用户名: 密码: 验证码:
两种生物可降解复合材料的制备及其结构性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生物可降解材料具有优良的生物相容性与理化性能,在生物医学领域得到了广泛应用。本文以组织工程支架应用为目的,分别制备了丝素-纳米四氧化三铁复合水凝胶和PLLA/PBS超细纤维膜两种生物可降解复合材料,并通过扫描电镜、热重分析、机械拉伸等分析测试手段对复合材料进行了结构表征和性能测试。具体研究结果如下:
     1 .建立了一套实验室制备丝素蛋白水凝胶的工艺流程,并制得了形貌较为规整的圆柱状丝素-纳米Fe3O4复合水凝胶。该凝胶具有疏松多孔结构,且孔隙较为规整一致。结构分析表明,各种类型丝素/纳米Fe3O4复合水凝胶中丝素蛋白分子的构象皆以β-折叠为主,晶型以SilkⅡ型为主。力学性能测试表明,增大复合凝胶中丝素含量或纳米Fe3O4含量都可明显提高凝胶的力学强度,而冷冻干燥处理则有助于在保持凝胶微观结构不变的情况下增大凝胶的强度。
     2. PLLA与PBS溶液共混后相容性良好。共混液的粘度随PLLA含量的增加而增大。共混液经电纺后,得到平均厚度为166μm、直径范围为4-6cm的圆片状复合超细纤维膜。
     3.研究了电纺工艺参数对PLLA/PBS超细纤维形成,形貌及直径的影响。结果表明,随复合膜中PLLA含量的增加,纤维的平均直径从0.41μm增加到2.16μm,纤维直径的标准差变大,纤维的形貌从珠串状纤维变为平滑纤维,继而又变为含绪丝的粗纤维。随电压的增大,纤维的平均直径先增大后减小,总变化趋势是从0.97μm增大到1.72μm,直径的标准差则先减小后增大。本试验所得复合超细纤维直径的最小值为0.213μm,最大值为7.784μm。
     4.喷射孔内径为1.2mm时所得纤维表面平滑,形貌较好。接收距离减小,会导致纤维粘连,甚至重新溶解形成薄膜。纺丝液流量加大,致使纯PBS溶液电纺产物变为致密的薄膜结构。可纺出表面平滑,形貌较好,且直径分布相对较窄的PLLA/PBS复合超细纤维的电纺工艺条件为:配比为6;4,电压30kV,喷射孔内径1.2mm,纺丝液流量2.89 mL/h,接收距离17cm,室温室湿。
     5.不同配比的PLLA/PBS超细纤维膜的红外光谱比较分析及热失重分析表明,复合膜中PLLA与PBS两组分主要以物理共混的状态存在于膜中,膜的热稳定性随材料中PBS含量的增加而明显提高。
     6.力学性能测试显示,随着复合膜中PLLA含量的增加,薄膜的弹性模量与抗拉强度逐渐增大,延伸率和断裂韧性亦增大。共混比为6:4,电压为25KV时所得复合膜的延伸率最大,电压为30KV时,所得复合膜的断裂韧性最大。PLLA与PBS共混比为8:2时所得电纺膜,具备较高的弹性模量和抗拉强度,同时拥有最高的延伸率和断裂韧性值,为具有最佳强韧性组合的超细复合纤维膜。
Biodegradable materials have excellent biocompatibility and physical-chemical properties. It has been extensively applied in the biomedical fields. In this thesis, we fabricated two types of biodegradable materials with natural biodegradable material (silk fibroin) and synthetic biodegradable aliphatic polyester-based materials (Poly(butylene succinate) and Poly(L-lactic acid).
     Silk fibroin hydrogel is a kind of medical materials with good biodegradability and biocompatibility. It has been widely used as a biomedical material in recent years. Its poor mechanical properties and thermal stability restrict its application in medical field. Therefore, we first fabricated silk fibroin hydrogel reinforced by nano-Fe3O4 particles. By blending nano-Fe3O4 particles with silk fibroin solution, the SF/nano-Fe3O4 composite hydrogel was prepared, and its properties and structures were characterized. A cylindrical SF/nano-Fe3O4 composite hydrogel was obtained. The composite were characterized by high porosity, which were favorable parameters for cell growth and proliferation. Microstructural analysis indicated that fibroin mainly has silk II structure in all types of silk fibroin hydrogel. The mechanical properties of SF/nano-Fe3O4 composite hydrogel were markedly improved with increasing the silk fibroin or nano-Fe3O4 content in the composites.
     PBS and PLLA are two kinds of synthetic biodegradable materials with good biodegradability and biocompatibility. It has been extensively applied in biomaterial fields. But pure PBS film is frangible and has low biodegradation rate. Meanwhile, PLLA has poor mechanical properties and thermal stability. In order to improve the properties of both PLLA and PBS, we fabricated ultrafine PLLA/PBS fiber non-woven by electrospinning, and studied its properties and structures. Furthermore, the influence of blend ratio, electrostatic voltage, collection distance, aperture of injector nozzle and flow rate on the spinnability of PLLA/PBS solutions and morphology of electrospun PLLA/PBS ultrafine fibers were investigated. An optimal electrospinning condition was obtained in producing uniform cylindrical fibers. The experimental results first showed that the mixture solution of PBS/PLLA has good miscibility, and the viscosity, compatibility and spinnability of the mixture solution increased with increasing the PLLA content. Second, the diameter of PLLA/PBS composite fibers was about 0.213-7.784μm. Along with the viscosity of spinning solution increasing, the composite fibers' average diameter increased from 0.41μm to 2.16μm, and the standard deviation of average diameter was also increased.Along with the increasing voltage, the composite fibers' average diameter was first increased and then decreased, but its standard deviation was first decreased and then increased. When the content of PLLA increased, the shape of fiber changed from beaded fibers to smooth fibers, but then high PLLA content made the morphology of the fibers worse. Under the technical parameters of blend ratio of 6:4, voltage of 30kv, needle-orifice of 1.2mm diameter, flow rate of 2.89 mL/h, electrode distance of 17cm, the electrospun ultrafine fibers had narrower diameter distributions and best morphology. FT-IR and TGA analysis indicated that there was no new chemical bond formed between the molecules of PLLA and PBS. The thermal stability of electrospun PLLA/PBS ultrafine fibers was markedly improved with increasing the PBS content in the composites. Mechanical test showed that along with the PLLA content increasing, the elastic modulus and tensile strength of composite film was increased, and the elongation and fracture toughness of film was also increased. When the blend ratio was 8:2, the composite film has the best mechanical properties.
引文
[1]曹燕琳,尹静波,颜世峰.生物可降解聚乳酸的改性及其应用研究进展[J].高分子通报,2006, (10): 90-97
    [2]陈冲.纳米材料及其应用领域[J].中国科技信息,2008(10): 33-34
    [3]陈莉.智能高分子材料[M] .北京:化学工业出版社,2004 :43-76
    [4]陈雪梅,杨宇民,王鸿逵,等.丝素纤维与背根神经节体外生物相容性初步研究[J].交通医学,2006, 20(5):489-490
    [5]戴永援,陈宝安,王雪梅,等.磁性纳米四氧化三铁及纳米金协同柔红霉素作用于K562/A02细胞的初步研究[J].东南大学学报(医学版),2007, 26(3): 157-160
    [6]段巧艳,段祥,张焕相.丝素蛋白在组织工程中的应用[J].中国组织工程研究与临床康复,2007, 11(26): 5199-5203
    [7]戈进杰.生物降解高分子材料及其应用[M].北京:化学工业出版社,2002: 267
    [8]黄国瑞.茧丝学[M].北京:农业出版社,1994: 33
    [9]黄君霆.蚕丝纤维组成的研究[J].蚕桑通报, 2001, 32(4): 1-5
    [10]黄泉,杨吉成,缪竞诚,等.再生丝素膜生物相容性的实验研究[J].苏州大学学报(工科版),2007, 27(2): 1-4
    [11]黄永杰.磁性材料[M].电子工业出版社,1994
    [12]江莹,陈槐卿,周闻达,等.蚕丝丝素纤维的制备及其与骨髓间充质干细胞相容性的研究[J].生物医学工程学杂志,2006, 23(3): 560-564
    [13]居静霞,张幼珠,尹桂波.再生丝素纳米纤维的制备及其应用[J].丝绸,2004, (7): 41-43
    [14]李岩,黄争鸣.聚合物的静电纺丝[J].高分子报,2006, (5): 12-19
    [15]连小洁,王松,朱鹤孙.川芎嗪衍生物改性丝素材料体外抗凝血性研究[J].郑州大学学报(工学版),2009, 30(1): 134-138
    [16]梁列峰,崔彪,汪涛.蚕丝纤维的生物相容性分析[J].四川丝绸, 2006,(1): 19-21
    [17]刘锋,卓仁禧.水凝胶的制备及应用[J ].高分子通报,1995, (4): 205-216
    [18]刘辅庭译,山田校.静电纺丝制造纳米纤维的方法[J].合成纤维SFC,2008,(2): 50-52
    [19]吕怀兴,杨彪,许国志,等.聚丁二酸丁二醇酯与聚乳酸共混型全生物降解材料的结构和性能研究[J].塑料制造, 2008, (12): 72-75
    [20]栾希英,张学光.丝素蛋白的免疫学特性及细胞相容性研究进展[J].国际生物医学工程杂志,2006, 29(5): 296-299
    [21]孟龙,魏彩虹,张力,等.聚乳酸纤维的研究进展[J].化工新型材料, 2008, 36(4): 10-11
    [22]闵思佳,吕顺霖,胡智文.多孔丝素凝胶的理化性状和生物相容性[J].蚕业科学, 2001, 27(1): 43-48
    [23]闵思佳,朱良均,姚菊明,等.酰胺化修饰对丝素材料吸附释放性能的影响[J].蚕业科学, 2000, 26(3): 159-164
    [24]朴东旭, Ikada Y.复合型水凝胶材料[M].北京:化学工业出版社, 2003: 73-75
    [25]马光辉,苏志国.新型高分子材料.北京::化学工业出版社,2003: 73-75
    [26]生物降解塑料—聚丁二酸丁二醇酯[J].中国包装工业, 2002, (95): 19
    [27]宋庆峰.纳米四氧化三铁的制备、修饰及磁场的影响:[硕士学位论文].河北师范大学,2008
    [28]孙言蓓.新型海藻酸盐-明胶水凝胶的研究:[硕士学位论文].天津大学,2007
    [29]王洪,邵惠丽,胡学超.再生丝素蛋白水溶液静电纺丝性能的研究[J].功能材料, 2005, 36(10): 1584-1586
    [30]王军,刘素侠,姜岷,等. PBS和PBST的合成与表征[J].塑料, 2008, 37(3): 58-60
    [31]王正熙.聚合物红外光谱分析和鉴定.四川:四川大学出版社[C]. 1998,第一版: 35-36
    [32]吴海涛,钟翠平,顾云娣.蚕丝在软骨细胞立体培养中的应用[J].中国修复重建志,2000,14(5): 301-304
    [33]吴丽亚,李新贵,邵惠丽,等.再生丝素蛋白结晶及生物应用[J].丝绸,2005, (4): 50-54
    [34]徐晓宙.生物材料学[M].北京:科学出版社, 2006: 7
    [35]杨连利,梁国正..水凝胶在医学领域的热点研究及应用[J].材料导报, 2007,21(2): 112-115
    [36]姚敏,贾生贤,金曙雯,等.丝素蛋白对表皮细胞生长的影响[J].西北国防医学杂志,1999, 20(4): 252-253
    [37]于镜华,季君晖,周玉杨.受控堆肥生物降解法测定全生物降解塑料(PBS)性能[J].化工新型材料,2007,35(2):76-77
    [38]于同隐,蔡再生,李宏杰,等.丝素蛋白亚基研究[J].高分子学报,1997,(5): 629-632
    [39]于文广,张同来,张建国,等.纳米四氧化三铁(Fe3O4)的制备和形貌[J].化学进展,2007, 19(6): 884-891
    [40]张昌辉,赵霞,黄继涛.PBS基聚酯合成工艺的研究进展[J].塑料,2008,37(3): 8-10
    [41]张春雪,袁晓燕,盛京.天然高分子的静电纺丝[J].纺织导报,2006,(7): 40-42
    [42]张剑荣,戚苓,方惠群,仪器分析实验.北京:科学出版社[C].1999,第一版: 120
    [43]张敏,来水利,宋洁,邱建辉. 1,4-环己烷二甲醇对可生物降解聚酯PBS的共聚改性[J].高等学校化学学报, 2008, 29(6): 1243-1246
    [44]张敏,王和平,邱建辉. PBS共聚、共混物的降解性能与环境评价研究,2007年全国高分子学术论文报告会,2007,10,成都, F-P-069
    [45]张锡玮,夏禾,徐纪纲.静电纺丝法纺制纳米级聚丙烯腈纤维毡[J].塑料,2000, 2(29): 16-19
    [46]张幼珠,鲍韦华,常丽娜,沈长春,添加剂对静电纺丝素纤维形貌与结构的影响[J].丝绸,2006(1):20-23
    [47]张幼珠,王朝霞,丁悦,等.丝素蛋白作为药物控制释放材料的研究[J].蚕业科学,1999, 25(3)181-185
    [48]张园园.静电纺丝制备壳聚糖/聚乙烯醇超细纤维及性能研究:[硕士学位论文].天津大学,2005.
    [49]赵丹,冯辉霞,陈娜丽,等..聚乳酸的合成工艺及应用研究进展[J]..应用化工,2009,38(1): 128-130
    [50]赵一阳,高压静电纺丝技术构筑一维微纳米结构材料,吉林大学博士学位论文,2007年6月
    [51]周永志,张世明,李明忠,等.骨髓间质细胞在丝素膜上生物相容性研究[J].中华神经外科杂志,2006, 22(10):633-635
    [52]朱良均,胡国梁,姚菊明,陈国定,李幼禄.丝素蛋白在胶凝时的分子结构、结晶性的探讨[J].蚕业科学,1998, 24(4):227-230
    [53]邹君,凌秀琴.可生物降解性高分子材料-聚乳酸[J].广西化纤通讯,2000, 28(2): 35-37.
    [54]左秀霞,王晓青,石峰晖,酒永斌,罗运军.聚丁二酸丁二醇酯在生物材料领域的研究进展[J].中国塑料,2007,21(7):6-9
    [55] Chen A Z, KangY Q, Pu X M, et al. Development of Fe3O4-poly(l-lactide) magnetic microparticles in supercritical CO2[J]. Journal of Colloid and Interface Science, 2009, 330: 317-322
    [56] Antonella M, and Claudio M. Serμm Protein Absorption on Silk Fibroin Fibers and Films:Surface Opsonization and Binding Strength[J].Journal of Bioactive and Compatible Polymers,2002 , 17:23-34
    [57] Arvind M, Shailender K, Moorjani, et al.Methods for Synthesis of Hydrogel Networks:A ReviewJ. M. S. Rev. Macrokol. Chem[J].Phys.1996, C36(2): 405-430
    [58] Baumgarten P. Electrostatic spinning of acrylic microfibers[J]. J Colloid Interface Sci 1971;36(1):71-79
    [59] Biman B, Mandal, Subhas C, et al. Biospinning by silkworms: Silk fiber matrices for tissue engineering applications[J].Acta Biomaterialia ,2009
    [60] Biman B, Mandal, Sonia K, et al. Silk fibroin/polyacrylamide semi-interpenetrating network hydrogels for controlled drug release[J]. Biomaterials, 2009: 1-11
    [61] Byung-Moo M, Gene L, Hyun K S, et al. Electrospinning of silk fibroin nanofibers and its effect on the adhesion and spreading of normal human keratinocytes and fibroblasts in vitro[J]. Biomaterials , 2004, 25: 1289-1297
    [62] Charu V, Kaplan D L. Silk as a biomaterial[J]. Prog. Polym. Sci, 2007, 32:991-1007
    [63] Chen C, Cao C B, Ma X L, et al. Preparation of non-woven mats from all-aqueous silk fibroin solution with electrospinning method[J]. Polymer ,2006,47: 6322-6327
    [64] Entov VM, Shmaryan I, Numerical E. Modeling of the Capillary Breakup of Jets of Polymeric Liquids Fluid [J]. Dynam,1997, 32(5): 696-703
    [65] Eun H J, Seung S I, Ji H Y. Electrospinning and structural characterization of ultrafine poly(butylene succinate) fibers[J]. Polymer,2005,46: 9538-9543
    [66] Fong H, Chun I, Reneker D H.Beaded nanofibers formed during electrospiiming[J].Polymer, 1999, 40: 4585-92.
    [67] Formhals A. US patent 1,975,504, 1934 et al.
    [68] Gregory C, Rutledge S, Fridrikh V. Formation of fibers by electrospinning[J]. Advanced Drug Delivery Reviews ,2007,59:1384-1391
    [69] Zhu H L, Shen J Y, Feng X X, et al. Fabrication and characterization of bioactive silk fibroin/wollastonite composite scaffolds[J]. Materials Science and Engineering C ,2010,30:132-140
    [70] Wang H, Ma L, Yang S H, et al.Effect of RGD-modified Silk Material on the Adhesion and Proliferation of Bone Marrow-derived Mesenchymal Stem Cells[J]. J Huazhong Univ Sci Technol[Med Sci 2009,29 (1):80-83
    [71] Wang H Y, Ji J H, Zhang W,et al.Biocompatibility and bioactivity of plasma-treated biodegradable poly(butylene succinate)[J]. Acta Biomaterialia , 2009,5: 279-287
    [72] Hyoung-Joon J, Chen J S, Vassilis K, et al. Human bone marrow stromal cell responses on electrospun silk fibroin mats[J]. Biomaterials, 2004, 25: 1039-1047
    [73] Zhu J X, Shao H L, Hu X C. Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH[J]. International Journal of Biological Macromolecules, 2007 ,41:469-474
    [74] Joydip K, Chinmoy P,. Kundu S.C.Design, fabrication and characterization of silk fibroin-HPMC-PEG blended films as vehicle for transmucosaldelivery[J].Materials Science and Engineering C, 2008,28:1376-1380
    [75] HU K, Lv Q, CUI F Z et al.Biocompatible Fibroin Blended Films with Recombinant Human-like Collagen for Hepatic Tissue Engineering[J]. Journal of Bioactive and Compatible Polymers,2006,21: 23-37
    [76] Larrondo L, Manley R. Electrostatic fiber spinning frompolymer melts. I. Experimental observations on fiber formation and properties[J]. J Polym Sci Polym Phys Ed 1981,19: 909 -920
    [77] Bai L Q, Zhu L J, Min S J, et al.Surface modification and properties of Bombyx mori silk fibroin films by antimicrobial peptide[J]. Applied Surface Science, 2008 ,254: 2988-2995
    [78] Fini M, Motta A, Torricelli P. The healing of confined critical size cancellous defects in the presence of silk fibroin hydrogel[J] . Biomaterials, 2005 , 26 : 3527-3536
    [79] Matthew G, McKee, John M.,et al.Phospholipid Nonwoven Electrospun Membranes[J]. Science,2006,311 (20):353-355
    [80] Li M Z, Lu S Z, Wu Z Y, et al. Structure and properties of silk fibroin–poly(vinyl alcohol) gel[J]. International Journal of Biological Macromolecules,2002,30: 89-94
    [81] Nambu M. High water-containing rubber [ J ] . Polymer Applications , 1983 , 32 (11) : 523-531
    [82] Nandana Bhardwaj, Subhas C. Kundu.Electrospinning: A fascinating fiber fabrication technique Biotechnology [J].Advances ,2010
    [83] Pawlowskik J, Belvinh L, Raney D L, et al. Electrospinning of a microair vehicle wing shin[ J].Polymer, 2003, 44: 1309-1314.
    [84] Lu Q, Hu K, Feng Q L et al. Growth of fibroblast and vascular smooth muscle cells in fibroin/collagen scaffold[J].Materials Science and Engineering C,2009, 29:2239-2245
    [85] Regina V, Samuel P, Wayne M. Orientation of silk III at the air-water interface [J].International Journal of Biological Macromolecules,1999,24(2): 237-242
    [86] Reneker D H, Yarin A L, Fong H, et al.Bending instability ofelectrically charged liquid jets ofpolymer solutions in electrospinning [ J]. J Appl Phys,2000, 87: 4531-4547
    [87] Hofmann S, Wong C.T, Rossetti F, et al. Silk fibroin as an organic polymer for controlled drug delivery[J]. Journal of Controlled Release , 2006,111: 219-227
    [88] Sachiko S, Milind G,Jonathan A,Regeneration of Bombyx mori silk by electrospinning—part 1: processing parameters and geometric properties[J]. Polymer, 2003,44 :5721-5727
    [89] Sang L, Donghwan C, Won P, et al.Novel silk/poly(butylene succinate) biocomposites.the effect of short fibre content on their mechanical and thermal properties[J].Composites Science and Technology,2005, 65: 647-657
    [90] Sasipim S,Prasit P, Pitt S. Electrospun1,6-diisocy-anatohexane-extended poly(1,4-butylene succinate) fiber mats and their potential for use as bone scaffolds[J]. Polymer,2009, 50:1548-1558
    [91] Zarkoob S, Eby R, Reneker D H, et al. Structure and morphology of electrospun silk nanofibers[J]. Polymer,2004,45: 3973-3977
    [92] Xu S S, Zhang J, Aihua H, et al.Electrospinning of native cellulose from nonvolatile solvent system[J]. Polymer,2008 ,49: 2911-2917
    [93] Song W, Zhen G, Erlin L, et al.The application with protocatechualdehyde to improve anticoagulant activity and cell affinity of silk fibroin[J]. Applied Surface Science, 2008, 255: 486-488
    [94] Tao S,Zhang Y Z, Zhou T J, et al. Encapsulation of self-assembled FePt magnetic nanoparticles in PCL nanofibers by coaxial electrospinning[J]. Chemical Physics Letters ,2005,415: 317-322
    [95] Taylor G. Electrically driven jets. Proc Natl Acad Sci London 1969; A313(1515): 453-75.
    [96] Liu X Y, Zhang C C, Xu W L, et al. Controlled release of heparin from blended polyurethane and silk fibroin film[J]. Materials Letters, 2009,63: 263-265
    [97] Yasushi T. New Process to Form a Silk Fibroin Porous 3-D Structure[J].Biomacromolecules, 2005, 6: 3100-3106
    [98] Liu Y, He J H, Yu J Y. Preparation and Morphology of Poly(butylene succinate) Nanofbers via Electrospinning[J]. FIBRES & TEXTILES in Eastern Europe, 2007, 15(4) : 30-33
    [99] Yuris D. Spinning Continuous Fibers for Nanotechnology[J]. Science, 2004,304:1917-1918
    [100] Zeleny J. The electrical discharge from liquid points, and a hydrostatic method measuring the electric intensity at their surfaces[J]. Phys Rev 1914;3: 69-91
    [101] Huang Z M,. Zhang Y Z, Kotaki M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology, 2003,63: 2223-2253
    [102] Zuglul H A, Mitsuo A and Kiyoshi H. Quantitative structural analysis and physical properties of silk fibroin hydrogels[J]. Polymer, 1994,35(10): 2197-220

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700