用户名: 密码: 验证码:
蓝宝石变温弹性模量的实验测量
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
蓝宝石晶体具有优良的机械、物理和化学等性能,被广泛用做红外窗口材料,但是其机械性能会随着温度的变化而改变,尤其是在高温环境下,其机械性能将会严重下降,导致蓝宝石晶体破裂。蓝宝石的弹性模量是表征其机械性能的一个重要物理参数,为了研究蓝宝石晶体的高温机械性能,有必要研究弹性模量随温度的变化的规律。
     实验利用波长为532nm的脉冲激光作为激发超声波的光源,由于蓝宝石对532nm的激光有较高的透过率,无法产生超声波,因此我们在蓝宝石表面旋涂烧结一层对532nm的脉冲激光有高吸收的CuO无机介质,利用脉冲激光轰击CuO旋涂层产生烧蚀效应,从而在蓝宝石体内生成超声波,当超声波信号到达时,蓝宝石表面将会有一个微小形变,作为迈克尔逊干涉系统的一个镜面反射端,光程发生了变化,激光干涉场的强度会有一个瞬态突变,由此探测到超声波的传输速度,根据蓝宝石的弹性模量和超声波传输速度之间的关系,我们得到了特定方向的蓝宝石弹性模量,实现对蓝宝石弹性模量的非接触、无损伤测量。
     针对片状蓝宝石晶体的变温弹性模量的探测,我们设计制备了尺寸符合要求的程控温度控制炉,温控范围为室温至1100℃,将样品固定放置在程控温度控制炉腔内,通过调节控温设备,可以探测到了变温情况下样品的弹性模量。为了验证实验的可行性,实验首先探测对532nm的脉冲激光有较强吸收的HB700型有色玻璃变温条件下的超声传输速度,实验证明,超声传输速度随着温度的升高而明显变化。同样的,表面旋涂了对532nm的脉冲激光有高吸收的CuO的蓝宝石样品放置在程控高温加热装置之中,改变温度,从室温到1000℃,以100℃为间隔,依次获得了11个不同温度点的蓝宝石C33晶轴方向的弹性模量,实现了变温条件下的蓝宝石弹性模量的测量,实验结果表明,随着温度的升高蓝宝石的弹性模量呈现下降的规律。
Sapphire is widely used as infrared window material with the advantages of excellent mechanical, physical and chemical properties. However, its mechanical properties change with the change of temperature, especially on the condition of very high temperature, its mechanical properties will be severely eroded, which leads to rupture of sapphire crystal. The elastic modulus is an important physical parameter influencing the mechanical properties of sapphire crystal, in order to study the high temperature mechanical properties of sapphire crystal, it is significant to study of the variation of the elastic modulus with the change of temperature.
     We use the laser pulse having the duration of 10ns and the wavelength of 532nm, thereby, producing ultrasound to do the experiment, sapphire has high transmittance on the wavelength, which makes it unable to generate ultrasonic, we spin CuO sintered inorganic medium on the sapphire surface which have a high absorption of 532nm pulsed laser, then we use laser ablation effect to generate ultrasound in sapphire, after the ultrasonic signal transmit to the sapphire surface, there will be a slight deformation on it, Michelson interferometer as a mirror reflector, optical path will be change, laser interference field strength will have a transient mutation, thereby, we detected the ultrasonic transmission speed, according to the relationship between elastic modulus of sapphire and ultrasonic transmission speed, we have a specific direction modulus sapphire in Non-contact, no damage way.
     In order to realize the elastic modulus changes with temperature of the sapphire crystal, we design heating equipment to control temperature, and temperature control range is from room temperature to 1100℃, the Sample fixes in the heating furnace, we control the warm equipment through the adjustment, surveyed the trend of sapphire elasticity coefficient along with the temperature. In order to confirm experiment's feasibility, we first detection the HB700-type colored glass which have a strong absorption of 532nm pulse laser, experimental results show that with increasing temperature, ultrasonic transmission speed reduction. in same way, the surface of sapphire sample spin-coating CuO which has a high absorption of 532nm pulsed laser, then, it placed in the high temperature heating device which is being programmed, temperature changes, we achieve the elastic modulus of sapphire along different temperatures, from room temperature to 1000℃, design interval of 100℃, we obtained the elastic modulus of sapphire at 11 different temperature points with along C33 axial, the results show that with increasing temperature, the elastic modulus of sapphire will show a gradual decline in the rule.
引文
1 D. C. Harris. Infrared Window and Dome Materials. Proceedings of SPIE. 1999, 20: 60~65
    2李洪生,李尔龙.整流罩用红外材料研究进展.国外建材科技. 2002, 23: 70~74
    3 N. A. Kulagin, L. A. Litvinov. The Defects and Spectral Properties of Sapphire Grown by Melting Methods. Crystal Research and Technology. 1985, 20: 1667~1672
    4宋文燕,崔虎.影响蓝宝石高温强度的因素探讨.材料工程. 2006,增刊: 473~475
    5 W. David, B. C. Kevin. Laser-based Ultrasonic: Application at APL. Techniqual Digest. 2005, 26: 36-399
    6 A. A. Manenkov. Laser Induced Damage in Optical Materials. 1982: 436~441
    7 J. F. Ready. Effects of High Power Laser Radiation. New York Academic Press. 1971: 134~256
    8 S. C. Jones. Recent Progress on Laser-induced Modifications and Intrinsic Bulk Damage of Wide-gap Optical Materials. Opt Eng. 1989: 103~107
    9 T. S. Moss. Optical Properties of Semiconductors. Butterworths, Scientific Pub London. 1959: 16~26
    10 R. P. Gonzales, D. Milam. Laser-induce Damage in Optical Materials. 1985, 12: 128~132
    11 Q. H. Lu, Z. P. Jiang, Z. J. Liu. Semicond. Sci Technol. 1991, 6:1039~1041
    12 P. Shull. Nondestructive Evaluation: Theory, Techniques and Applications. Ma- cel Dekker Inc. New York. 2002: 63~69
    13施德恒,陈玉科,孙金锋,朱遵略,刘玉芳.激光超声技术及其在无损检测中的应用概况.激光. 2004, 25: 8~13
    14钱梦录.激光超声检测技术及其应用.上海计量测试. 2003, 30: 4~7
    15 S. M. Wiederhorn , B. J. Hockey , D. E. Roberts. Effect of Temperature on the F-racture of Sapphire. Philos Mag. 1973,28:83~96.
    16 J. A. Fox. Production of Stress Waves with Nanosecond Laser Pulses. App lett. 138: 1760~2762
    17 V. N. Strekalov. Absorption of Laser Light by Ions as a Mechanism of Optical D-amage in Solids. 1998, 3244: 26~31
    18 M. D. Feit, A. M. Rubenehik. Pulse-shape and Pulse-length Scaling of Ns Pul-se Laser Damage Threshold Due to Rate Limiting by Thermal Conduction. SPIE. 1986, 3244: 5~10
    19 J. 0. Porteus, C. S. Seitel. Absolut Onset of Optieal Surface Damage Using Distr-ibuted Defect Ensembles. Applied Optics. 1984, 23(21): 3796~3805
    20倪亚茹,陆春华,许仲梓.光学材料的激光损伤及其增强研究.激光杂志. 2005, 26(5): 18~20
    21赵建君,宋春荣,牛燕雄.连续激光辐照工InSb的热损伤研究.军械工程学院学报. 2005, 17(2): 70~72
    22章肖融.激光超声若干问题的进展.物理学进展. 1996, 16(3): 466~478
    23曾宪林,徐良法.激光超声技术在无损检测中的应用.激光与红外. 2002, 32 (4): 7~12
    24 A. C. Tam. Applications of Photo Acoustic Sensing Techniques. Rev. Mod. Phys. 1986, 58(2): 381~431
    25 B. C. Moss, C. B. Scruby. Investigiation of Ultrasonic Transducers Using Optical Techniques. Ultrasonics. 1988, 26(7): 179~188
    26 A. C. Tam. Reviews of Modern Physics. 1986, 58: 381~406
    27 A. Plech, P. Leiderer, J. Boneberg. Femtosecond Laser Near Field Ablation. Laser and Photonics Reviews. 2009, 3(5): 435~451
    28孔令剑,徐军,闫夷升.激光激发超声波的新方法研究.光子学报. 2006, 35 (1): 20~21
    29 B. S. Patel, Z. D. Zai. The Suitability of Sapphire for Laser Windows. Measurement Science and Technology. 1999, 10(3): 146~151
    30 A. Wooster. Tensors and Group Theory for the Physical Properties of Crystals. Clarendon Press Oxford. 1973: 81~100
    31 D. W. Blodgett, K. C. Baldwin. High-temperature Mechanical Characterization of Single-crystal Sapphire Using Laser-based Ultrasonics. Window and Dome Technologies and Materrials VI. 1999, 3705: 51~59
    32汤文辉,郭少峰,秦石桥.强激光对材料的热-力破坏效应.强度与环境. 1998, 3: 41~47
    33张海亮,张明福,左洪波.蓝宝石光学窗口辐照效应.南京航空航天大学学报. 2009, 41(4): 500~504
    34 G. Cristoforetti, S. Legnaioli, V. Palleschi. Characterization of a Collinear Double Pulse Laser-induced Plasma at Several Ambient Gas Pressures by Spectrally and Time-resolved Imaging. Lasers and Optics. 2005, 80(4): 559~568
    35 P. Jasinski, S. Molin, M. Gazda. Applications of Spin Coating of Polymer Precursor and Slurry Suspensions for Solid Oxide Fuel Cell fabrication. Journal of Power Sources. 2009, 194(1): 10~15
    36 K. F. Chen, Z. Lu. Development of Yttria-stabilized Zirconia Thin Films Via Slurry Spin Coating for Intermediate to Low Temperature Solid Oxide Fuel Cells. Journal of Power Sources. 2006, 160(1): 436~438
    37 C. B. Scruby. L. E. Drain. Laser Ultrasonics: Techniques and Applicatons. Adam Hilger. New York. 1990: 29-51
    38干福喜.玻璃的光学和光谱性能.上海科学技术出版社. 1992: 109
    39 L. Nemec. M. Jebava. Some Opportunities to Improve Glass Melting. Advaced Material Research. 2008, 39(40): 453~458
    40 C. Y. Wei, H. B. He, Z. Dong. Study of Thermal Behaviors in CO2 Laser Irradiat-ed Glass. Optical Engineering. 2005, 44(4): 044202(1~4)
    41蒋成勇,周国清,徐军,邓佩真,干福禧.飞秒脉冲激光对蓝宝石辐照作用的研究.人工晶体学报. 2003, 32(2): 125~129
    42 T. Rouxel, M. Huger, J. L. Besson. Rheological Properties of Y-Si-Al-O-N Glasses: Elastic Moduli, Viscosity and Creep. Materials Science. 1992, 27(1): 279~284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700