用户名: 密码: 验证码:
宽温域高阻尼减振复合材料的制备和研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
阻尼材料已经广泛应用于交通工具、产业机械、建筑、家用电器、精密仪器和军事装备等领域的减振降噪。聚合物是一类传统的阻尼材料,是利用其玻璃化转变区内的粘性阻尼部分,将吸收的机械能或声能部分地转变为热能耗散掉,从而达到减振、降噪的目的。通常,高聚物的玻璃化转变温域窄,而高聚物的阻尼性能依赖于玻璃化温度,从而大大限制了高聚物阻尼材料的应用范围。为了获得既具有较高损耗峰,又具有较宽有效阻尼温域的阻尼材料,减少阻尼材料对玻璃化温度的依赖性,本论文主要包括以下四个方面的研究内容:
     1.高性能有机杂化阻尼材料
     为了深入了解高分子材料与有机小分子功能添加剂之间形成的杂化材料的阻尼机理,本文以氯化聚乙烯(CPE)为基体材料,并选择了两种化学结构相似的功能小分子添加剂2,2-甲撑双-(4-乙基-6-叔丁基苯酚)(EBP)和2,2-甲撑双-(4-甲基-6-环己基苯酚)(ZKF),通过热压淬火成型分别制得了CPE/EBP和CPE/ZKF杂化材料。
     对CPE/EBP杂化材料DSC研究结果发现,CPE和EBP之间是不相容的,在DSC曲线上的20~40℃温域内出现了一个新的玻璃化转变区域,但是EBP除了在-10~0℃温域内有玻璃化转变外,EBP在其他温域并没有出现玻璃化转变。因此,CPE和EBP之间内部作用机理并不同于传统意义上不同组分共混时产生的相分离机理。FTIR研究结果发现,EBP分子上的-OH与CPE分子链上的Cl之间形成的分子间氢键作用而大量聚集,富集成相,并且在淬火处理时被固定下来,产生了相分离,在tanδ-T曲线上表现为两个分离的损耗峰,拓宽了材料的有效阻尼温域。
     而通过DSC和DMA研究发现,CPE和ZKF之间是相容的,在tanδ-T曲线上只有一个损耗峰,并随着ZKF含量的增加,CPE/ZKF杂化材料的损耗峰大幅度提高,并且损耗峰的位置移向高温方向;FTIR研究发现,一个ZKF分子上的两个-OH与不同CPE大分子链之间同时形成了两个氢键,称为“桥式”氢键作用。在玻璃化转变区域,这种“桥式”氢键的断裂和重建所耗散能量地能量远远大于分子间摩擦引起的能量耗散。因此,在玻璃化转变区域CPE/ZKF杂化材料具有优异的阻尼减振能力。
     2.有机杂化阻尼材料老化现象的研究及性能优化
     当杂化材料CPE/EBP和CPE/ZKF在环境温度下自然放置12个月后,杂化材料表面会出现白色析出现象。文中对CPE/ZKF杂化材料的析出机理及析出对杂化材料阻尼性能影响作了研究。通过DSC研究发现,材料表面的白色粉末为无定形态功能添加剂结晶所引起的;对CPE/ZKF杂化材料FTIR和DMA研究进一步发现,在环境温度下放置12个月后,CPE/ZKF杂化材料在3000~3500cm~(-1)波段内形成的分子间氢键发生了明显的变化,在3208cm~(-1)处产生的“桥式”氢键消失,这导致了CPE/ZKF杂化材料失去了高阻尼性能。这表明CPE/ZKF杂化材料的阻尼性能是不稳定的。
     因此,为了进一步研究杂化材料阻尼性能的稳定性,本文研究了三元杂化材料CPE/ZKF/EBP,发现ZKF和EBP对CPE/ZKF/EBP杂化材料的阻尼性能存在协同效应。少量EBP的加入不仅可以进一步提高CPE/ZKF杂化材料的阻尼性能,而且可以通过ZKF/EBP组分来调节杂化材料的损耗峰位置使其处于设计温度。进一步研究发现,柔性大侧基的引入以及氢键网络的形成是ZKF和EBP对CPE/ZKF/EBP杂化材料阻尼性能产生协同作用的根源;另一方面,少量EBP的加入可以减缓CPE/ZKF杂化材料损耗峰高度随退火处理时间延长而下降的趋势,即少量EBP的加入提高了CPE/ZKF杂化材料阻尼性能的稳定性。
     3.压电导电型宽温域高阻尼减振复合材料
     由于以无机压电陶瓷为填料形成的压电导电减振复合材料存在玻璃化转变温度附近损耗峰低、机电转换效率低及压电阻尼效果不佳等不足之处,本文中采用具有强介电效果的有机小分子材料ZKF来代替无机压电陶瓷,通过强介电有机小分子材料所具有的分子级别上的压电效应来进一步研究压电导电型阻尼材料。
     由于在玻璃化转变区域基体材料的粘弹阻尼性能比较明显,压电导电阻尼效果不明显;在橡胶态(60~80℃温域内)发现,当VGCF含量较低时,复合材料内部没有形成导电网络,压电导电阻尼效果不明显;当VGCF含量超过临界值后,复合材料内部形成了一定三维导电网络,复合材料在橡胶态的阻尼减振能力大大提高,在VGCF含量达到16vol.%时tanδ达到了最值,并随着VGCF含量的进一步增加tanδ值下降。由此可见,CPE/ZKF/VGCF复合材料存在明显的压电导电阻尼效应,拓宽了材料的有效阻尼温域,减少了材料阻尼性能对玻璃化温度的依赖性。
     与CPE/PZT/VGCF复合材料相比,CPE/ZKF/VGCF复合材料不仅在玻璃化转变温域内具有高的损耗峰,而且在橡胶态的压电导电阻尼效果也更明显;另一方面,由于ZKF与VGCF的存在,使复合材料的力学性能得到了进一步优化。
     4.多层杂化体约束宽温域高阻尼型减振复合材料
     在对CPE/ZKF杂化材料的研究中发现,随着ZKF含量的增加,CPE/ZKF杂化材料既能大幅度提高阻尼峰高度,又可以调控阻尼峰位置;但是,损耗峰的半峰宽变窄,限制了材料的使用。因此,本文中提出把多层杂化材料叠加通过熔融热挤压技术来制备宽温域、高阻尼多层减振复合材料的设想,从而达到对环境温度的变化引起振动响应的变化。
     本文从理论上对理想状态下的多层复合材料来拓宽有效阻尼温域进行了分析论证,并进一步对多层复合材料的tanδ_c进行了预测。理论结果与实验结果都表明,可以利用二层杂化材料叠加来有效的拓宽材料的有效阻尼温域,并可以进一步增加复合材料的层数来使“凹谷”区域的tanδ值上升,获得一个较大的最小值区域,即利用多层杂化材料叠加来拓宽材料的有效阻尼温域,无论在理论上和实验上都是切实可行的,为研究和开发“宽温域、高阻尼”减振复合材料提供了新的思路和理论依据。
Damping materials are extensively used in various fields such as vehicles, industrial machine, construct and building, home appliances, precise instruments, military equipments and so on. Typical candidate damping materials for the application of passive damping are viscoelastic polymers. Since the mechanical or acoustic vibrating energy is partly converted into Joule's heat through the viscoelastic damping effect in the vicinity of its glass transition temperature (Tg), and in turn reduce the vibration and noise. The damping properties of polymers depend on its Tg, but homopolymers usually havenarrow glass transition region. Their applications are limited to some extent. In order to obtain good damping materials with both a high damping peak and a broad temperature range, and reduce the dependence of its Tg, four sections are mainly included in this dissertation as follows:
     1. High-performance Organic Hybrid Damping Materials
     In order to further understand the damping mechanism of an organic hybrid of polymer and a small molecule, the Chlorinated Polyethylene (CPE) is used as the matrix, and two kinds of organic small molecules with similar chemical structure 2, 2'-methylene-bis-(6-tert-butyl-4-ethyl-phenol)(EBP),2'-methylene-bis-(4-methyl-6-cyclohexyl--phenol) (ZKF) are chosen as the organic additives. Then, two kinds of hybrid materials CPE/EBP and CPE/ZKF are made by hot-pressing and quenching.
     For CPE/EBP hybrids, differential scanning calorimetry (DSC) shows that, the EBP is incompatible with the CPE matrix, and a novel glass-transition range arises within the temperature range from 20 to 40℃on DSC scanning curves. However, none of glass-transition range of EBP is found on the DSC curves except within that from -10 to 0℃. Therefore, the interactional mechanism between CPE and EBP are different from the conventional polymer blend systems with two or mutli-component. The FT1R results show that, Due to the intermolecular hydrogen bonding interaction between Cl of CPE and the hydroxyl groups of EBP, most of EBP form EBP-rich domains frozen by quenching process, and cause the phase separation. The CPE/EBP hybrids show two loss peaks on tanδ- T curve, which broaden the efficient damping temperature range.
     For CPE/ZKF hybrids, the DSC and DMA show that, the ZKF is compatible with the CPE matrix, and there is only one loss peak on the tanδ-T curve for all the samples. With increasing the ZKF weight content, the loss peak of the CPE/ZKF hybrids increases dramatically and the loss peak position shifts to higher temperature. The FTIR results show that, a small molecule ZKF formed two hydrogen bonds with two CPE chains at the same time, acted as a bridge. The energy dissipation due to dissociation of the intermolecular hydrogen-bond network is larger than that of due to general friction between polymer chains. Therefore, CPE/ZKF hybrids is a good damping material with a high loss peak near its Tg.
     2. The Aging Phenomena and the Damping Stability of Organic Hybrids
     When the CPE/EBP and CPE/ZKF organic hybrids are aged under the room temperature for twelve months, there is some white powder on the surface of the hybrids. The aging mechanism and the effect of aging phenomena on the damping properties of CPE/ZKF hybrids have been investigated in this section. The DSC results show that, the white powder is caused due to the crystal of EBP. For the aged CPE/ZKF hybrids, the FTIR spectra shows that, there is a evident change of the hydrogen bonding in the region ranging from 3000 to 3500 cm~(-1), and the bridge-like hydrogen bond disappeared that is centered at 3208 cm~(-1), which results in the loss of the higher damping peak of the CPE/ZKF hybrids. The results show that the stability of the damping properties of the CPE/ZKF hybrids is not well.
     For further studying the stability of the damping properties of CPE/ZKF hybrids, consequently, the CPE/ZKF/EBP three-component hybrids are investigated, and it is found that there is a synergistic effect between ZKF and EBP on the damping properties of the three-component hybrids. When adding a small quantity of EBP into CPE/ZKF systems, not only the loss peak intensity of the CPE/ZKF/EBP hybrids can be further improved, but also its loss peak position can be lowered to a required temperature region. It is further found that, both the physical bulk side group and hydrogen-bond network should cause the synergistic interaction between EBP and ZKF. On the other hand, the damping stability of the CPE/ZKF hybrids can be improved excellently by adding a small amount of EBP.
     3. Piezoelectric Composites with a Broad Efficient Damping Temperature Range
    
     Due to that, piezoelectric ceramic damping materials are brittle, fragile, and hard, with the result that not only have some difficulty in proceeding technology, but also the electro-mechanical coupling factor is not very good. As a way of improving these inferior properties, the piezoelectric ceramic powder is substituted by the organic small molecule ZKF with strong dielectric behavior, for further studying the piezo-damping properties of CPE/ZKF/VGCF composites by DMA.
     At the vitrification point, the piezo-damping effect is not obvious, as the mechanical vibration energy converts into thermal energy is higher due to the friction between molecules of CPE matrix. Within the temperature range of 60~80℃, at a low content of VGCF, there are no conductive paths throughout the composites and the piezo-damping effect is not obvious. As the VGCF content exceeds the percolation threshold, a continuous conductive network begin to be formed, the loss factor is increased dramatically, present a peak at 16vol% VGCF content, and finally decreases again. This indicates that the piezo-damping effect really functions in the systems and that the efficient damping temperature region, which reduce the dependence of its Tg.
     In comparison with CPE/ZPT/VGCF systems, the CPE/ZKF/VGCF composites not only have a high loss peak, but also have an obvious piezo-damping effect. On the other hand, the storage modulus also is great improved due to the present of the VGCF and ZKF.
     4. Multi-layered Hybrid Composites with a Broad and High Damping Range
     For CPE/ZKF hybrids, with increasing the ZKF content, not only the loss peak height of the hybrids increase dramatically, but also the loss peak position can be adjusted. However, the width of loss peak is narrow for practical applications. Therefore, to obtain good damping materials with a broad and high damping range, we design a novel multi-layered organic hybrid material, which overlap several organic hybrid layers with different ZKF content and corresponding loss peak position by hot-pressing process.
     In this section, we analyze and discuss the possibility of using the multi-layered hybrid materials to broaden the efficient damping range, and prediction of the damping properties of multi-layered hybrid materials is also studied. The predicted and experimental results show that, it is possible to obtain damping material with broad efficient damping range by two-layered hybrid materials, the value in the middle of two peaks can be improved by increasing the number of layers of the multi-layered hybrids and there is a higher minimum value. Thus, it is feasible in theory and experiment to broaden the efficient damping range by multi-layered hybrid materials, which provides a new approach and solid basis for developing high performance damping materials with a broad and high damping range.
引文
[1]刘棣华.粘弹阻尼减振降噪应用技术[M].北京宇航出版社,1990.
    [2]戴德沛.阻尼减振降噪技术[M].清华大学出版社,1991.
    [3]孙庆鸿,等.振动和噪声的阻尼控制[M].北京:机械工业出版社,1992.
    [4]杨银仓.现代阻尼材料的发展和展望[J].航空科学技术1994,3:12-15.
    [5]Unger,E.E.Noise and Vibration Control[M].McGraw-Hill,New York,1971.
    [6]Bruce,R.D.Encyclopaedia of chemical technology[M].Voll 116,New York:Wiley,1982,Chapter 14.
    [7]张忠明,等.材料阻尼及阻尼材料的研究进展[J].功能材料2001,32(3):227-230.
    [8]Hourston,D.J.,Hughes,I.D.Polymeric systems for acoustic damping I.poly(vinyl-chloride)segmented polyether ester blends[J].J.Appl.Polym.Sci.1977,21:3099-3103.
    [9]Hartmann,B.Vibration damping with polymer[J].Polymer News 1991,16:134-139.
    [10]万里鹰,消凌.高聚物力学阻尼材料的研究进展[J].高分子材料科学与工程1999,15(2):1-4.
    [11]Sato,M.,et al.Development of conductive type vibration damping composites steel for automotive use.1991 Society of Automotive Engineers Paper.
    [12]Lilley,K.M.,et al.A comparison of NVH treatments for vehicle floorpan applications.2001 Society of Automotive Engineers Paper.
    [13]Mohan,D.R.Recent applications of viscoelastic damping for noise control in automobiles and commercial airplanes.2001 India-USA Symposium on Emerging Trends in Vibration and Noise Engeering.
    [14]潘坚.ZN—1阻尼材料德特殊性能[J].宇航材料工艺1998,5:34-36.
    [15]黄志雄,等.丙稀酸类阻尼减振材料德研究[J].武汉理工大学学报2002,24(4):5-8.
    [16]Zhang J.M.,et al.Effects of secondary phase on the damping behavior of metal,alloys and metal matrix composites[J].Material Science and Engineering 1994,13(8):325-389.
    [17]吴培熙,张留城.聚合物共混改性[M].中国轻工业出版社,1996,第一版.
    [18]邱庆文,李树材.互穿聚合物网络阻尼材料[J].合成树脂及塑料1999,16(5):52-54.
    [19]陈喜荣,王晏研,郑静.聚丙烯酸酯复合阻尼材料研究进展[J].宇航材料工艺2004,2:17-20.
    [20]Millar,J.R.,et al.Solvent-modified polymer networks.Part Ⅲ.Cation-exchange equilibria with some univalent inorganic and organic ions[J].J.Chem.Soc.1964:2740-2746.
    [21]Millar,J.R.Interpenetrating polymer networks:styrene-divinylbenzene copolymers with two and three interpenetrating networks,and their sulfonates[J].Journal of the Chemical Society 1960:1311-1317.
    [22]Millar,J.R.;Smith,D.G.;Marr,W.E.Interpenetrating polymer networks.Ⅱ.Kinetics and equilibria in a sulfonated secondary intermeshed copolymer[J].Journal of the Chemical Society 1962:1789-1794.
    [23]Sperling L.H.,et al.Noise and vibration damping with latex interpenetrating polymer networks[J].J.Appl.Polym.Sci.1975,19(5):1731-1743.
    [24]曼森,J.A.,斯柏林,L.H.聚合物共混及复合材料[M].北京:化学工业出版社,1976.
    [25]秦清明,等.减振、吸声、隔声复合材料及其在工程中的应用[J].噪声与振动控制1994,4:2-7.
    [26]陈艳秋,等.聚合矿物复合材料的阻尼性能与减振机理[J].噪声与振动控制1998,5:34-36.
    [27]李强,黄光速,江璐霞.PMPS/PMAc相容性与同步互穿聚合物网络的阻尼性能研究[J].高分子学报2003,3:409-413.
    [28]Klempner,D.J.,Frisch,K.C.,et al.Interpenetrating polymer networks for vibration attenuation[J].Rubber World 1985,192(6):16-20.
    [29]Klempner,D.Sound attenuation of interpenetrating polymer network foams[J].J.Appl.Polym.Sci.1986,32:4197-4208.
    [30]谢志明,等.聚丙烯酸酯无皂水溶胶阻尼涂料动态力学性能的研究[J].功能高分子学报1995,8(2):185-190.
    [31]Nagarajan,P.,et al.Latex interpenetrating polymer networks based on polyacrylates and polystyrene.I.Synthetic variations[J].J.Appl.Polym.Sci.1996,59(2):191-195.
    [32]Hu,R.,Dimonie,V.L.,et al.Multicomponent latex IPN materials.2.Damping and mechanical behavior[J].J.Polym.Sci.,Part B:Polym.Phys.1997,35:1501-1514.
    [33]Qin,C.L.,et al.Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network[J].Material Chemistry and Physics 2004,85:402-409.
    [34]Lipatov Y.S.,Sergeeva L.V.Gradient interpenetrating polymer networks[J].J.Mater.Sci.1995,30:2475-2484.
    [35]杨亦权,杜淼,郑强.新型高聚物阻尼材料研究进展[J].功能材料 2002,33(3): 234-236.
    [36]Yoshida,I.,et al.Damping properties of metal-piezoelectric composites[J].Journal of Alloys and Compounds 2003,355:136-141.
    [37]Zhang,C.,et al.Electric and damping behaviors of CPE/BaTiO_3/VGCF composites[J].Materials Letters 2005,59:3648-3651.
    [38]Buravalla V.R.,et al.Advances in damping materials and technology[J].Smart Mater.Bull.2001,10-13.
    [39]晏雄,张慧萍,住田雅夫.新型减振高分子复合材料研究[J].高分子材料科学与工程2001,17(5):86-89.
    [40]Sumita,M.,Gohda,H.,Asai,S.,et al.New damping materials composed of piezoelectric and electro-conductive,particle-filled polymer composites:effect of the electromechanical coupling factor[J].Macromol.Chem.Rapid Commun 1991,12:657-661.
    [41]Hagood N.W.,et al.Damping of structural vibrations with piezoelectric materials and passive electrical networks[J].J Sound and Vibration 1991,146(2):243-268.
    [42]Horid,M,Aoki,T.New type of mechanical damping composites composed of piezoelectric ceramics,carbon black and epoxy resin[J].Composites Part A:Applied Science and Manufacturing 2001,32(2):287-290.
    [43]Yan,Xiong.,et al.Damping Properties of Piezoelectric and Electrical Conductive of BaTiO3/VGCF/CPE Composites:Effect of Carbon Fiber[J].Journal of Dong Hua University(Eng.Ed.),2001,18(3):11-13.
    [44]王晏研,陈喜荣,黄光速.复合阻尼材料最新研究进展[J].材料导报 2004,18(10):54-56.
    [45]董跃清,晏雄.压电导电型聚合物基减振复合材料研究进展[J].玻璃钢/复合材料,2001,2:25-28.
    [46]晏雄,等.CPE/DZ/VGCF复合材料动态粘弹性研究[J].高分子材料科学与工程2002,18(3):165-168.
    [47]Brandys,F.A.,Bazuin,C.C.Mixtures of an acid-functionalized mesogen with poly(4-vinylpyridine)[J].Chem.Mater.1996,8(1):83-87.
    [48]隋刚,等.氯化聚乙烯与小分子化合物掺杂体[J].合成橡胶工业2003,26(6): 386-389.
    [49] 吴驰飞, 等. 高速轨道交通减振降噪材料的分析与发展动向[J]. 机车电传动 2003 : 19-22.
    [50] Wu, C. F. Effects of a hindered phenol compound on the dynamic mechanical properties of chlorinated polyethylene, acrylic rubber, and their blend [J]. J. Appl. Polym. Sci. 2001, 80: 2468-2473.
    [51] Wu, C. F., et al. Organic hybrid of chlorinated polyethylene and hindered phenol. I. Dynamic Mechanical Properties [J]. J. Polym. Sci., Part B: Polym. Phy. 2000, 38: 2285-2295.
    [52] Wu C. F., et al. Organic hybrid of chlorinated polyethylene and hindered phenol. III. Influence of the molecular weight and chlorine content of the polymer on the viscoelastic properties [J]. J Polym Sci, Part B: Polym Phy 2000, 38: 2943-2953.
    [53] Wu C. F., et al. Organic hybrid of chlorinated polyethylene and hindered phenol. II. Influence of the Chemical Structure of Small Molecules on Viscoelastic Properties [J]. J Polym Sci, Part B: Polym Phy 2000, 38: 1496-1503.
    [54] Wu C. F., et al. Viscoelastic properties of an organic hybrid of chlorinated polyethylene and a small molecule[J]. J Polym Sci, Part B:Polym Phys 2000, 38: 1341-1347.
    [55] Kaneko, H., et al. Damping performance of polymer blend/organic filler hybrid materials with selective compatibility [J]. Mater. Lett. 2002, 52: 96-99.
    [56] Zhang, C, et al. Damping properties of chlorinated polyethylene-based hybrids: effect of organic additives [J]. J. Appl. Polym. Sci. 2006,100: 3307-3311.
    [57] Wu, C. Functional design of organic hybrids consisting of polarized polymers and hindered phenol [J]. J. Mater. Sci. Lett. 2001,20: 1389-1391.
    [58] Wu C. F. Dynamic mechanical and adhesive properties of acrylate rubber/ chlorinated polyethylene blends compatibilized with a hindered phenol [J]. Polymer J 2001, 33(12): 955-958.
    [59] Wu C. F. Organic hybrid of chlorinated polyethylene and hindered phenol. IV. modification on dynamic mechanical properties by chlorinated paraffin [J]. J Polym Sci, Part B: Polym Phys 2001, 39: 23-31.
    [60] Wu C. F. Interphase migration of a hindered phenol compound in acrylate rubber/chlorinated polypropylene blends[J].Polym.J.2003,35(3):286-289.
    [61]李亦东,于翅.阻尼结构与高聚物阻尼材料[J].材料科学与工程1995,6:17-19.
    [62]张小农,等.高阻尼金属基复合材料的发展途径[J].材料工程1997,9:34-37.
    [63]Finegan,I.C.,Gibson,R.F.Recent research on enhancement of damping in polymer composites[J].Composite Structures 1999,44:89-98.
    [64]Fujimoto,J.,Tamura,T.Development of CFRP/damping-material laminates[J].Advan.Composite Mater.1998,4:365-376.
    [65]Oshima,N.,et al.Improvement of Damping Property of CFRP Composite Beam Interleaved with Shape Memory Polymer Using CFRP Laminate as a Heater[J].Mem.Fac.Eng.Osaka City Univ.1997,38:1-6.
    [66]Finegan,I.C.,Gibson,R.F.Improvement of damping at the micromechanical level in polymer composite materials under transverse normal loading by the use of special fiber coatings[J].Trans ASME J.Vib Acoust.1998,120(1):623-627.
    [67]范永忠,等.环氧树脂混杂复合材料的阻尼性能研究[J].功能材料2000,31:94-96.
    [68]唐冬雁,等.BaTiO_3/(PU/UP-IPNs)复合材料的相容性、力学性能和阻尼性能研究[J].无机化学学报2005,21(6):816-821.
    [69]Tang,D.Y.,et al.Influence of BaTiO_3 on damping and dielectric properties of filled polyurethane/unsaturated polyester resin interpenetrating polymer networks[J].J.Mater.Sci.2005,40:3339-3345.
    [70]Guan,H.,Gibson,R.F.Micromechanical analysis of viscoelastic damping in woven fabric-reinforced polymer matrix composites[J].American Society for Composites Twelfth Technical Conference.Lancaster.PA:Technomic 1997:479-489.
    [71]Crane,R.M.,et al.Structural and damping characteristics of a flexible composite structure[J].Material for noise and vibration control 1994,18:65-72.
    [72]张诚,等.聚合物基阻尼材料研究进展[J].浙江工业大学学报2005,33(1):83-87.
    [1]Armeniades,C.D.,Baer,E.Introduction to Polymer Science and Technology[M].Wiley Interscience:New York,1977.
    [2]Nashif,A.D.,et al.Vibration Damping[M].Wiley:New York,1985.
    [3]刘棣华.粘弹阻尼减振降噪应用技术[M].北京:宇航出版社,1990.
    [4]何曼君.高分子物理[M].上海:复旦大学出版社,1990.
    [5]陈兵勇,马国富,阮家声.宽温域高阻尼橡胶材料研究进展[J].世界橡胶工业2004,31(11):33-37.
    [6]吕生华,梁国正,范晓东.高分子阻尼材料的研究进展[J].中国塑料2001,15(12):1-6.
    [7]Aklonis,W.J.,et al.Introduction to polymer viscoelasticity[M].Wiley Interscience:New York,1972.
    [8]Zhang,C.,Sheng,J.F.,et al.Electric and damping behaviors of CPE/BaTiO_3/VGCF composites[J].Materials Letters 2005,59:3648-3651.
    [9]Pritz,T.Loss Factor Peak of Viscoelastic Materials:Magnitude to Width Relations[J].Journal of Sound and Vibration 2001,246(2):265-280.
    [10]Finegan,I.C.;Gibson,R.F.Recent research on enhancement of damping in polymer composites[J].Composite Structures 1999,44:89-98.
    [11]Wu C.F.,et al.Viscoelastic properties of an organic hybrid of chlorinated polyethylene and a small molecule[J].J Polym Sci,Part B:Polym Phys 2000,38:1341-1347.
    [12]Hori,M.,Aoki,T.,Ohira,Y.Mechanical and mechanical damping properties of binary blends of chlorinated polymer with a special organic compound(DCHBSA)[J].Journal of Material Science Letters 2001,20:785-787.
    [13]He,Y.,et al.Effects of low molecular weight compounds with hydroxyl group on properties of poly(L-lactic acid)[J].J.Appl.Polym.Sci.2001,82:640-649.
    [14]Wu,C.F.,et al.Organic hybrid of chlorinated polyethylene and hindered phenol.Ⅱ.Influence of the chemical structure of small molecules on viscoelastic properties[J].J.Polym.Sci.Part B:Polym.Phys.2000,38:1496-1503.
    [15]Kaneko,H.,et al.Damping performance of polymer blend/organic filler hybrid materials with selective compatibility[J].Mater.Lett.2002,52:96-99.
    [16]Zhang,C,et al.Damping properties of chlorinated polyethylene-based hybrids:effect of organic additives[J].J.Appl.Polym.Sci.2006,100:3307-3311.
    [17]赵若飞,等.氯化聚乙烯链结构和聚集态结构表征[J].华东理工大学学报2000,26(3):284-286.
    [18]Li,J.C.,et al.Thermal and infrared spectroscopic studies on hydrogen bonding interactions between Poly-(ε-caprolactone)and some Dihydric phenols[J].J Polym Sci,Part B:Polym Phy.2001,39:2108-2117.
    [19]戴德沛.阻尼技术德工程应用[M].清华大学出版社,北京,1991.
    [20]焦剑,雷渭媛.高聚物结构、性能与测试[M].化学工业出版社2003.
    [21]Chern,Y.C.,et al.Damping properties of interpenetrating polymer networks of polyurethane-modified epoxy and polyurethanes[J].J.Appl.Polym.Sci.1999,74:328-335.
    [22]王庆文,等.有机化学中德氢键问题[M].天津大学出版社,1993.
    [23]Wu,C.F.Organic hybrid of chlorinated polyethylene and hindered phenol Ⅰ influence of the molecular weight and chlorine content of the polymer on the dynamic mechanical properties[J].J.Polym.Sci.,Part B:Polym.Phys.2000,38:2285-2295.
    [24]Wu,C.F.Organic hybrid of chlorinated polyethylene and hindered phenol.Ⅲ.influence of the molecular weight and chlorine content of the polymer on the viscoelastic properties[J].J Polym Sci,Part B:Polym Phy.2000,38:2943-2953.
    [25]Wu,C.F.,Akiyama,S.Enhancement of damping performance of polymers by functional small molecules[J].Chinese J.Polym.Sci.2002,20(2):119-127.
    [26]Wu,C.F.,Otani,Y.,et al.Dynamic properties of an organic hybrid of chlorinated polyethylene and hindered phenol compound[J].J.Appl.Polym.Sci.2001,82:1788-1793.
    [27]Wu,C.F.A novel second-order transition in organic hybrids consisting of polymer and small molecules[J].Chinese J.Polym.Sci.2001,19(5):455-466.
    [28]潘道成,等.高聚物及其共混物的力学性能[M].上海,上海科学技术出版社,1988.
    [29]Kuo,S.W.,et al.Study of hydrogen-bonding strength in poly(ε-caprolactone)blends by DSC and FTIR [J]. J Polym Sci, Part B: Polym Phy. 2001, 39: 1348-1359.
    [30] Kaneko, H., et al. Damping performance of polymer blend/organic filler hybrid materials with selective compatibility [J]. Mater. Lett. 2002, 52: 96-99.
    [31] Smith, P., Eisenberg, A. Effect Plasticization by amines on the physical properties of an acidic atyrene copolymer [J]. J. Polym. Sci. Part B: Polym. Phys.1988, 26(3): 569-580.
    [32] Plante, M, et al. Blends of biphasic ionomers with chemically identical mono- and bi-functional oligomers [J]. Macromolecules 1995,28: 5240-5247.
    [33] Ngai, K.L., Rendell, R.W. Antiplasticization effects on a secondary relaxation in plasticized glassy polycarbonates [J]. Macromolecules 1991,24(1): 61-67.
    [34] Kawakami, T., Kato, T. Use of intermolecular hydrogen bonding between imidazolyl moieties and carboxylic acids for the supramolecular self-association of liquid-crystalline side-chain polymers and networks [J]. Macromolecules 1998, 31: 4475-4479.
    [35] Coleman, M.M., Painter, P.C. Hydrogen bonded polymer blends [J]. Prog. Polym. Sci. 1995,20: 1-59.
    [36] Hsiao, M.S., et al. A mesomorphic blend based on the solid-state complexes of polymers with surfactants[J]. Macromolecules 2000,33: 221-224.
    [37] He, Y., et al. Studies on Poly-(£-caprolactone)/Thiodiphenol Blends: The Specific Interaction and the Thermal and Dynamic Mechanical Properties [J]. J Polym Sci, Part B: Polym Phy. 2000, 38: 1848-1859.
    [1]Ngai,K.L.,Rendell,R.W.Antiplasticization effects on a secondary relaxation in plasticized glassy polycarbonates[J].Macromolecules 1991,24(1):61-67.
    [2]Kalkar,A.K.,Parkhi,P.S.Compatibility in polymer/plastizer blend system:Thermal,X-ray,and dynamical studies of PMMA/PTBF blends[J].J.Appl.Polym.Sci.1995,57(2):233-243.
    [3]Smith,P.,Eisenberg,A.Effect Plasticization by amines on the physical properties of an acidic atyrene copolymer[J].J.Polym.Sci.Part B:Polym.Phys.1988,26(3):569-580.
    [4]Liu,Y.,et al.NMR study of plasticization and antiplasticization of a polymeric glass[J].Macromolecules 1990,23(4):968-977.
    [5]Xiao,C.Wu,J.,et al.Positronium annihilation lifetime and dynamic mechanical studies of γ-relaxation in BPA-PC and TMBPA-PC plasticized by TOP[J].Macromolecules 1999,32(23):7913-7920.
    [6]He,Y.,Naoki,A.,et al.Blends of poly(3-hydroxybutyrate)/4,4'-thiodiphenol and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/4,4'-thiodiphenol:soecific interation and properties[J].J.Polym.Sci.Part B:Polym.Phys.2000,38:2891-2900.
    [7]Paternostre,L.,et al.Polymorphism and Crystal Morphology of Poly(ethylene oxide)-2-Methyl Resorcinol Supramolecular Complexes[J].Macromolecules 1999,32(1):153-151.
    [8]焦剑,雷渭媛.高聚物结构、性能与测试[M].化学工业出版社2003.
    [9]Wu,C.F.Microstructural development of a vitrified hindered phenol compound during thermal annealing[J].Polym.2003,44:1697-1703.
    [10]Foldes,E.,Turcsanyi,B.Transport of Small Molecules in Polyolefins.I.Diffusion of Irganox 1010 in Polyethylene[J].J.Appl.Polym.Sci.1992,46:507-515.
    [11]Hexig,B.,et al.Diphenol miscibility effect on the immiscible polyester/polyether binary blends through intermolecular hydrogen-bonding interaction[J].J.Polym.Sci.Part B.2004,42:2971-2982.
    [12]Wu,C.F.,Akiyama,S.Crystallization of a Vitrified Hindered Phenol within Chlorinated Polyethylene and Its Effects on Dynamic Mechanical Properties[J].J.Polym.Sci.Part B:Polym.Phys.2004,42:209-215.
    [13]吴驰飞,等.高速轨道交通减振降噪材料的分析与发展动向[J].机车电传动2003:19-22.
    [14]Finegan,I.C.,Gibson,R.F.Recent research on enhancement of damping in polymer composites[J].Composite Structures 1999,44:89-98.
    [15]Zhang,C,et al.Damping properties of chlorinated polyethylene-based hybrids:effect of organic additives[J].J.Appl.Polym.Sci.2006,100:3307-3311.
    [16]Li,L.Dynamic Mechanical Analysis(DMA)Basics and Beyond[J].Thermal Analysis of Perkin Elmer Inc.2000.
    [17]Li,J.C.,He,Y.,et al.Thermal and infrared spectroscopic studies on hydrogen-bonding interactions between poly(ε-caprolactone)and some dihydric phenols[J].J.Polym.Sci.Part B:Polym.Phys.2001,39:2108-2117.
    [18]He,Y.,et al.Studies on poly(ε-caprolactone)/thiodiphenol blends:the specific interaction and the thermal and dynamic mechanical properties[J].Journal of Polymer Science,Part B:Polymer Physics 2000,38(14):1848-1859.
    [19]Wu,Chi-fei.A novel second-order transition in organic hybrids consisting of polymer and small molecules[J].Chinese J.Polym.Sci.2001,19(5):455-466.
    [1]刘棣华.粘弹阻尼减振降噪应用技术[M].北京宇航出版社,1990.
    [2]王曼霞.阻尼材料和技术及其在航天工业上的应用[J].中国航天,1992,7:32.
    [3]焦剑,雷渭媛.高聚物结构、性能与测试[M].化学工业出版社,2003,5:242-244.
    [4]王勇,周祖福,梅启林.新型高分子阻尼材料的研究[J].武汉工业大学学报,2000,22(4):22-24.
    [5]董跃清,晏雄.压电导电型聚合物基减振复合材料研究进展[J].玻璃钢/复合材料2001,2:25-28.
    [6]杨亦权,杜淼,郑强.新型高聚物阻尼材料研究进展[J].功能材料2002,33(3):234-236
    [7]Yoshida,I.,Yokosuka,M.,et al.Damping properties of metal-piezoelectric composites[J].Journal of Alloys and Compounds 2003,355:136-141.
    [8]王晏研,陈喜荣,黄光速.复合阻尼材料最新研究进展[J].材料导报2004,18(10):54-56.
    [9]Hori,M.,Aoki,T.,Ohira,Y.,Yano,S.New type of mechanical damping composites composed of piezoelectric ceramics,carbon black and epoxy resin[J].Composites Part A:applied science and manufacturing 2001,32:287-290.
    [10]Hagood,N.W.,et al.Damping of structural vibrations with piezoelectric materials and passive electrical networks[J].J Sound and Vibration 1991,146(2):243-268.
    [11]Sumita,M.,Gohda,H.,Asai,S.,et al.New damping materials composed of piezoelectric and electro-conductive,particle-filled polymer composites:effect of the electromechanical coupling factor[J].Macromol.Chem.Rapid Commun 1991,12:657-661.
    [12]Yan,Xiong.,et al.Damping Properties of Piezoelectric and Electrical Conductive of BaTiO3/VGCF/CPE Composites:Effect of Carbon Fiber[J].Journal of Dong Hua University(Eng.Ed.)2001,18(3):11-13.
    [13]张慧萍,晏雄.PVDF/PZT/CB高分子复合材料动态机械性能研究[J].玻璃钢/复合材料2004,2:23-24.
    [14]王晏研,等.复合阻尼材料最新研究进展[J].材料导报2004,18(10):54-56.
    [15]刘颖,等.不同类型的基体对0-3型压电复合材料性能的影响[J].复合材料学报1997,14(1):12-14.
    [16]Newnham,R E.,et al.Electromechanical properties of smart materials[J].J Intell Mater Syst Struct 1993,7:289-294.
    [17]董跃清,晏雄.压电导电型聚合物基减振复合材料研究进展[J].玻璃钢/复合材料2001,2:25-28.
    [18]Fougler,S H.Electrical properties of composites in the vicinity of the percolation threshold[J].J Appl Polym Sci 1999,72:1573-1582.
    [19]Zhang,C.,et al.Selective location and double percolation of short carbon fiber filled polymer blends:high-density polyethylene/isotactic polypropylene[J].Material Letters 1998,36:186-190.
    [20]Zhang,C.,et al.Electrical and damping behaviors of CPE/BaTiO3/VGCF composites.Materials Letters 2005,59(28):3648-3651.
    [21]Kwei,T.K.The effect of hydrogen bonding on the glass transition temperatures of polymer mixtures[J].Journal of Polymer Science,Polymer Letters Edition 1984,22(6): 307-313.
    [22]Su,Yi-Che,et al.Thermal properties and hydrogen bonding in polymer blend of polybenzoxazine/poly(N-vinyl-2-pyrrolidone)[J].Polymer 2003,44:2187-2191
    [23]Lee,B.L.,Nielsen,L.E.Temperature dependence of the dynamic mechanical properties of filled polymers[J].Journal of Polymer Science Polymer Physics Edition 1977,15:683.
    [24]Nielsen,L.E.,et al.Mechanical Properties of Polymers and Composites[M].Ochiai,S.,Ed.,Marcel Dekker:New York,1994,Chapter 7.
    [25]晏雄,等.CPE/DZ/VGCF复合材料动态粘弹性研究[J].高分子材料科学与工程2002,18(3):165-168.
    [26]Hourston,D.J.Latex inter-Penetrating Polymer Networks Based on Acrylic Polymers I.Predicted and Observed Compatibilities[J].J.Appl.Polym.Sci.1984,29:2637-2639.
    [27]Gibson,R.F.Principle of Composite Materials Mechanics[M].McGraw-Hill:New York,1994:Chapter 8.
    [28]Goyanes,S.N.,et al.Dynamic Mechanical Analysis of Particulate-Filled Epoxy Resin[J].Journal of Applied Polymer Science 2003,88:883-892.
    [29]Sohn,M.S.,et al.Dynamic Mechanical Properties of Particle-Reinforced EPDM Composites[J].Journal of Applied Polymer Science 2003,87:1595-1601.
    [30]Kwak,G.H.,Sumita,M.,et al.Characterization of the vibrational damping loss factor and viscoelastic properties of ethylene-propylene rubbers reinforced with micro-scale fillers[J].J.Appl.Polym.Sci.2001,82:3058-3066.
    [31]晏雄,等.新型减振高分子复合材料研究[J].高分子材料科学与工程,2001,17(5):86-89.
    [32]Foulger,S.H.Reduced Percolation Thresholds of Immiscible Conductive Blends[J].Journal of Polymer Science:Part B:Polymer Physics 1999,37:1899-1910.
    [1]Bruce,R.D.Encyclopaedia of chemical technology[M].Voll 116,New York:Wiley,1982.
    [2]Buravalla,V.R.,et al.Advances in damping materials and technology[J].Smart material Bulletin,2001,(8):10-13.
    [3]Aklonis,J.H.,Shen,M.,et al.Introduction to Polymer Viscoelasticity[M].Wiley-Interscience:New York,1972.
    [4]Unger,E.E.Noise and Vibration Control[M].McGraw-Hill,New York,1971.
    [5]杨亦权,杜淼,郑强.新型高聚物阻尼材料研究进展[J].功能材料2002,33(3):234-236.
    [6]张诚,等.聚合物基阻尼材料研究进展[J].浙江工业大学学报 2005,33(1):83-87.
    [7]Yamada,N.,et al.Developments of High Performance Vibration Absorber from Poly(vinyl chloride)/Chlorinated Polyethylene/Epoxidized Natural Rubber Blend[J].J.Appl.Polym.Sci.1999,71:855-863.
    [8]Kaneko,H.,et al.Damping performance of polymer blend/organic filler hybrid materials with selective compatibility[J].Material Letters 2002,52:96-99.
    [9]Qin,C.,et al.Damping properties and morphology of polyurethane/vinyl ester resin interpenetrating polymer network[J].Composites Chemistry and Physics 2004,85:402-409.
    [10]晏欣,姚树人.PVA/PBA乳胶互穿聚合物网络阻尼材料的研究[J].高分子材料 科学与工程2003,19:92-96.
    [11]王源生,杨雪,等.水溶性高分子梯度溶液吸声机理的研究[J].声学学报2006,31(1):14-18.
    [12]杨雪,王源生,等.不同界面形状分层消声覆盖层声特性的实验研究[J].声学学报2007,26(3):395-398.
    [13]Goyanes,S.N.,et al.Dynamic Mechanical Analysis of Particulate-Filled Epoxy Resin[J].Journal of Applied Polymer Science 2003,88:883-892.
    [14]Sohn,M.S.,et al.Dynamic Mechanical Properties of Particle-Reinforced EPDM Composites[J].Journal of Applied Polymer Science 2003,87:1595-1601.
    [15]Chen,C.P.,Lakes,R.S.Analysis of high loss viscoelastic composites[J].J.Mater Sci.1993,28:4299-4304.
    [16]潘道成编.高聚物及其共混物的力学性能[M].上海科学技术出版社,1988.
    [17]Christensen,R.M.Mechanics of composite materials,John Wiley & Sons,New York,1979.
    [18]Klompen,E.T.J.Mechanical Properties of Solid Polymers.Constitutive modelling of long and short term behavior.PhD thesis,Eindhoven University of Technology 2005,Chapter 3.
    [19]Christensen,R.M.Theory of viscoelasticity,2nd ed,Academic Press,New York,1982.
    [20]Hashin,Z.Complex moduli of viscoelastic composite-I.general theory and application to particulate composites[J].Int.J.Solids Struct1970,6(5):539-552.
    [21]苗传威,夏宇正,等.乳液共混法制备丙烯酸酯系阻尼材料[J].北京化工大学学报2002,29(5):42-45.
    [22]Samui,A.B.,et al.Sequential interpenetrating polymer network based on nitrile-phenolic blend and poly(alkyl methacrylate)[J].J.Apply.Polym.Sci.1997,68:255-262.
    [23]Hourston,D.J.,et al.Poly(ether urethane)/poly(ethyl methacrylate)IPNs with High Damping Characteristics:the Influence of the Crosslink Density in Both Networks[J].J.Apply.Polym.Sci.1996,62:2025-2037.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700