜阳河自然保护区植物区系研究——兼论热带亚洲区系向东亚植物区系的过渡.植物研究, 2006, 26(1): 38-52.
    [190]陈卫娟,王希华,闫恩荣,等.浙江天童及周边地区常绿阔叶林退化群落的植物区系分析.华东师范大学学报(自然科学版), 2006, 6: 98-109.
    [191]Martin L M, Moloney K A, Wilsey B J. An assessment of grassland restoration success using species diversity components. Journal of Applied Ecology, 2005, 42(2): 327-336.
    [192]Stirling G, Wilsey B. Empirical relationships between species richness, evenness and proportionaldiversity. The American Naturalist, 2001, 158(3): 286-299.
    [193]Zerbe S, Kreyer D. Introduction to special section on "ecosystem restoration and biodiversity how to assess and measure biological diversity?". Restoration Ecology, 2006, 14(1): 103-104.
    [194]Culter K A, Belyea L R, Dugmore A J. The spatiotemporal dynamics of a primary succession. Journal of Ecolgoy, 2008, 96(2): 231-246.
    [195]Thomas C D, Cameron A, Green R E, Bakkenes M, Beaumont L J, Collingham Y C, Erasmus B R N, Siqueira M F d, Grainger A, Hannah L, Hughes L, Huntley B, Jaarsveld A S v, Midgley G F, Miles L, Ortega-Huerta M A, Peterson A T, Phillips O L, Williams S E. Extinction risk from climate change. Nature, 2004, 427(6970): 145-148.
    [196]Tikkanen O P, Punttila P, Heikkil? R. Species-area relationships of red-listed species in old boreal forests: A large-scale data analysis. Diversity and Distributions, 2009, 15(5): 852-862.
    [197]Harte J, Smith A B, Storch D. Biodiversity scales from plots to biomes with a universal species-area curve. Ecology Letters, 2009, 12(8): 789-797.
    [198]Fridley J D, Peet R K, Maarel E v d, Willems J H. Integration of local and regional species-area relationships from space-time species accumulation. The American Naturalist, 2006, 168(2): 133-143.
    [199]Adler P B. Neutral models fail to reproduce observed species-area and species-time relationships in Kansas grasslands. Ecology, 2004, 85(5): 1265-1272.
    [200]Fridley J D, Peet R K, Wentworth T R, et al. Connecting fine- and broad-scale species-area relationships of Southeastern U.S. flora. Ecology, 2005, 86(5): 1172-1177.
    [201]Lomolino M V, Weiser M D. Towards a more general species-area relationship: Diversity on all islands, great and small. Journal of Biogeography, 2001, 28(4): 431-445.
    [202]Tittensor D P, Micheli F, Nystr?m M, et al. Human impacts on the species-area relationship in reef fish assemblages. Ecology Letters, 2007, 10(9): 760-772.
    [203]Adler P B, Lauenroth W K. The power of time: Spatiotemporal scaling of species diversity. Ecology Letters, 2003, 6(8): 749-756.
    [204]Adler P B, White E P, Lauenroth W K, et al. Evidence for a general species-time-area relationship. Ecology, 2005, 86(8): 2032-2039.
    [205]White E P, Adler P B, Lauenroth W K, et al. A comparison of the species-time relationship across ecosystems and taxonomic groups. Oikos, 2006, 112(1): 185-195.
    [206]White E P. Two-phase species-time relationships in North American land birds. Ecology Letters, 2004, 7(4): 329-336.
    [207]Fattorini S. Detecting biodiversity hotspots by species-area relationships: A case study of Mediterranean beetles. Conservation Biology, 2006, 20(4): 1169-1180.
    [208]Londo?o-Cruz E, Tokeshi M. Testing scale variance in species-area and abundance-area relationships in a local assemblage: An example from a subtropical boulder shore. Population Ecology, 2007, 49(3): 275-285.
    [209]Manne L L, Williams P H, Midgley G F, et al. Spatial and temporal variation in species-area relationships in the Fynbos biological hotspot. Ecography, 2007, 30(6): 852-861.
    [210]William M R, Lamont B B, Henstridge J D. Species-area functions revisited. Biogeography, 2009, 36(10): 1994-2004.
    [211]Marrshall A R, J?rgensbye H I O, Rovero F, et al. The species-area relationship and confounding variables in a threatened monkey community. American Journal of Primatology, 2010, 72(4): 325-336.
    [212]Martín H G, Goldenfeld N. On the origin and robustness of power-law species-area relationships in ecology. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(27): 10310-10315.
    [213]Dengler J. Which function describes the species-area relationship best? A review and empirical evaluation. Journal of Biogeography, 2009, 36(4): 728-744.
    [214]代力民,王青春,邓红兵,等.二道河河岸带植物群落最小面积与物种丰富度.应用生态学报, 2002, 13(6): 641-645.
    [215]卢剑波,丁立仲,徐高福.千岛湖岛屿化对植物多样性的影响初探.应用生态学报, 2005, 16(9): 1672-1676.
    [216]Drakare S, Lennon J J, Hillebrand H. The imprint of the geographical, evolutionary and ecological context on species-area relationships. Ecology Letters, 2006, 9(2): 215-227.
    [217]Hoylet M. Causes of the species-area relationship by trophic level in a field-based microecosystem. Proceedings:Biological Sciences, 2006, 271(1544): 1159-1164.
    [218]唐志尧,乔秀娟,方精云.生物群落的种-面积关系.生物多样性, 2009, 17(6): 549-559.
    [219]Ricklefs R E, Bermingham E. History and the species-area relationship in Lesser Antillean birds. The American Naturalist, 2004, 163(2): 227-239.
    [220]Ward D, Blaustein L. The overriding influence of flash floods on species-area curves in ephemeral Negev Desert pools: A consideration of the value of island biogeography theory. Journal of Biogeography, 1994, 21(6): 595-603.
    [221]Lep? J, ?tursa J. Species-area curve, life-history strategies, and succession: A field test of relationships. Vegetatio, 1989, 83(1/2): 249-257.
    [222]Jacquemyn H, Buraye J, Hermy M. Forest plant species richness in small, fragmented mixed deciduous forest patches: The role of area, time and dispersal limitation. Journal of Biogeography, 2001, 28(6): 801-812.
    [223]Schoener T W, Spiller D A. Nonsynchronous recovery of community characteristics in island spiders after a catastrophic hurricane. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103(7): 2220-2225.
    [224]Callaway R M, Walker L. Competition and facilitation: a synthetic approach to interaction in plant communities. Ecology, 1997, 78(7): 1958-1965.
    [225]Armas C, Pugnaire F I. Plant interactions govern population on dynamics in semi-arid plant community. Journal of Ecolgoy, 2005, 93(5): 978-989.
    [226]王文进,张明,刘福德,等.海南岛吊罗山热带山地雨林两个演替阶段的种间联结性.生物多样性, 2007, 15(3): 257-263.
    [227]Rousset O, Lepart J. Positive and negative interactions at differen life stages of a colonizing species(Quercus humilis). Journal of Ecolgoy, 2000, 88(3): 401-412.
    [228]Brooker R W, Maestre F T, Callaway R M. Facilitation in plant communities:the past,the present,and the future. Journal of Ecolgoy, 2008, 96(1): 18-34.
    [229]Graff P, Aguiar M R, Chaneton E. Shifts in positive and negative plant interactions along a grazing intensity gradient. Ecology, 2007, 88(1): 188-199.
    [230]Parrish J A D, Bazzaz F A. Comptitive interactions in plant communities of different successional ages. Ecology, 1982, 63(2): 314-320.
    [231]史作民,刘世荣,程瑞梅,等.宝天曼落叶阔叶林种间联结性研究.林业科学, 2001, 37(2): 29-35.
    [232]王乃江,张文辉,陆元昌.陕西子午岭森林植物群落种间联结性.生态学报, 2010, 30(14): 67-78.
    [233]Roxburgh S H, Chesson P. A new method for detecting species associations with spatially autocorrelated data. Ecology, 1998, 79(6): 2180-2192.
    [234]Myster R W, Pickett S T A. Dynamics of associations between plants in ten old fields during 31 years of succession. Journal of Ecolgoy, 1992, 80(2): 291-302.
    [235]张志勇,陶德定,李德珠.五针白皮松在群落演替过程中的种间联结性分析.生物多样性, 2000, 11(2): 125-131.
    [236]李刚,朱志红,王孝安,等.子午岭乔木种群演替过程种间联结性分析.东北林业大学学报, 2008, 36(11): 931-940.
    [237]胡正华,钱海源,于明坚.古田山国家级自然保护区甜槠林优势种群生态位.生态学报, 2009, 29(7): 3670-3677.
    [238]Schluter D. A variance test for detecting species associations,with some example applications. Ecology, 1984, 65(3): 998-1005.
    [239]简敏菲,刘琪璟,朱笃,等.九连山常绿阔叶林乔木优势种群的种间关联性分析.植物生态学报, 2009, 33(4): 672-680.
    [240]苏志尧,吴大荣,陈北光.粤北天然林优势种群生态位研究.应用生态学报, 2003, 24(1): 25-29.
    [241]史作民,程瑞梅,刘世荣.宝天曼落叶阔叶林种群生态位特征.应用生态学报, 1999, 10(3): 265-269.
    [242]黄云鹏.武夷山米槠林主要树种种间关联性.山地学报, 2008, 26(6): 692-698.
    [243]黄世能,李意德,骆士寿,等.海南岛尖峰岭次生热带山地雨林树种间的联结动态.植物生态学报, 2000, 24(5): 569-574.
    [244]彭李箐.鼎湖山气候顶级群落种间联结变化.生态学报, 2006, 26(11): 3732-3739.
    [245]邓贤兰,刘玉成,吴杨.井冈山自然保护区栲属群落优势种群的种间联结关系研究.植物生态学报, 2003, 27(4): 531-536.
    [246]Howe H F, Urincho-Pantaleon Y, Pen?a-Domene M d l, et al. Early seed fall and seedling emergence:precursors to tropical restoration. Oecologia, 2010, 164(3): 731-740.
    [247]Godefroid S, Phartyal S S, Koedam N. Depth distribution and composition of seed banks under different tree layers in a managed temperate forest ecosystem. Acta oecologica, 2006, 29(3): 283-292.
    [248]Butler B J, Chazdon R L. Species richness,spatial variation,and abundance of the soil seed bank of a secondary tropical rain forest. Biotropica, 1998, 30(2): 214-222.
    [249]沈有信,刘文耀,崔建武.滇中喀斯特森林土壤种子库的种-面积关系.植物生态学报, 2007, 31(1): 50-55.
    [250]Ma M J, Zhou X H, Du G Z. Role of soil seed bank along disturbance gradient in an alpine meadow on the Tibet plateau. Flora, 2010, 205(2): 128-134.
    [251]Honu Y A K, Dang Q L. Spatial distribution and species composition of tree seeds and seedlings under the canopy of the shrub,Chromolaena odorata Linn.,in Ghana. Forest ecology and management, 2002, 164(1): 185-196.
    [252]Egawa C, Koyama A, Tsuyuzaki S. Relationships between the developments of seedbank,standing vegetation and litter in a post-mined peatland. Plant ecology, 2009, 203(2): 217-288.
    [253]周先叶,李鸣光,王伯荪,等.广东黑石顶自然保护区森林此生演替不同阶段土壤种子库的研究.植物生态学报, 2000, 24(2): 222-230.
    [254]Chaideftou E, Thanos C A, Bergmeier E, Kallimanis A, Dimopoulos P. Seed bank composition and above-ground vegetation in response to grazing in sub-Mediterranean oak forests(NW Greece). Plant ecology, 2009, 201(1): 255-265.
    [255]Yu S, Bell D, Sternberg M, Kutiel P. The effect of microhabitats on vegetation and its relationships with seedlings and soil seed bank in a Mediterranean coastal sand dune community. Journal of arid environments, 2008, 72(11): 2040-2053.
    [256]Li Q K, Ma K P. Factors affecting establishment of Quercus liaotungensis Koidz. under mature mixed oak forest overstory and in shrubland. Forest Ecology and Management, 2003, 176: 133-146.
    [257]李晓亮,王洪,郑征,等.西双版纳热带森林树种幼苗的组成、空间分布和旱季存活.植物生态学报, 2009, 33(4): 658-671.
    [258]George L O, Bazzaz F A. The fern understory as an ecological filter: emergence and establishment of canopy-tree seedling. Ecology, 1999, 80(3): 833-845.
    [259]宋瑞生,于明坚,李铭红,等.片段化常绿阔叶林的土壤种子库及天然更新.生态学报, 2008, 28(6): 2554-2562.
    [260]柳新伟,申卫军,张桂莲,等.南亚热带森林演替植物幼苗生态适应度模拟.北京林业大学学报, 2006, 28(1-6).
    [261]Nicotra A B, Chazdon R L, Iriarte S V B. Spatial heterogeneity of light and woody seedling regeneration in tropical wet forests. Ecology, 1999, 80(6): 1908-1926.
    [262]Li X S, Liu W Y, Tang C Q. The role of the soil seed and seedling bank in the regeneration of diverse plant communities in the subtropical Ailao mountains,southwest China. Ecological Research, 2010,25: 1171-1182.
    [263]唐勇,曹敏,张建侯,等.西双版纳热带森林土壤种子库与地上植被的关系.应用生态学报, 1999, 10(3): 4.
    [264]方精云,王襄平,沈泽昊,等.植物群落清查的主要内容、方法和技术规范.生物多样性, 2009, 17(6): 533-548.
    [265]李生,姚小华,任华东,等.黔中石漠化地区不同土地利用类型土壤种子库特征.生态学报, 2008, 28(9): 4602-4608.
    [266]Halpern C B, Evans S A, Nielson S. Soil seed banks in young, closed-canopy forests of the Olympic Peninsula, Washington: potential contributions to understory reinitiation. Canadian Journal of Botany, 1999, 77(7): 922-935.
    [267]Lin L, Cao M. Edge effects on soil seed banks and understory vegetation in subtropical and tropical forests in Yunnan,SW China. Forest ecology and management, 2009, 257(4): 1344-1352.
    [268]Gentry A H, The biology of vines. The distribution and evolution of climbing plants, ed. Putz F E,Mooney H A Cambridge,UK: Cambridge University Press, 1991, 3-49.
    [269]Appanah S, Gentry A H, Frankie L J V. Liana diversity and species richness of Malaysian rain forests. Journal of tropical forest science, 1992, 6(2): 116-123.
    [270]Schnitzer S A, Bongers F. The ecology of lianas and their role in forests. Trends in Ecology and Evolution, 2002, 17(5): 223-230.
    [271]Putz F E. The natural history of lianas on Barro Colorado Island Panama. Ecology, 1984, 65(6): 1713-1724.
    [272]Mascaro J, Schnitzer S A, Carson W P. Liana diversity,abundance,and mortality in a tropical wet forest in Costa Rica. Forest Ecology and Management, 2004, 190(1): 3-14.
    [273]Addo-Fordiour P, A K Anning, Larbi J A, Akyeampong S. Liana species richness,abundance and relationship with trees in the Bobiri forest reserve,Ghana:Impact of management systems. Forest Ecology and Management, 2009, 257(8): 1822-1828.
    [274]Gerwing J J, Vidal E. Life history diversity among six species of canopy lianas in an old-growth forest of the eastern Brazilian Amazon. Forest Ecology and Management, 2004, 190(1): 57-72.
    [275]Clark D B, Clark D A. Distribution and effects on tree growth of lianas and woody hemiepiphtes in a Costa Rican tropical wet forest. Journal of Tropical Ecology, 1990, 6(3): 321-331.
    [276]Letcher S G, Chazdon R L. Lianas and self-supporting plants during tropical forest succession. Forest Ecology and Management, 2009, 257(10): 2150-2156.
    [277]Nabe-Nielsen J, Kollmann J, Pena-Claros M. Effects of liana load, tree diameter and distances between conspecifics on seed production in tropical timber trees. Forest Ecology and Management, 2009, 257(3): 987-993.
    [278]Schnitzer S A, Dalling J W, Carson W. The impact of lianas on tree regeneration in tropical forest canopy gaps: evidence for an alternative pathway of gap-phase restoration Journal of Ecolgoy, 2000, 88(4): 655-666.
    [279]Phillips O L, Martínez R V, Arroyo L, et al.Increasing dominance of large lianas in Amazonian forests. Nature, 2002, 418(6899): 770-774.
    [280]Schnitzer S A, Kuzee M E, Bongers F. Disentangling above- and below-ground competition between lianas and trees in a tropical forest. Journal of Ecolgoy, 2005, 93(6): 1115-1125.
    [281]Avalos G, Mulkey S S. Photosynthetic acclimation of the liana Stigmaphyllon lindenianum to light changes in a tropical dry forest canopy. Oecologia, 1999, 120(4): 475-484.
    [282]Schnitzer S A, Parren M P E, Bongers F. Recruitment of lianas into logging gaps and the effects of pre-harvest climber cutting in lowland forest in Cameroon. Forest Ecology and Management, 2004, 190(1): 87-98.
    [283]Allen B P, Sharitz R R, Geobel P C. Twelve years post-hurricane liana dynamics in an old-growth southeastern floodplain forest. Forest Ecology and Management, 2005, 218(1/3): 259-269.
    [284]KouaméF N, Bongers F, Poorter L, et al. Climbers and logging in the Forêt Classée du Haut-Sassandra,C?te-d’Ivoire. Forest Ecology and Management, 2004, 164(1/3): 259-268.
    [285]H?ttenschwiler S. Liana seedling growth in response to fertilization in a neotropical forest understorey. Basic and Applied Ecology, 2002, 3(2): 135-143.
    [286]Chittibabu C V, Parthasarathy N. Liana diversity and host relationships in a tropical evergreen forest in the Indian Eastern Ghats. Ecological Research, 2001, 16(3): 519-529.
    [287]Pérez-Salicrup D R, Meijere W d. Number of lianas per tree and number of trees climbed by lianas at Los Tuxtlas, Mexico. Biotropica, 2005, 37(1): 153-156.
    [288]蔡永立,宋永昌.藤本植物生活型系统的修订及中国亚热带东部藤本植物的生活型分析.生态学报, 2000, 20(5): 808-814.
    [289]张玉武.贵州梵净山自然区藤本植物攀缘方式及类型的研究.广西植物, 2000, 20(4): 301-312.
    [290]蔡永立,郭佳.藤本植物适应生态学研究进展及存在问题.生态学杂志, 2000, 19(6): 28-33.
    [291]蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅰ.叶片解剖特征的比较.植物生态学报, 2001, 25(1): 90-98.
    [292]颜立红,祁承经,刘小雄,等.湖南藤本植物胸径与其支持木胸径的相关性.生态学报, 2007, 27(10): 4317-4324.
    [293]袁春明,刘文耀,杨国平,等.哀牢山湿性常绿阔叶林木质藤本植物的物种多样性及其与支持木的关系.林业科学, 2010, 46(1): 15-22.
    [294]袁春明,刘文耀,杨国平.哀牢山湿性常绿阔叶林木质藤本植物的物种组成与多样性.山地学报, 2008, 26(1): 29-35.
    [295]陈亚军,文斌.滇南勐宋热带山地雨林木质藤本多样性研究.广西植物, 2008, 28(1): 67-72.
    [296]栗忠飞,郑征,李佑荣,等.云南菜阳河自然保护区热带季节雨林乔木生物量.热带亚热带植物学报, 2004, 12(1): 41-45.
    [297]蔡永立,宋永昌.浙江天童常绿阔叶林藤本植物的适应生态学Ⅱ.攀援能力和单株攀援效率.植物生态学报, 2005, 29(3): 386-393.
    [298]Nabe-Nielsen J. Diversity and distribution of lianas in a neotropical rain forest,Yasunínational park,Ecuador. Journal of Tropical Ecology, 2001, 17(1): 1-19.
    [299]Putz F E. Liana stem diameter growth and mortality rates on Barro Colorado Island,Panama. Biotropica, 1990, 22(1): 103-105.
    [300]Nabe-Nielsen J, Hall P. Environmentally induced clonal reproduction and life history traits of the liana Machaerium cuspidatum in an Amazonian rain forest, Ecuador. Plant Ecology, 2002, 162(2): 215-226.
    [301]Putz F E. Liana biomass and leaf area of a“Tierra Firme”forest in the Rio Negro basin,Venezuela. Biotropica, 1983, 15(3): 185-189.
    [302]Phillips O L, Martínez R V, Mendoza A M, et al. Large lianas as hyperdynamic elements of the tropical forest canopy. Diversity and Distributions, 2000, 6(1): 1-14.
    [303]Muthuramkumar S, Parthasarathy N. Alpha diversity of lianas in a tropical evergreen forest in the Anamalais, Western Ghats, India Diversity and Distributions, 2000, 6(1): 1-14.
    [304]Senbeta F, Schmitt C, Denich M, et al. The diversity and distribution of lianas in the Afromontane rain forests of Ethiopia. Diversity and Distributions, 2005, 11(5): 443-452.
    [305]刘文耀,马文章,杨礼攀.林冠附生植物生态学研究进展.植物生态学报, 2006, 30(3): 522-533.
    [306]Benavides A M, Duque A J, Duivenvoorden J F, et al. A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodiversity and Conservation, 2005, 14: 739-758.
    [307]Ozanne C M P, Anhuf D, Boulter S L, et al. Biodiversity meets the atmosphere: a global view of forest canopies. Science, 2003, 301: 183-186.
    [308]Hsu R, Wolf H D. Diversity and phytogeography of vascular epiphytes in a tropical-subtropical transition island,Taiwan. Flora, 2009, 204: 612-627.
    [309]Nieder J, ProsperíJ, Michaloud G. Epiphytes and their contribution to canopy diversity. Plant Ecology, 2001, 153: 51-63.
    [310]Wolf J H D. The response of epiphytes to anthropogenic disturbance of pine-oak forests in the highlands of Chiapas, Mexico. Forest Ecology and Management, 2005, 212: 376-393.
    [311]刘广福,臧润国,丁易,等.海南霸王岭不同森林类型附生兰科植物的多样性和分布.植物生态学报, 2010, 34(4): 396-408.
    [312]徐海清,刘文耀.云南哀牢山山地湿性常绿阔叶林附生植物的多样性和分布.生物多样性, 2005, 13(2): 137-147.
    [313]Nadkarni N M. Diversity of species and interactions in the upper tree canopy of forest ecosystems. American Zoologist, 1994, 34: 70-78.
    [314]Nadkarni N M, Matelson T J. Biomass and nutrent dynamics of epiphytic litterfall in a neotropical montane forest,Costa Rica. Biotropica, 1992, 24(1): 24-30.
    [315]Nadkarni N M, Solano R. Potential effects of climate change on canopy communities in a tropical cloud forest: an experimental approach. Oecologia, 2002, 131: 580-586.
    [316]Barthlott W, Schmit-Neuerburg V, Nieder J, et al. Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology, 2001, 152: 145-156.
    [317]Marín A C, Wolf J H D, Oostermeijer J G B, et al. Establishment of epiphytic bromeliads in successional tropical premontane forests in Costa Rica. Biotropica, 2008, 40(4): 441-448.
    [318]Benzing D H, Vascular epiphytes: general biology and related biota Cambridge UK: Cambridge University Press, 1990, 31-42.
    [319]刘广福,丁易,臧润国,等.海南岛热带天然针叶林附生维管植物多样性和分布.植物生态学报,2010, 34(11): 1283-1293.
    [320]Annaselvam J, Parthasarathy N. Diversity and distribution of herbaceous vascular epiphytes in a tropical evergreen forest at Varagalaiar,Western Ghats,India. Biodiversity and Conservation, 2001, 10: 317-329.
    [321]Wolf J H D, Gradstein S R, Nadkarni N M. A protocol for sampling vascular epiphyte richness and abundance. Journal of Tropical Ecology, 2009, 25(2): 107-121.
    [322]Zotz G, Schultz S. The vascular epiphytes of a lowland forest in Panama——species composition and spatial structure. Plant Ecology, 2008, 195(1): 131-141.
    [323]Benavides A M, Duque A J, Duivenvoorden J F, Vasco G A, Callejas R. A first quantitative census of vascular epiphytes in rain forests of Colombian Amazonia. Biodiversity and Conservation, 2005, 14(3): 739-758.
    [324]Zhu H, Shi J P, Zhao C J. Species composition, physiognomy and plant diversity of the tropical montane evergreen broad-leaved forest in southern Yunnan. Biodiversity and Conservation, 2005, 14(12): 2855-2870.
    [325]Zotz G. Demography of the epiphyte orchid,Dimerandra emarginata. Journal of Tropical Ecology, 1998, 14(6): 725-741.
    [326]Annaselvam J, Parthasarathy N. Diversity and distribution of herbaceous vascular epiphytes in a tropical evergreen forest at Varagalaiar,Western Ghats,India. Biodiversity and Conservation, 2001, 10(3): 317-329.
    [327]Schmidt G, Zotz G. Inherently slow growth in two Caribbean epiphytic species: A demographic approach. Journal of Vegetation Science, 2002, 13(4): 527-534.
    [328]Werner F A, Gradstein S R. seedling establishment of vascular epiphytes on isolated and enclosed forest in an Andean landscape,Ecuador. Biodiversity and Conservation, 2008, 17(13): 3195-3207.
    [329]Kreft H, K?ster N, Küper W, et al. Diverstiy and biogeography of vascular epiphytes in Western Amazonia,Yasuní,Ecuador. Journal of Biogeography, 2004, 31(9): 1463-1476.
    [330]Barthlott W, Schmit-Neuerburg V, Nieder J, et al. Diversity and abundance of vascular epiphytes: a comparison of secondary vegetation and primary montane rain forest in the Venezuelan Andes. Plant Ecology, 2001, 152(2): 145-156.
    [331]Laube S, Zotz G. Long-term changes of the vascular epiphyte assemblage on the palm Socrateaexorrhiza in a lowland forest in Panama. Journal of Vegetation Science, 2006, 17(3): 307-314.
    [332]Callaway R M, Reinhart K O, Moore G W, et al. Epiphyte host preferences and host traits: mechanisms for species-specific interactions. Oecologia, 2002, 132(2): 221-230.
    [333]Ackerman J D, Sabat A, Zimmerman J K. Seedling establishment in an epiphytic orchid: an experimental study of seed limitation. Oecologia, 1996, 106(2): 192-198.
    [334]Hirata A, Kamijo T, Saito S. Host trait preferences and distribution of vascular epiphytes in a warm-temperate forest. Plant Ecology, 2009, 201(1): 247-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700