用户名: 密码: 验证码:
基于不确定理论的地下水溶质运移及污染风险研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地下水污染系统中的溶质运移和污染风险研究是地下水资源管理的重要研究内容之一。然而,地下水环境系统中广泛存在的不确定因素影响着研究的精度,日益成为地下水资源管理的障碍。
     首先总结了地下水污染系统的主要特征,综述了地下水溶质运移模拟、地下水污染风险和地下水环境系统中不确定性理论的研究进展,在此基础上指出研究方法:第一,基于随机、区间、模糊数学方法的基本不确定理论;第二、基于随机建模的参数非均质性研究方法;第三,基于贝叶斯定理的不确定参数识别技术。
     研究工作和研究成果包括以下内容:(1)针对渗透系数的非均质性,采用高斯随机场模型和序贯高斯模拟生成渗透系数的空间分布;针对高斯随机场模型中参数的识别问题,采用基于贝叶斯定理的不确定性参数识别技术推断参数的后验分布;基于上述两种不确定因素,研究非均质含水层中溶质运移问题。研究发现,贝叶斯推断的参数后验分布并非对称分布,条件数据越多,参数后验分布的标准方差越小,参数分布的集中趋势越明显;渗透系数不确定性对地下水溶质运移的影响较大,地下水溶质运移的不确定程度随着时间的推移而增加,随着条件数据集数量的增加而减少。(2)针对非均质含水层中溶质运移的不确定问题,提出一种非均质含水层中溶质运移优化模拟的方法。该方法以渗透系数的测量值和溶质浓度的观测值为条件数据,用新型的变尺度混沌-遗传算法同时更新渗透系数和含水层中污染物浓度的空间分布。研究结果表明,渗透系数对参数的优化结果有重要作用;当渗透系数和溶质浓度同时参与优化过程时,渗透系数分布和溶质浓度分布的模拟精度都将大大提高。结合两类数据的优化过程有效平衡了地质参数和溶质浓度两种信息。(3)针对含水层中污染物监测浓度的变化引起的不确定性,以区间数表示污染物浓度,应用区间数理论和模糊属性识别方法,建立了基于区间数的地下水环境健康风险模糊综合评价模型。实例研究表明基于区间数的地下水环境健康风险模糊综合评价在一定程度上解决了评价过程中存在的不确定性问题,评价的结果更全面、合理地反映了地下水环境健康风险水平的真实情况。(4)针对美国环保局的健康风险评价模式中参数的不确定性,采用序贯指示模拟生成若干污染物浓度分布以反映浓度的不确定性,建立概率密度函数以反映其它参数(日饮水量、体重等)的不确定性,采用Monte Carlo模拟技术,建立了基于序贯指示模拟的水环境健康风险分析模型。实例研究表明,该模型可基本反映污染的环境风险,含水层中污染物浓度的不确定性是造成人类健康风险不确定的主要因素。(5)针对环境风险的主体和受体,提出环境风险等于含水层“脆弱性”与地下水污染造成人类健康“危害性”的逻辑乘积。同时考虑“脆弱性”的随机性和风险的模糊性,建立了基于随机模拟的地下水污染风险模糊评价模型。实例研究表明,该模型可以清晰的表达风险的等级,与确定性模型和单一方面的风险评价模型计算结果有显著差异。
     针对复杂的地下水环境系统,基于不确定理论,较为系统的剖析了地下水环境系统中的不确定因素对地下水溶质运移,建立了若干基于不确定性理论的地下水污染风险模型。一方面,有助于深刻揭示不确定因素对地下水溶质运移和污染风险的影响,在本质上加深对地下水环境系统不确定性的认识,具有以一定的理论意义;另一方面,以湖南省“两型社会”建设区长沙-株洲-湘潭地下水污染、长沙黄兴镇地下水锰污染为例证明,基于不确定理论的地下水溶质运移和污染风险研究,可以更加有效的反映复杂地下水环境系统的行为,更有效的指导地下水资源管理和污染防治工作,具有一定的实践意义。
Solute transport and contamination risk assessment in groundwater is one of the important research fields of groundwater resource management. However, there are a wide range of uncertainties affecting the accuracy of the research. And these uncertainties are increasingly becoming an obstacle to the management of groundwater resources.
     This dissertation first summarized the main features of the groundwater contamination environemntal system, reviewed the research progresses of solute transport, environmental risks, and uncertainty theory and their applications to the groundwater environmental system. Based on that, it was pointed out that there were three types of uncertain theory that used in the disseration. The first type is the basic uncertainty theory, such as stochastic mathsmatic methodology, interval mathsmatic methodolody and fuzzy mathsmatic metholodgy; the second is the heterogenity of the parameters and their stochastic modeling techniques; and the third is the uncertain parameter identification techniques based on Bayesian theory. The main works and novel results include the following elements. (1) Aiming at the heterogenity of the hydraulic conductivity, Gaussian Random Space (RSF) function was used to discribe the distribution of hydraulic conductivity, and aiming at the parameter identification problem, the uncertain parameter identification techniques based on Bayesian theory was applied to infere the posterior distributions of parameters in RSF. The solute transport in the heterogenious aquifer was studied under the two kinds of uncertainties. The results showed that the posterior distributions of parameters were dissymmetrical. When more conditional data were incorporated in the analysis, the standard deviation of parameters was smaller, the centralized trend was more obvious, and the optimal parameters were closer to the hypothetic ones. Hydraulic conductivity had great effects on solute transports in groundwater. Taking the effect of hydraulic conductivity uncertianty into account, the uncertainty for solute transport increased with the increasing of time and decreased with increasing of the number of conditional data. (2) Aiming at uncertainty associatied with solute transport in heterogeneous formations, a coupled inverse modeling metholodgy about optimal solute transport was developed. Conditioning to the measured hydraulic conductivity and observed concentration data, the hydraulic conductivity field and concentration distribution were regenerated at the same time using a new type of algorithm-Mutative Scale Chaos Genetic algorithm (MSCGA). The results showed that the description of hydraulic conductivity and solute concentration filed was improved when both kinds of data were combined in the coupled inverse modeling system. The coupled inverse modeling provided a trade-off between geological setting and solute transport. (3) Aiming at uncertainty associated with different mintoring data, interval number was used to respersent contaminants concentration. Based on the application of interval number theory and fuzzy attributed recognization technique, an intergrated fuzzy model for groundwater environmental health risk assessment was established. The results of case study showed that the hydraulic conductivity was important for the results of parameter identification. The model could resolve the uncertainties in reality to some extent. And compared with groundwater environmental health risk assessment model under certainty, the results of the established model were more comprehensive and reasonable in reflection of the situation of environmental health risks associated with groundwater contamination. (4) Aiming at uncertainties of the parameters in the health risk assessment model developed by the United States Environmental Protection Agency (USEPA), a spatial stochastic risk analysis model was developed. In the model, the concentration of contaminants was simulated with sequential indicator simulation, and the other parameters were sampled from their probability density functions. The results of case study showed that the developed model could basically reflect the human health risk of groundwater pollution. The contaminants concentration was the main factors of uncertainty of the resulted risk. (5) Aiming at the subjects and receptors, the environmental risk was considered to be the“vulnerability”of the aquifer multiplied by“hazard”caused by groundwater contamination logically. Taking the stochastic characteristic of“vulnerability”and fuzzy characteristic of risk into account, an intergrated stochastic-fuzzy modeling approach for risk assessment of groundwater contamination was developed. The results of case study showed that the developed approach offered a unique tool for systematically quantifying various uncertainties and clearly expressing the level of risk.
     Due to the complexity, unique transport rules and various internal reactions of groundwater environmental system, this disseration analyzed the effects of uncertainties of solute transport in groundwater and developed several models assciated with contaminated risk of groundwater under uncertainties. On one hand, this disseration is helpful to reveal the character of uncertainties in solute transport and contamination risk of groundwater system, and to better understand the uncertainties in groundwater environmental system, which was of theoretical significance in certain degree. On the other hand, the results of typical case studies, such as Chang-Zhu-Tan region for“Resource-saving and Environment-friendly Society”construction and manganese contamiantion in groundwater of Huangxing Town, proved that solute transport in groundwater and contamination risk anlysis under uncertainties could effectively reflect the complex behavior of groundwater system and provide scientific support to the management of groundwater resource and control of groundwater contamiantion.
引文
[1]中华人民共和国国土资源部. 2002年中国国土资源公报.
    [2]姜建军.中国地下水污染现状与防治对策.环境保护, 2007, 10(A): 16-17
    [3]陈炼钢,武晓峰.基于环境风险的土壤地下水污染治理.环境保护, 2005, 10: 52-55
    [4] Li J B. Development of an inexact environmental modeling system for the management of petroleum-contaminated sites: [the Degree of Doctor of Philosophy in Engineering University of Regina]. Canada: University of Regina, 2003, 20-26
    [5]程声通,陈毓龄.环境系统分析.北京:高等教育出版社, 1991: 9-20
    [6]朱大奎,王颖,陈方.环境地质学.北京:高等教育出版社, 2000, 207-208
    [7]郑彤,陈春云.环境系统数学模型.北京:化学工业出版社, 2003, 100-106
    [8]王焰新.地下水污染与防治.北京:高等教育出版社, 2007, 7-13
    [9] Zheng C, Wang P P. MT3DMS, a modular three-dimensional multi-species transport model for simulation of advection, dispersion and chemical reactions of contaminants in groundwater systems. Documentation and user’s guide. US Army Engineer Research and Development Center Constract Report SERDP-99-1, Vicksburg, MS, 1999
    [10]朱玉水,段存俊. MT3D-通用的三维地下水污染物运移数值模型.华东理工学院学报, 2005, 28(1): 26-29.
    [11] Nilson G. Waterloo hydrogeologic Visual Modflow Use’s Manual. Ontario, Canada: Waterloo Hydrogeologic, Inc, 2004.
    [12] Nilson G. Waterloo hydrogeologic Modflow Packages Reference Manual. Ontario, Canada: Waterloo Hydrogeologic, Inc, 2004.
    [13]丁继红.国外地下水模拟软件的发展现状与趋势.勘察科学技术, 2002, 1: 37-42
    [14]贺国平,邵景力,崔亚莉,等. FEFLOW在地下水流模拟方面的应用.成都理工大学学报(自然科学版), 2003, 30(4): 357-362
    [15]胡二邦.环境风险评价实用技术和方法.北京:中国环境科学出版社, 2000, 2-3
    [16] U.S. Atomic Energy Commission. Theoretical possibilities and consequencesof major accidents in large nuclear power plants. Washington: Report WASH-740, 1957
    [17]陈辉,刘劲松,曹宇,等.生态风险评价研究进展.生态学报, 2006, 26(5): 1558-1666
    [18]张丽君.地下水脆弱性和风险性评价研究进展综述.水文地质工程地质, 2006, 33(6): 113-129
    [19] Foster S, Hirata R, Gome D, et al. Groundwater Quality Protection: a guide for water utilities, municipal authorities, and environment agencies. Washingtion, D.C., USA.: World Bank Publication, 2002,
    [20] Morris B, Foster S. Assessment of Groundwater Pollution risk. http://www. lnweb18. worldbank. orgPessdPessd. nsf .
    [21]孙才志,潘俊.地下水脆弱性的概念、评价方法与研究前景.水科学进展, 1999, 10(4): 444-449
    [22] Brain M, Stephen F. Assessment of groundwater pollution risk [M/OL]. [2006-05-06]. http: // www. Inweb18. worldbank. org/essd/essd. Nsf
    [23] Martin L C, Abraham J M. Combined land-use and environmental factors for sustainable groundwater management. Urban Water, 2001, 3(3): 229-237
    [24] Duij ven booden W, Van Waegengh H G. Vulnerability of soil and groundwater to pollutants. In: International Conference on Vulnerability of Soil and Groundwater to Pollutants, Noordwijk aan Zee(Netherlands). Netherlands: Den Haag, 1987, 83-87
    [25] National Research Council (U.S.). Groundwater vulnerability assessment predicting relative contamination potential under conditions of uncertainty. Committee on Techniques for Assessing Groundwater Vulnerability. Washington, D.C.: National Research Council, National Academy Press, 1993, 204
    [26]姜桂华.地下水脆弱性研究进展.世界地质, 2002, 21(1): 33-38
    [27]刘仁涛,付强,李伟业,等.地下水脆弱性研究与探讨.水资源与水工程学报, 2006, 17(6): 1-5
    [28] Aller L T, Bennett J H L. DRASTIC: A standardized system for evaluating groundwater pollution potential using hydrogeologic settings EPA/600/2-85/ 018, Kerr RS.Environmental Research Laboratory, US EPA, Ada, Oklahoma, 1985.
    [29] Banton O, Villeneuve J P. Evaluation of groundwater vulnerability to pesticides: A comparison between the pesticide drastic index and the PRZM leachingquantities. Journal of Contaminant Hydrology, 1989, 4(3): 285-296
    [30] Secunda S, Collin M L, Melloul A J. Groundwater vulnerability assessment using a composite model combining DRASTIC with extensive agricultural land use in Israel's Sharon region. Journal of Environmental Management, 1998, 54(1): 39-57
    [31]范琦,王贵玲,蔺文静,等.地下水脆弱性评价方法的探讨及实例.水利学报, 2007, 38(5): 601-605
    [32]雷静,张思聪.唐山市平原区地下水脆弱性评价研究.环境科学学报, 2003, 23(1): 94-99
    [33] Thirumalaivasan D, Karmegam M, Venugopal K. AHP-DRASTIC: software for specific aquifer vulnerability assessment using DRASTIC model and GIS. Environmental Modelling & Software, 2003, 18(7): 645-656
    [34] Babiker I S, Mohamed M A A, Hiyama T, et al. Groundwater vulnerability and risk mapping for the Basaltic aquifer of the Azraq basin of Jordan using GIS, Remote sensing and DRASTIC. Science of The Total Environment, 2005, 345(1-3): 127-140
    [35] Hamza M H, Added A, Rodríguez R, et al. A GIS-based DRASTIC vulnerability and net recharge reassessment in an aquifer of a semi-arid region (Metline-Ras Jebel-Raf Raf aquifer, Northern Tunisia). Journal of Environmental Management, 2007, 84(1): 12-19
    [36] Rahman A. GIS based DRASTIC model for assessing groundwater vulnerability in shallow aquifer in Aligarh, India. Applied Geography, 2008, 28(1): 32-53
    [37]杨庆,栾茂田,崇金著,等. DRASTIC指标体系法在大连市地下水易污性评价中的应用.大连理工大学学报, 1999, 39(5): 684-688
    [38]董亮,朱荫湄,胡勤海,等.应用DRASTIC模型评价西湖流域地下水污染风险.应用生态学报, 2002, 13(2): 217-220
    [39]孙丰英,徐卫东. DRASTIC指标体系法在滹滏平原地下水脆弱性评价中的应用.地下水, 2006, 28(3): 39-42
    [40]楚文海,刘奇,李江,等.基于GIS应用DRASTIC模型评价贵阳市地下水污染风险.地下水, 2007, 29(1): 88-90
    [41]王国利,周惠成,杨庆.基于DRASTIC的地下水易污染性多目标模糊模式识别模型.水科学进展, 2000, 11(2): 173-179
    [42]王国利,周惠成,张文国.含水层易污染性评价的模糊优选方法.水利学报, 2000, 31(12): 72-76
    [43]孟宪萌,束龙仓,卢耀如.基于熵权的改进DRASTIC模型在地下水脆弱性评价中的应用.水利学报, 2007, 38(1): 94-99
    [44] Eynard F, Mez K, Walther J L. Risk of cyanobacterial toxins in Riga waters (Latvia). Water Research, 2000, 34(11): 2979-2988
    [45] Rivett M O, Petts J, Butler B, et al. Arsenic poisoning in groundwater: Health risk and geochemical sources in Bangladesh. Environment International, 2002, 27(7): 597-604
    [46] Liu C W, Jang C S, Liao C M. Evaluation of arsenic contamination potential using indicator kriging in the Yun-Lin aquifer (Taiwan). Science of The Total Environment, 2004, 321(1-3): 173-188
    [47] Heyden der von C J, New M G. Groundwater pollution on the Zambian Copperbelt: deciphering the source and the risk. Science of The Total Environment, 2004, 327(1-3): 17-30
    [48] Rahman M M, Sengupta M K, Ahamed S, et al. The magnitude of arsenic contamination in groundwater and its health effects to the inhabitants of the Jalangi-one of the 85 arsenic affected blocks in West Bengal, India. Science of the Total Environment, 2005, 338(3): 189-200
    [49] Tetsuro A, Takashi K, Junko F. Contamination by arsenic and other trace elements in tube-well water and its risk assessment to humans in Hanoi, Vietnam. Environmental Pollution, 2006, 139(1): 95-106
    [50]陈守煜,伏广涛,周惠成,等.含水层脆弱性模糊分析评价模型与方法.水利学报, 2002, 33(7): 23- 30.
    [51]陈守煜,王国利.含水层脆弱性的模糊优选迭代评价模型及应用.大连理工大学学报, 1999, 39(6): 811-815
    [52]郭永海,沈照理,钟佐焱,等.河北平原地下水有机氯污染及其与防污性能的关系.水文地质工程地质, 1996, 23(1): 40-42
    [53]林学钰,陈梦熊,王兆馨,等.松嫩盆地地下水资源与可持续发展研究.北京:地震出版社, 2000, 91-94
    [54] Nobre R C M, Rotunno Filho O C, Mansur W J, et al. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. Journal of Contaminant Hydrology, 2007, 94(3-4): 277-292
    [55] USEPA (US Environmental Protection Agency). Risk Assessment Guidance for Superfund(RAGS), Volume I: Human Health Evaluation Manual (Part A). Washington, D.C.: US Environmental Protection Agency, Office of Emergency and Remedial Response, EPA 540/1-89/002, 1989,
    [56] USEPA (US Environmental Protection Agency). Guidelines for Exposure Assessment. USEPA 600Z-92/001, 29 May 1992, US Environmental Protection Agency, Risk Assessment Forum, Washington, DC.
    [57]宋雪英,孙丽娜,王鑫,等.细河河水及其沿岸地下水水质的有机污染特征.生态学杂志, 2007, 26(12): 2057-2061
    [58]黄磊,李鹏程,刘白薇.长江三角洲地区地下水污染健康风险评价.安全与环境工程, 2008, 15(2): 26-29
    [59]康天放,周忠亮,曹雯雯,等.某非规范垃圾填埋场地下水中污染物的健康风险评价.环境与健康杂志, 2008, 25(3): 209-211
    [60]王铁军,查学芳,熊威娜,等.贵州遵义高坪水源地岩溶地下水重金属污染健康风险初步评价.环境科学与研究, 2008, 21(1): 46-50
    [61] Hartley W R, Jr Englande A J, Harrington D J. Health risk assessment of groundwater contaminated with methyl tertiary butyl ether (MTBE). Water Science and Technology, 1999, 39(10-11): 305-310
    [62] Baytak D, Sofuoglu A, Inal F, et al. Seasonal variation in drinking water concentrations of disinfection by-products in IZMIR and associated human health risks. Science of The total Environment, 2008, 407(1): 286-296
    [63] Buschmann J, Berg M, Stengel C, et al. Contamination of drinking water resources in the Mekong delta floodplains: Arsenic and other trace metals pose serious health risks to population. Environment International, 2008, 34(6): 756-764
    [64] Mondal D, Polya D A. Rice is a major exposure route for arsenic in Chakdaha block, Nadia district, West Bengal, India: A probabilistic risk assessment. Applied Geochemistry, 2008, 23(11): 2987-2998
    [65] Lin M C, Liao C M. Assessing the risks on human health associated with inorganic arsenic intake from groundwater-cultured milkfish in southwestern Taiwan. Food and Chemical Toxicology, 2008, 46(2): 701-709
    [66] Fisher J W. Estimating the risks of liver and lung cancer in humans exposed to trichloroethylene using a physiological model. Toxicology Letters, 1993, 68(1-2): 127-129
    [67] Karim M. Arsenic in groundwater and health problems in Bangladesh. Water Research, 2000, 34(1): 304-310
    [68] Zakharova T, Tatano F, Menshikov V. Health Cancer Risk Assessment for Arsenic Exposure in Potentially Contaminated Areas by Fertilizer Plants: A Possible Regulatory Approach Applied to a Case Study in MoscowRegion–Russia. Regulatory Toxicology and Pharmacology, 2002, 36(1): 22-33
    [69]张应华,刘志全,李广贺,等.土壤苯污染引起的饮用地下水健康风险评价.土壤学报, 2008, 45(1): 82-90
    [70] Lee J J, Jang C S, Wang S W, et al. Evaluation of potential health risk of arsenic-affected groundwater using indicator kriging and dose response model. Science of The Total Environment, 2007, 384(1-3): 151-162
    [71] Lee J J, Jang C S, Liang C P, et al. Assessing carcinogenic risks associated with ingesting arsenic in farmed smeltfish (Ayu, Plecoglossus altirelis) in aseniasis-endemic area of Taiwan. Science of The Total Environment, 2008, 403(1-3): 68-79
    [72] Varnes D J. Commission on landslides and other mass-movements-IADE landslide hazard zonation: A Review of Principles and Practices. Paris: the UNESCO Press, 1984,
    [73] Uricchio V F, Giordano R, Lopez N. A fuzzy knowledge-based decision support system for groundwater pollution risk evaluation. Journal of Environmental Management, 2004, 73(3): 189-197
    [74]张彦.系统自组织概论.南京:南京大学出版社, 1990, 73-76
    [75] Masliev I. Probabilistic methods for uncertainty analysis and parameter estimation for dissolved oxygen models. Water Science and Technology, 1994, 30(2): 99-108
    [76]汪培庄.模糊集合论及应用.上海:上海科学技术出版社, 1983: 1-3
    [77] Chen S H, Yang X W. Interval finite element method for beam structures. Finite Elements in Analysis and Design, 2000, 34(1): 75-88
    [78] Alefeld C, Herzberger J. Introductions to interval computations. New York: Academic Press, 1983,
    [79]王光远.未确知信息及其数学处理.哈尔滨建筑工程学院学报, 1990, (4): 1-9
    [80] Thorteical E C. Possibilities and consequences of major accidents in large nuclear power plants, DOC. 740 ,U.S.A. E.C., Washington D.C., 1975.
    [81]刘开第,吴和琴.未确知数学.武汉:华中理工大学出版社, 1997, 27-35
    [82]李如忠,汪家权,钱家忠.地下水允许开采量的未确知风险分析.水利学报, 2004, 35(4): 54-60
    [83] Li H, Huang G H, Guang M Z, et al. An integrated simulation, inference, and optimization method for identifying groundwater remediation strategies at petroleum-contaminated aquifers in western Canada. Water Resaerch, 2008,42(10-11): 2629-2639
    [84] He L, Huang G H, Lu H W, et al. Optimization of Surfactant-Enhanced Aquifer Remediation for a Laboratory BTEX System under Parameter Uncertainty. Environmental Science and Technology, 2008, 42(6): 2009-2014
    [85] Qin X S, Huang G H, Zeng G M, et al. Simulation-basedoptimization of dual-phase vacuum extraction to remove nonaqueous phase liquids in subsurface. Water Resources Research, 2008, 44(4), 1-22
    [86] Chang C M, Kemblowski M W, Kaluarachchi J, et al. Stochastic analysis of multiphase flow in porous media: 1. spectral/perturbation approach. Hydrology and Hydraulics, 1995, 9(3): 239-267
    [87] Zhang D X. Conditional stochastic analysis for multiphase transport in randomly heterogeneousvariably saturated media. Transport in Porous Media, 1997, 27(3): 265-287
    [88] Robinson N I, Sharp J M. Contamiant transport in sets of parallel finite fractures with fracture skins. Journal of Contaminant Hydrology, 1998, 31(1-2): 83-109
    [89] Chang C M, Kemblowski M W, Urroz G E. Transient stochastic analysis of biodegradable contaminant transport: first-order decay. Transport in Porous Media, 1999, 35(1): 1-14
    [90] Kaluarachchi J J, Parker J C. Modeling multi-component organic chemical transport in three-fluid-phase porous media. Journal of Contaminant Hydrology, 1990, 5(4): 349-374
    [91] Miralles W F, Gelhar L W. Stochastic analysis of oxygen-limited biodegradation in heterogeneous aquifers with transient microbial dynamics. Journal of Contaminant Hydrology, 2000, 42(1-2): 69-97
    [92] Gelhar L W. Stochastic Subsurface Hydrology, Prentice Hall. New Jersey: Englewood Cliffs, 1993, 224
    [93] James A L, Oldenburg C M. Linear and Monte Carlo uncertainty analysis for subsurface contaminant transport simulation. Water Resources Research, 1997, 33(11): 2495-2508
    [94] Dou C W, Woldt I B, Dahab M. Steady state groundwater flow simulation with imprecise parameters. Water Resources Research, 1995, 31(11): 2709-2719
    [95] Schulz K B, Huwe P S. Parameter uncertainty in chemical equilibrium calculations using fuzzy set theory. Journal of Hydrology, 1999, 217(1): 119-134
    [96]李新峰,刘国东.模糊模式识别法在评价地下水水质中的应用.地下水, 2008, 30(4): 9-12
    [97]管延海,李强,柴成繁.模糊数学方法在天津市地下水水质评价中的应用.地下水, 2008, 30(2): 27-29
    [98]涂向阳,高学平.模糊数学在海水入侵地下水水质评价中的应用.水利学报, 2003, (8): 64-70
    [99] Li J B, Huang G H, Zeng G M, et al. An integrated fuzzy-stochastic modeling approach for risk assessment of groundwater contamination. Journal of Environmental Mangament, 2007, 82(2): 173-188
    [100]刘佩贵,束龙仓,尚熳廷,等.地下水可开采量可靠性分析的模糊-随机方法[J].水利学报, 2008, 39(9): 1411-1415
    [101]吕连宏,张征,迟志淼,等.地统计学在环境科学领域的应用进展.地球科学于环境学报, 2006, 8(1): 101-105
    [102]王家华,张团峰.油气储层随机建模.北京:石油工业出版社, 2001, 48-78
    [103] Buket N Y, Amro M M, Elfekl J C, et al. Reliability assessment of groundwater monitoring networks at landfill sites. Journal of Hydrology, 2005, 308(1-4): 1-17
    [104] Frank T C, Tsai N Z, William W Y. Geophysical parameterization and parameter structure identification using natural neighbors in groundwater inverse problems. Journal of Hydrology, 2005, 308(1-4): 1203-1257
    [105]吴胜和,金振奎,等.储层建模.北京:石油工业出版社, 1999.
    [106] Haldorsen H H, Damsleth E. Stochastic modeling. Journal of Petroleum Technology, 1990, 42(4): 404-417
    [107] Deutsch C, Journel A. GSLIB: geostatistical software library and users guide. New York: Oxford University Press, 1992,
    [108]刘振峰,郝天珧,杨长春.沉积模型和储层随机建模.地球物理学进展, 2003, 18(3): 519-523
    [109]雷启鸿,宋子齐,谭成仟.油藏描述中的随机模拟方法.西安石油学院学报(自然科学版), 2000, 15(1): 13-16
    [110]侯景儒,尹镇南等.实用地质统计学(空间信息统计学).北京:地质出版社, 1998, 31-45
    [111] Delhomme J P. Kriging in the hydrosciences. Advances in Water Resources, 1978, 1(5): 251-256
    [112] Indelman P, Lessoff S C, Dagan G. Analytical solution to transport in three-dimensional heterogeneous well capture zones. Journal of ContaminantHydrology, 2006, 87(1): 1-21
    [113] Severino G, Cvetkovic V, Coppola A. Spatial moments for colloid-enhanced radionuclide transport in heterogeneous aquifers. Advances in Water Resources, 2007, 30(1): 101-112
    [114] Kübert M, Finkel M. Contaminant mass discharge estimation in groundwater based on multi-level point measurements: A numerical evaluation of expected errors. Journal of Contaminant Hydrology, 2006, 84(1): 55-80
    [115] Feyen L, Jr Ribeiro P J, De Smedt F, et al. Stochastic delineation of capture zones: classical versus Bayesian approach. Journal of Hydrology, 2003, 281(4): 313-324
    [116]林琳,史良胜,杨金忠,等.土性高斯平稳场-马尔可夫场在渗流随机分析中的应用研究.岩土力学, 2006, 27(10): 1777-1781
    [117] Zhao Y C, Shi X Z, Yu D S, et al. Uncertainty assessment of spatial patterns of soil organic carbon density using sequential indicator simulation, a case study of Hebei province, China. Chemosphere, 2005, 59(11): 1527-1535
    [118] Jang C S, Liu C W, Lin K H, et al. Spatial analysis of potential carcinogenic risks associated with ingesting arsenic in aquacultural Tilapia (Oreochromis mossambicus) in Blackfoot disease hyperendemic areas. Environment Science and Technologgy, 2006, 40(5): 1707-1713
    [119] Jang C S. Probabilistic assessment of safe groundwater utilization in farmed fish ponds of blackfoot disease hyperendemic areas in terms of the regulation of arsenic concentrations. Science of The Total Environment , 2008, 392(1): 59-68
    [120] Juang K W, Chen Y S, Lee D Y. Using sequential indicator simulation to assess the uncertainty of delineating heavy-metal contaminated soils. Environmental Pollution, 2004, 127(2): 229-238
    [121] Gay J R, Korre A. A spatially-evaluated methodology for assessing risk to a population from contaminated land. Environmental Pollution, 2006, 142(2): 227-234
    [122]王建平,程声通,贾海峰.环境模型参数识别方法研究综述.水科学进展, 2006, 17(4): 574-580
    [123] Homberger G M, Spear P C. Eutrophication in Peel Inlet, I. The problem defining behaviour and mathematical model for the phosphorus scenario. Water Research, 1980, 14(1): 29-42
    [124] Spear R C, Homberger G M. Eutrophication in peel Inlet, II. Identification ofcritical uncertainties via generalized sensitivity analysis. Water Research, 1980, 14(1): 43-49
    [125] Beven K, Binley A. The future of distributed models: model calibration and uncertainty prediction. Hydrological Processes, 1992, 6(3): 279-298
    [126] Jorgensen S E. An improved parameter estimation procedure in lake modeling. Lake and Reservoirs: Research and management, 1998, 3(2): 139-142
    [127] Smith A F M, Robert G O. Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. Journal of Statistical Society Series B, 1993, 55(1): 3-23
    [128] Tierney L. Markov-chains for exploring posterior distributions. Annals of Statistics, 1994, 22(4): 701-1762
    [129]马跃渊,徐勇勇. Gibbs抽样算法及软件设计的初步研究.计算机应用及软件, 2005, 22(2): 124-126
    [130]王建平,程声通,贾海峰.基于MCMC法的水质模型参数不确定性研究.环境科学, 2006, 27(1): 24-30
    [131] Vrugt J A, Gupta H V, Bouten W, et al. A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic parameter estimation. Water Resources Research, 2003, 39(8): 1201-1216
    [132] Gerke H H, Molson J W, Frind E O. Modelling the effect of chemical heterogeneity on acidification and solute leaching in overburden mine spoils. Journal of Hydrology, 1998, 209(1): 166-185
    [133] Mishra A K, Gutjahr A, Rajaram H. Transport with spatially variable kinetic sorption: recursion formulation. Advances in water resources, 1999, 22(5): 549-555
    [134] Simmons C T, Fenstemaker T R, Jr Sharp J M. Variable-density groundwater flow and solute transport in heterogeneous porous media: approached, resolutions and future challenges. Journal of Contaminant Hydrology, 2001, 52(3): 245-275
    [135] Yuan Z H. Evaluation of wide-width tensile properties of geosynthetic reinforcement: A state-of-the practice. In: Proceedings of the 5th Conference On geosynthetis of China. Yichang: Model knowledge Publiching Campang, 2000, 2-11
    [136] Freeze R A. A stochastic-conceptual analysis of one-dimensional groundwater flow in nonuniform homogeneous media. Water Resources Research, 1975,11(5): 725-741
    [137] Sudicky E A. A natural gradient experiment on solute transport in a sand aquifer: spatial variability of hydraulic conductivity and its role in the dispersion process. Water Resources Research, 1986, 22(13): 2069-2082
    [138]朱登峰,高大钊.土性平稳随机场的空间统计特性分析.岩土力学, 2003, 24(3): 455-458
    [139]印兴耀,刘永社.储层建模中地质统计学整合地震数据的方法及研究进展.石油地球物理勘探, 2002, 37(4A): 420-430
    [140]茆诗松.贝叶斯统计.北京:中国统计出版社, 1999, 6-8
    [141]朱慧明,韩玉启.贝叶斯多元统计推断理论.北京:科学出版社, 2006, 5
    [142] Samuel K,吴喜之.现代贝叶斯统计学.北京:中国统计出版社, 2000, 20
    [143]邓远北,周润兰.应用概率统计(第二版).北京:科学出版社, 2001, 127-128
    [144] Box G E P, Tiao G C. Bayesian inference in statistical analysis (Wiley Classics Library). New York: John Wiley and Son, 1992,
    [145]马跃渊,徐勇勇. Gibbs抽样算法及软件设计的初步研究.计算机应用与软件, 2005, 22(2): 124-126
    [146]李向阳,程春田,林剑艺.基于BP神经网络的贝叶斯概率水文预报模型.水利学报, 2006, 37(3): 353-358
    [147] Haario H, Saksman E, Tamminem J. An adaptive Metropolis algorithm. Bernoulli, 2001, 7 (2): 223-242
    [148] Gelman A, Rubin D B. Inference from iterative simulation using multiple sequences. Statistics Science , 1992, 7(4): 457-511
    [149] Feyen L, Caers J. Quantifying geological uncertainty for flow and transport modeling in multi-modal heterogeneous formations. Advances in Water Resources, 2006, 29(6): 912-929
    [150] Wilson J L, Miller P J. Two-dimensional plume in uniform ground water flow. Journal of the Hydraulics Division, 1978, 104(4): 503-514
    [151] Harbaugh A W, Banta E R, Hill M C, et al. MODFLOW-2000, US Geological Survey modular groundwater-model-user guide to modularization concepts and the groundwater flow process. US Geological Survey Open-File Report 00-92, 2000
    [152] Tait N G, Davison R M, Leharne S A, et al. Borehole optimisation system (BOS)-a case study assessing options for abstraction of urban groundwater in Nottingham, UK. Enviromental Modelling and Software, 2008, 23(5): 611-621
    [153] Rubin Y. The spatial and temporal moments of tracer concentration indisordered porous media. Water Resources Research, 1991, 27(11): 2845-2854
    [154] Franssen H H, Hernández J G, Sahuquillo A. Coupled inverse modeling of groundwater flow and mass transport and the worth of concentration data. Journal of Hydrology, 2003, 281(4): 281-295
    [155] Gómez-Hernánez J J, Sahuquillo A, Capilla J E. Stochastic simulation of transmissivity fields conditional to both transmissivity and piezometric data– I. Theory. Journal of Hydrology, 1997, 203(1-4): 162-174
    [156] Feyen L, Jr Ribeiro P J, Gómez-Hernánez J J, et al. Bayesian methodology for stochastic capture zone delineation incorporating transmissivity measurements and hydraulic head observations. Journal of Hydrology, 2003, 271(1): 156-170
    [157] Franssen H H, Stauffer F, Kinzelbach W. Joint estimation of transmissivities and recharges-application: stochastic characterization of well capture zones. Journal of Hydrology, 2004, 294(1-3): 87-102
    [158]熊立华,郭生练.分布式流域水文模型.北京:中国水利水电出版社, 2004, 21-22
    [159] Aly A H, Peralta R C. Comparison of a genetic algorithm and mathematical programming to design of groundwater cleanup system. Water Resource Research, 1999, 35(8): 2415-2425
    [160]苑希民,李鸿雁,刘树坤,等.神经网络和遗传算法在水科学领域的应用.北京:中国水利水电出版社, 2002, 29-74
    [161]徐敏,曾光明,谢更新,等.基于实码遗传算法的河流水质模型的参数估计.湖南大学学报(自然科学版), 2004, 31(5): 41-45
    [162]费春国,韩正之.一种新的混沌优化方法及在神经网络中的应用.系统仿真学报, 2005, 17(4): 812-814
    [163]王薇,曾光明,秦肖生.遗传模拟退火算法在水质模型参数估值中的应用研究.环境工程, 2003, 21(4): 60-62
    [164] Beranger S C, Sleep B E, Lollar B S. Transport, biodegradation and isotopic fractionation of chlorinated ethenes: modeling and parameter estimation methods. Advances in Water Resources, 2005, 28(1): 87-98
    [165] Li B, Jiang W S. Optimizing Complex Functions by Chaos Search. Cybernetics and Systems, 1998, 29(4): 409-419
    [166] Wang Y, Sun H W, Sun Y K. A hybrid genetic algorithm based on mutative scale chaos optimization strategy. Jouranl of University of Science and Technology Beijing, 2002, 9 (6): 470-473
    [167]王焱,孙一康.变尺度混沌遗传算法及其在冷轧参数优化中的应用.化工自动化及仪表, 2002, 29(2): 24-27
    [168] Lu Q Z, Shen G L, Yu R Q. A chaotic approach to maintain the population diversity of genetic algorithm in network training. Computational Biology and Chemistry, 2003, 27(3): 363-371
    [169]史忠植.知识发现.北京:清华大学出版社, 2002, 267-268
    [170]吕金虎,陆君安,陈士华.混沌时间序列分析及其应用.武汉:武汉大学出版社, 2002, 11-14
    [171]邹恩,李祥飞,陈建国.混沌控制及其优化应用.长沙:国防科技大学出版社, 2002, 7-10
    [172]尤勇,孙军平,盛万兴,等.变尺度混沌优化神经网络的研究.计算机工程与应用, 2001, 21: 21-23
    [173] Wesels L F, Barnared E. Accelerating the convergence of the back-propagation method. Biological Cybernetics, 1998, 59(3): 257-263
    [174]飞思科技产品研发中心. Matlab6.5辅助优化计算与设计.北京:电子工业出版社, 2003, 158-166
    [175]钱家忠,李如忠,汪家权,等.城市供水水源地水质健康风险评价.水利学报, 2004, 35(8): 90-93
    [176] John F E C. Approach to environmental risk assessment of new substances. Science of The Total Environment, 1995, 171(1-4): 275-279
    [177] Steinemann A. Rethinking human health impact assessment. Environmental Impact Assessment Review, 2000, 20(6): 627-645
    [178] Howdhury S, Husain T, Bose N. Fuzzy rule-based modeling for human health risk from naturally occurring radioactive materials in produced water. Journal of Environmental Radioactivity, 2006, 89(1): 1-17
    [179]何星海,马世豪,李安定,等.再生水利用健康风险暴露评价.环境科学, 2006, 27(9): 1912-1915
    [180] Dante D C, Paulina P, Nestor M, et al. Exposure to inorganic arsenic in drinking water and total arsenic concentration in a Chilean population. Environmental Research, 2005, 98(2): 151-159
    [181] Bradley W S, Eileen P H, Janice M F, et al. Human pharmaceuticals in US surface waters: a human health risk assessment. Regulatory Toxicology and Pharmacology, 2005, 42(3): 296-312
    [182] Kentel E, Aral M M. 2D Monte Carlo versus 2D Fuzzy Monte Carlo health risk assessment. Stochastic Environmental Research and Risk Assessment, 2005, 19(1): 86-96
    [183]陈鸿汉,谌宏伟,何江涛,等.污染场地健康风险评价的理论和方法.地学前缘, 2006, 13(1): 216-223
    [184]李如忠.基于不确定信息的城市水源水环境健康风险评价.水利学报, 2007, 38(8): 895-900
    [185] Muddassir N, Faisal I K. Human health risk modeling for various exposure routes of trihalomethanes (THMs) in potable water supply. Environmental Modeling & Software, 2006, 21(10): 1416-1429
    [186]张应华,刘志全,李广贺,等.基于不确定分析的健康环境风险评价.环境科学, 2007, 28(7): 1409-1415
    [187] Lee L J H, Chan C C, Chung C W, et al. Health risk assessment on residents exposed to chlorinated hydrocarbons contaminated in groundwater of a hazardous waste site. Journal of Toxicology and Environmental Health-Part A, 2002, 65(3-4): 19-235
    [188] Goodrich M T, McCord J T. Quantification of uncertainty in exposure assessments at hazardous waste sites. Ground Water, 1995, 33(5): 727-732
    [189] Bennett D H, James A L, McKone T E, et al. On uncertainty in remediation analysis: variance propagation from subsurface transport to exposure modeling. Reliability Engineering and System Safety, 1998, 62(1): 117-129
    [190] Lee Y W, Dahab M F, Borgardi I. Fuzzy decision making in groundwater nitrate risk management. Water Resources Research, 1994, 30(1): 135-148
    [191] Batchelor B, Valde′S J, Araganth V. Stochastic risk assessment of sites contaminated by hazardous wastes. Journal of environmental Engineering, 1998, 124(4): 380-388
    [192]何理,曾光明.水环境中的灰色水质风险研究.重庆环境科学, 2002, 21(1): 55-57
    [193] Guyonnet D, Bourgine B, Dubois D, et al. Hybrid approach for addressing uncertainty in risk assessments. Journal of Environmental Engineering, 2003, 129: 68-78
    [194]徐敏,曾光明,黄国和,等.非线性随机水环境风险模型.水利学报, 2005, 36(1): 56-61
    [195]曾光明,卓利,钟政林,等.水环境健康风险评价模式.水科学进展, 1998, 9(3): 212-217
    [196]扬纶标,高英仪.模糊数学原理及应用.广州:华南理工大学出版社, 2001, 183-186
    [197] Lee J J, Liu C W, Jang C S, et al. Zonal management of multi-purpose use ofwater from arsenic-affected aquifers by using a multi-variable indicator kriging approach. Journal of Hydrology, 2008, 359(3-4), 260-273
    [198] Hu K L, Huang Y F, Li H, et al. Spatial variability of shallow groundwater level, electrical conductivity and nitrate concentration, and risk assessment of nitrate contamination in North China Plain. Environment International, 2005, 31(6): 896-903
    [199] Tavares M T, Sousa A J, Abreu M M. Ordinary kriging and indicator kriging in the cartography of trace elements contamination in S?o Domingos mining site (Alentejo, Portugal). Journal of Geochemical Exploration, 2008, 98(1-2): 43-56
    [200] Ungaro F, Ragazzi F, Cappellin R, et al. Arsenic concentration in the soils of the Brenta Plain (Northern Italy): Mapping the probability of exceeding contamination thresholds. Journal of Geochemical Exploration, 2008, 96(2-3): 117-131
    [201] Amini M, Afyuni M, Khademi H, et al. Mapping risk of cadmium and lead contamination to human health in soils of Central Iran. Science of The Total Environment, 2005, 347(1-3): 64-77
    [202] Franssen H H J W M, Van Eijnsbergen A C, Stein. Use of spatial prediction techniques and fuzzy classification for mapping soil pollutants. Geoderma, 1997, 77(2-4): 243-262
    [203] Asante K A, Agusa T, Subramanian A, et al. Contamination status of arsenic and other trace elements in drinking water and residents from Tarkwa, a historic mining township in Ghana. Chemosphere, 2007, 66(8): 1513-1522
    [204] Arora M, Kiran B, Rani S, et al. Heavy metal accumulation in vegetables irrigated with water from different sources. Food Chemistry, 2008, 111(4): 811-815
    [205] Alam M G, Snow E T, Tanaka A. Arsenic and heavy metal contamination of vegetables grown in Santa villages, Bangladesh. Science of The Total Environment, 2003, 308(1-3): 83-96
    [206] Khan S, Cao Q, Zheng Y M, et al. Health risks of heavy metals in contaminated soils and food crops irrigated with wastewater in Beijing, China. Environmental Pollution, 2008, 152(3): 686-692
    [207] Muchuweti M, Birkett J W, Chinyanga E, et al. Heavy metal content of vegetables irrigated with mixtures of wastewater and sewage sludge in Zinbabwe: Implications for human health. Agriculture, Ecosystems and Environment, 2006, 112(1): 41-48
    [208] Rattan R K, Datta S P, Chhonkar P K, et al. Longterm impact of irrigation with sewage effluents on heavy metal contents in soils, crops and ground water-a case study. Agriculture, Ecosystems and Environment, 2005, 109(3-4): 310-322
    [209]葛晓霞.黄兴镇硫酸锰行业地下水污染及其治理研究: [湖南大学硕士学位论文].长沙:湖南大学, 2004, 19-21
    [210] USEPA (US Environmental Protection Agency). Integrated Risk Information System: Manganese (CASRN 7439-96-5). http: // www.epa.gov/ncea/iris/subst/0373.htm, accessed on July 8, 2008.
    [211] Wang X, Sato T, Xing B, et al. Health risks of heavy metals to the general public in Tianjin, China via consumption of vegetables and fish. Science of The Total Environment, 2005, 350(1-3): 28-37
    [212]陈炼钢,陈敏建,丰华丽.基于健康风险的水源地水质安全评价.水利学报, 2008, 39(2): 235-240
    [213]陈天金.铅高暴露地区人群膳食安全暴露评估: [西北农林科技大学硕士学位论文].陕西杨凌:西北农林科技大学, 2006, 24-31
    [214]吴义锋,薛联青,吕锡武.基于未确知数学理论的水质风险评价模式.环境科学学报, 2006, 26(6): 1047-1052
    [215]陈小红,涂新军.一个水质风险率计算的随机模型.环境科学学报, 2000, 20(3): 290-293
    [216]高继军,张力平,黄圣彪,等.北京市饮用水源重金属污染物健康风险的初步评价.环境科学, 2004, 25(2): 47-50
    [217] Rosén L, Wladis D, Ramaekers D. Risk and decision analysis of groundwater protection alternatives on the European scale with emphasis on nitrate and aluminium contamination from diffuse sources. Journal of Hazardous Materials, 1998, 61(1-3): 329-336
    [218] Lo I M C, Law W K W, Shen H M. Risk assessment using stochastic modeling of pollutant transport in landfill clay liners. Water Science and Technology, 1999, 39(10-11): 337-341
    [219] Chen Z, Huang G H, Chakma A. Integrated environmental risk assessment for petroleum-contaminated sites-A North American case study. Water Science and Technology, 1998, 38(4-5): 131-138
    [220] Hamed M M, Bedient P B, Conte J P. Numerical stochastic analysis of groundwater contaminant transport and plume containment. Journal of Contaminant Hydrology, 1996, 24(1): 1-24
    [221]李绍飞,冯平,林超.地下水环境风险评价指标体系的探讨与应用.干旱区资源与环境, 2007, 21(1): 38-43
    [222] Lee H M. Applying fuzzy set theory to evaluate the rate of aggregative risk in software development. Fuzzy Sets and Systems, 1996, 79(3): 323-336
    [223] Sadiq R, Husain T. A fuzzy-based methodology for an aggregative environmental risk assessment: a case study of drilling waste. Environmental Modelling and Software, 2005, 20(1): 33-46
    [224] Mohamed A M O, C?téK. Decision analysis of polluted sites-a fuzzy set approach. Waste Management, 1999, 19(7-8): 519-533
    [225]刘宝碇,赵瑞清,王纲.不确定规划及应用.北京:清华大学出版社, 2003, 57-60
    [226]蔡固平,葛晓霞,曾光明.黄兴镇硫酸锰企业污染调查与评价.中国环境监测, 2003, 19(4): 56-59
    [227]毛昶熙.渗流计算分析与控制.北京:中国水利水电出版社, 2003, 343-354
    [228]连会清,武强,李铎.微量元素锰在天津浅层孔隙含水层介质中的吸附模式与迁移性能.工程勘察, 2005, 5: 18-21

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700