用户名: 密码: 验证码:
高速铁路无碴轨道桩网结构路基研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高速铁路是当代科学技术成就的集中体现,是铁路现代化的重要标志,以其快速、可靠、舒适、经济等特点,赢得了良好的经济和社会效益。随着我国既有线提速及客运专线的兴建,对线路的稳定性和平顺性要求越来越高,与此同时由于行车密度的加大,传统有碴轨道的养护维修变得更为困难。而无碴轨道具有整体性强、稳定性好,坚固耐用,轨道变形小,且变形累积缓慢等优点,在国外高速铁路上获得了广泛应用。但我国尚未进行过成区段铺设无碴轨道的试验,土质路基上成段铺设无碴轨道技术尚属空白,为适应我国客运专线建设的需要,必须开展无碴轨道铁路路基工程技术试验研究,特别是土质路基无碴轨道铁路路基工程关键技术的研究。
     无碴轨道线路状态的调整只能通过扣件系统进行,因此在土质路基上修建无碴轨道,对下部基础的残余变形、路基填土的压密下沉、路基面的弯折变形与差异沉降要求更为严格。而路基工程受岩土体材料本身特性的限制,工后沉降难以避免。因此,为了满足无碴轨道对不均匀沉降和累积沉降的严格要求,需确保用于路基填料的土为良质土的同时,对地基处理和路基填筑工艺也有更加严格的要求,导致建筑成本大幅度的增加。在我国,高速铁路建设规模大、线路长,区域地质条件复杂,优质填料缺乏,整条线路都使用优质填料,无论从成本上还是优质填料的来源上都存在着很大困难;此外,换填所产生的废土对生态环境也产生很大的影响。基于以上多种考虑,使得选用合适的地基加固措施成了建设高速铁路最为关键的因素之一。
     20世纪70年代,桩网结构路基产生于日本,作为一种软土地基的加固方案,具有竖向沉降变形小、变形稳定时间短、施工质量易控的突出优点在高等级道路软土地基区的加固工程方面受到青睐。桩网结构路基在国内起步较晚,属于比较新的一种工法。少数人对其进行了有限的研究,得出了有益的结果,但并未形成系统,理论严重滞后于实践。
     论文以遂渝线无碴轨道综合试验段为工程背景,对桩网结构加固松软土地基开展了系统的研究。研究方法主要包括设计计算理论探讨、离心模型试验(2组)、大比例动态模型试验(1组)、现场行车试验(低路堤1处)、数值仿真分析、现场长期测试试验(高低路堤各1处)。研究内容主要为桩网结构路基加筋垫层的成拱机理、桩与网的应力应变、桩网结构路基的累积沉降及工后沉降、桩网结构路基在低矮路堤情况在列车动荷载作用下的动态响应规律。主要成果如下:
     (1)对桩网结构路基的概念、组成、作用机理、适用范围等进行了深入阐述,分析了桩网结构路基柔性拱与复合地基垫层的区别。基于静力学平衡状态,在一定的假设条件下推导了柔性拱区下部加筋垫层中的土工格栅拉力计算公式,并对影响因素进行了探讨。结合遂渝线无碴轨道综合试验段工程实践,应用日本计算方法和抛物线计算方法对桩网结构路基的土工格栅拉力进行了计算,结果显示两种方法计算出的结果出入较大,分析表明应用推导的抛物线计算方法计算的结果较为合理。
     (2)应用FLAC3D数值分析软件V3.0版本,基于高低2种路堤,8种不同的桩间距,对桩网结构路基的分层填筑和列车的运营在国内外首次进行了仿真模拟,分析表明桩间距对桩网结构路基的沉降、桩及网的受力、土拱的形成影响敏感,桩间距大时,累积沉降大、桩及网的受力也大、土拱难以形成。从控制沉降方面考虑,提出遂渝线土质路基无碴轨道综合试验段桩网结构路基以2.0m桩间距为最佳桩间距。
     (3)对应遂渝线无碴轨道综合试验段桩网结构路基DK134+820高路堤断面,采用几何相似比例C_L=80,进行了两组桩间距不同的离心模型试验,一组桩间距为3.0m,另一组桩间距为2.0m,对桩网结构路基的桩土相互作用及沉降特性进行了研究,结果表明桩网结构路基能满足无碴轨道对沉降的要求。桩间距由2.0m变到3.0m时,沉降有一定幅度的增加。两组试验均表明按沉降控制设计的桩网结构路基,承载力有较大储备。
     (4)对应遂渝线无碴轨道综合试验段桩网结构路基DK134+820高路堤断面,基于因次分析法推导的相似理论在国内首次对桩网结构路基做了室内大比例动态模型试验,模型几何相似比例C_L=13,研究高路堤情况下桩网结构路基的加固机理,测试分析桩及网的应力应变,柔性拱的成拱效应,以及桩网结构路基的累积沉降变形,研究表明桩网结构路基累积沉降值及工后沉降值较小,能满足无碴轨道的要求;桩网结构路基中的网具有荷载分担作用,桩起竖向增强作用;桩的承载力由桩侧摩阻力与桩端支承力共同贡献,当地基中存在软土层时,桩侧有产生负摩阻力的趋势,中性点位于软土层下部交界面处。
     (5)结合遂渝线土质路基无碴轨道综合试验段桩网结构路基工程实践,针对高低两种路堤进行了长期测试,并在低路堤进行了现场行车试验,结果表明经桩网结构处理后的路基工后沉降量非常有限,完全能满足土质路基上修建无碴轨道的要求。动态测试分析表明,列车轴重对无碴轨道路基的动应力影响明显,对加速度响应有一定影响。无论是动车组还是货物列车,其速度对路堤的动响应影响均有限。动应力与加速度在经3m高的路堤衰减后,对桩网结构路基下部的加筋垫层已基本无影响。
     (6)对各研究方法取得的研究成果进行对比分析,并在此基础上,对桩网结构路基的设计计算方法进行了总结。此外,对路堤高度小于土拱高度的桩网结构路基情况进行了相应的探讨,提出了桩网结构路基的路堤填土最小高度合理化的界限,应大于土拱高度f,以确保结构的安全稳定。
The high-speed railway is the main embodiment of science and technologyin the modern age, and the important sign of the railway modernization. Thehigh-speed railway has won fine economic and social benefits due to thecharacteristics such as high speed, good. security, fine comfortableness, andeconomies. With the raising speed on existing lines and construction of theexpress passenger line in our country, stability and comfort is highly required inthe railway line. Simultaneously, because of the augmentation of the rate oftraffic flow, the maintenance and repair of traditional ballasted track becomemore difficult. While currently, the unballasted track structure has been widelyapplied in high-speed railway abroad, because of the advantages such as the goodbulk property, the fine stability, the strong firmness and durability, smalldeformation and slow accumulated deformation for orbit. It has never beenpracticed to construct the segment of unballasted track in our country, so theapplication of ballastless track to soil subgrade is inmature. To meet the demandof PDL construction, the study of Ballastless Track subgrade Engineering must becarried out, especially the key technology of ballastless track soil subgradeEngineering:
     The adjustment of Unballasted Track Railway Line can only be donethrough the rail fastenings system. Unballasted Track Railway must meet thestrict requirement of ground settlement, differential settlement and flexdeformation, if the Unballasted Track will be constructed on soil subgrade.Subgrade residual settlement is difficult to avoid owing to soil characteristics.Therefore, for reaching the strict standard in differential settlement andaccumulation settlement, subgrade fillings should reach high standards, and at thesame time more strict requirements of foundation treatment and constructiontechnology are needed, which increase the construction cost. The large scale, longline, complex geological conditions, shortness of fine fillings make theconstruction of high-speed railway more difficult either in terms of cost or interms of sources of fine fillings. Moreover, the abandoned soil produced byrelacement is greatly influential to ecological environment. According to the above various factors, selecting and using right foundation treatment become oneof the key factors of the construction of the high speed railway.
     Column-Net Structure Embankment is a kind of enforcing treatment in thefield of soft foundation, which came into being in Japan in the 1970s'. It hasattracted much attention due to the outstanding merit in small vertical settlement,short stabilization time and easy control of the construction quantity. It is onekind of comparatively new foundation treatment methods, which is applied latelyin China. A few researchers have carried out limited research work, and havegained benefieial results which are still far form being systematical, and theory isfar behind construction practice.
     Based on comprehensive experimental section of unballasted track onSui-Yu Railway Line, the research of Column-Net Structure Embankmentreinforcing soft soil foundation has been carried out. Research methods mainlyinclude the design calculation theory analysis, centrifuge model test, large scalemodel test, field real train test, numerical analysis, and field Long-termobservation test. Main contents of this research are soil arching mechanism inreinforced bedding, strain and stress of pile and net, accumulated settlement andresidual settlement of subgrade, and dynamic response law of low embankmentunder the action of vehicle. Main research result as follows:
     (1) Definition, composition, strengthening mechanism, and applicationscope of Column-Net Structure Embankments has been elaborated deeply, andinterrelation of flexible arch of Column-Net Structure Embankments and cushionof composite foundation has been analyzed. Based on the equilibrium equation invarious systems of forces, calculation methods for geogrid have been deducedunder certain assumptions, and influencing factors have been discussed. JapanCalculation Method and deduced Parabola Calculation Method are applied tocalculate tension stress of geogrid, but results show an obvious differencebetween the two calculation means. The research indicates the ParabolaCalculation Method is more reasonable.
     (2) Column-Net Structure Embankments under layered buried embankmentand train running has been simulated firstly in home and abroad by numericalanalysis software FLAC3D V3.0 with two heights of embank and eight differentkinds of pile spacing. Research show that the pile spacing has large effect to settlement, stress of pile and net, forming of soil arch. When the pile spacing isbig, accumulated settlement and the force in pile is big, and it is difficult to formsoil arch. In terms of the settlement control of Column-Net StructureEmbankments, 2.0 meters of pile spacing should be the optimal pile spacing incomprehensive experimental section of unballasted track on Sui-Yu RailwayLine.
     (3) Through centrifugal model tests of Column-Net StructureEmbankments for ballastless truck with a geometrical scale of 1:80 in theDK134+820 section of comprehensive experimental section of unballasted trackon Sui-Yu Railway Line, the pile-soil interaction and settlement of two kinds ofColumn-Net Structure Embankments, whose pile spacing is 2 m and 3 mrespectively, are studied. It is shown that the requirement of residual settlementof unballasted trick can be met. The settlement increases when pile spacingchanges from 2m to 3 m. Two tests show that the beating capacity of the twostructures with different pile spacings has a great potential, if Column-NetStructure Embankments is designed based on settlement control.
     (4) Model test of Column-Net Structure Embankments was firstly designedwith a geometrical scale of 1:13 to investigate the effectiveness in the controllingof soft ground settlement of Express Passenger Line in china based onexperimental section of unballasted track on soil subgrade in the Dk134+820seetion of high embankment in comprehensive experimental section ofunballasted track on Sui-Yu Railway Line. The dimensional analysis method isused. Mechanism of flexible arch, strain and stress of pile and net, and settlementof subgrade are analyzed and researched in high embankment. The researchresults indicate that the accumulated settlement and residual settlement of soilsubgrade reinforced with Column-Net Structure Embankments is small enough tomeet the design standard of settlement. The net of the structure plays a large roleof load distribution, and the pile is able to reinforce the structure in verticaldimension. The pile beating capacity is composed of lateral friction resistanceand end bearing resistance; the existence of soft soil interlayer in the foundationmay result in negative friction, and the neutral point lies in the interface under thesoft soil layer.
     (5) Long-term observation tests in site are conducted in two kinds of different high embankment, and dynamic tests in construction site is conducted inlow embankment in comprehensive experimental section of unballasted track onSui-Yu Railway Line. The research results show that the post-constructionsettlement of soil subgrade reinforced with Column-Net Structure Embankmentsis small enough to meet the design standard of the construction of the unballastedtrack on the soil subgrade. The research of field real train test shows that axletoad has remarkable influence to stress of subgrade for ballastless track, andsome effect on acceleration rate. Whether in the condition of train or wagon,speed has little effect to the embankment response. After the attenuation within 3meters height of embankment, neither dynamic stress or acceleration isinfluential to reinforced bedding of Column-Net Structure Embankments.
     (6) On the basis of comparison and analysis of the research result obtainedabove, design calculation method of Column-Net Structure Embankments hasbeen summarized. In addition, the investigation when the embankment level islower than soil arch height is also carried out. At last, rational limitation ofminimum altitude of embankment is also gained, which means the height ofembankment should be higher than soil arch height in order to ensure safety andstabilization of Column-Net Structure Embankments.
引文
[1] 杨玲.回顾铁路发展历程,展示铁路技术成就[A].2005年中国科协学术年会论文集[C].北京:中国科学技术出版社,2006.1:172~177
    [2] 春香.德法日竞争中国高铁[J].交通与运输,2006.3:26~27
    [3] 卢祖文.树立全新建设理念,建设一流客运专线[J].铁道工程学报,2005.1:1~9
    [4] 俞展酞.国外高速列车发展简述与我国提速列车试验的回顾[J].铁道机车车辆,1999.3:1~7
    [5] #12
    [6] 李志.从历史看我国铁路的发展[J].铁道工程学报,1991.6:103~111
    [7] 方举.建国40年铁路发展政策的回顾与思考[J].铁道运输与经济,1989.10:13~15
    [8] 屈晓辉.秦沈客运专线主要设计技术[J].铁道科学与工程学报.2004,1(1):32~38
    [9] 江成,范佳,王继军.高速铁路无碴轨道设计关键技术.中国铁道科学,2004.25(2):42~47
    [10] 李怒放.高速铁路轨道结构的发展趋势[J].铁道建筑技术,1998.1:35~39
    [11] 曾宗根.客运专线铁路无碴轨道工程技术(上)[J].铁道建筑技术,2005.3:1~10
    [12] 何华武.我国客运专线应大力发展无碴轨道[J].中国铁路,2005.1:13~16
    [13] 赵坪锐.板式无碴轨道动力学性能分析与参数研究[D].成都:西南交通大学硕士学位论文,2003.9
    [14] 中国铁道学会.2002年铁路高新技术的进展[J].科技和产业,2004.4(2):18~24
    [15] 中铁二院工程集团有限责任公司,等.遂渝线无碴轨道线下工程关键技术试验研究总报告[R].成都:铁道第二勘察设计院,2007
    [16] 陈洁.公路软土地基处理及沉降计算研究综述[J].地基基础,2004.24 (2):70~72
    [17] 唐华,钱立新.软土地基处理方法综述[J].北方交通,2006.8:43~45
    [18] 乔正寿.软土研究五十年[J].铁道工程学报,2002.12增刊:379~386
    [19] 何华武.快速发展的中国高速铁路[J].学术动态,2006.4:1~16
    [20] 《上海铁道科技》编辑部.继往开来开拓创新为铁路跨越式发展再作贡献(特稿)[J].上海铁道科技,2004.4:1
    [21] 铁道科学研究院.客运专线无碴轨道铁路设计指南[S].北京:中国铁道出版社,2005.12:59~61
    [22] 肖宏,蒋关鲁,魏永幸.遂渝线无碴轨道桩网结构地基处理技术[J].铁道工程学报,2006.4:22~25
    [23] 王祯.当前客运专线建设中几个问题的探讨[J].铁道标准设计(客运专线铁路桥梁设计论文专辑),2007.2:5~7
    [24] Hun, J., Porbaha, A., andHuang, J.. 2D numerical modeling of a constructed geosynthetic-reinforced embankment over deep mixed columns. ASCE Geotechnical Special Publication (GSP) No. 131: Contemporary lssues in Foundation Engineering, ASCE GeoFrontiers, Austin, TX, 2005.Jan: 24-26.
    [25] Rutugandha Gangakhedkar. Geosynthetie. Reinforced pile Supported Embankments. Master of engineering, University of Florida, 2004
    [26] 张建勋,陈福全,简洪钰.桩承土工织物加筋地基的研究与工程应用综述[J].福建工程学院学报,2003.1(3):10~15
    [27] Li, Y., Aubeny, C., and Briaud, J.. "Geosynthetic Reinforced Pile Supported Embakments."Draft submitted to FHWA, Texas A & M University, College Station, 2002
    [28] #12
    [29] Alzamora, D., Wayne, M. H., Han, J.. Performance of SRW supported by geogrids and jet grout columns. Proe., ASCE Specialty Conf. on Performance Confirmation of Constructed Geotechnical Facilities, Geotechnical Special Publication, 2000 (94), 456—466.
    [30] Kuo, C.L., Heung, W., Tejidor, F.J., and Roberts, J.. A Case Study of Timber Pile in-situ soil reinforcement. Proceedings of the Conference American Society of Civil Engineers, Boston, Massachusetts, Geoteehnieal Special Publication, 1998 (81): 177-189.
    [31] Reid, W.M., Buchanan, N.W..Bridge approach support piling. Piling and Ground Treatment, Thomas Telford Ltd., London, 1984: 267-274.
    [32] Lin, K. Q., Wong, I. H.. Use of deep cement mixing to reduce settlements at bridge approaches. J. Geotech. Geoenviron. Eng., 1999.125 (4): 309-320.
    [33] 王钊,陆士强,刘伟等.全国第五届土工合成材料学术会议论文集[C].香港:现代知识出版社,2000
    [34] 饶为国.桩-网新工法加固软土地基理论与技术[R].博士后研究工作报告,北京:中国地震局地球物理研究所,2005.3
    [35] 陈凯杰,雷学文.桩-网复合地基桩土应力比的影响因素分析[J].土工基础,2006.20(1):57~59
    [36] 孙献国,张思峰,陈文.粉喷桩与土工格栅联合加固技术的现场试验研究[J].山东大学学报(工学版),2004.34(5):72~75
    [37] 孙文怀,董金玉,杨传喜,等.桩承土工合成材料复合地基的研究[J].工程勘察.2004.6:7~9,35
    [38] 陈仁朋,贾宁,陈云敏.桩承式加筋路堤受力机理及沉降分析[J].岩石力学与工程学报,2005.24(23):4358~4367
    [39] 徐世强,折学森,李培林,等.桩-网复合基础在公路盐渍土地基处理中的应用[J].西安工程科技学院学报,2006.20(5):587~589,594
    [40] 杨瑞,闫澍旺,等.碎石桩与土工格栅联合加固高原湿地软路基机理研究[J].公路交通科技,2006.23(6):36~39
    [41] 蒋肼.土工格栅砂垫层和粉煤灰混凝土碎石桩对桥头软基的加固技术[J].石家庄铁道学院学报,2002.15(增刊):77~79
    [42] 孙宏林,王祥,李丹.土工材料与高速铁路路基工后沉降控制[J].铁勘察,2005.1:36~41
    [43] 丁国玺,王旭.桩承式路堤在铁路软土地基处理工程中的应用[J].水利与建筑工程学报,2006.4(1):61~63
    [44] 黄建国.预应力管桩桩网结构加固软基施工控制技术[J].铁道标准设计,2006.9:12~15
    [45] 蒋关鲁,詹永祥,等.无碴轨道桩板结构路基设计理论及计算理论的 探讨[A].铁路客运专线建设技术交流会论文集[C].武汉:长江出版社,2005:398~401
    [46] Gabr, M. and Han, J. (2005). Geosynthetic reinforcement for soft foundations: US perspectives. Invited paper, ASCE Geotechnical Special Publication (GSP) No. 141: International Perspectives on soil reinforcement applications, ASCE GeoFrontiers, Austin, TX, Jan. 24-26.
    [47] Collin, J.G., Watson, C.H., and Han, J.(2005).Column-supported embankment solves time constraint for new road construction. ASCE Geotechnical Special Publication (GSP) No. 131: Contemporary Issues in Foundation Engineering, ASCE GeoFrontiers, Austin, TX, Jan. 24-26.
    [48] #12
    [49] Naughton, P.J., and Kempton, G. T. (2005). "Comparison of analytical and numerical analysis design methods for piled embankments." Proc., Geo-Frontiers 2005, ASCE Geo-Institute and IFAI Geosynthetic Institute, Austin, Tex.
    [50] J. Han, M.ASCE, M. A. Gabr, M.ASCE. Numerical Analysis of Geosynthetic-Reinforced and Pile-Supported Earth Platforms over Soft Soil. Journal of Geotechnical and Geoenvironmental engineering, 2002.1: 44~53
    [51] 铁路公路建设的地基处理—采用桩基和土工合成材料加固的复合地基理论_规范_经验_应用实例(德国卡塞尔大学的模型试验)
    [52] #12
    [53] Huang, J.,Han, J.,andPorbaha, A. (2006). Two and three-dimensional Modeling of Deep Mixed Columns under Embankments. Proceedings of the ASCE GeoCongress 2006, Atlanta, GA.
    [54] #12
    [55] 王麟书.铁路建设高潮迭起[J].铁道知识,1999.5:26~31
    [56] Madhyannapu, R.S., Puppala, A.J., Hossain, S., Han, J., and Porbaha, A. (2006). Analysis of geotextile reinforced embankment over deep mixed soil columns using numerical and analytical tools. Proceedings of the ASCE GeoCongress 2006,. Atlanta, GA
    [57] Han, J., Chai, J.C., Leshchinsky, D., and Shen, S.L. (2004). Evaluation of deep-seated slope stability of embankments over deep mixed foundations. Geotechnical Special Publication No. 124, J.P. Turner and P.W. Mayne (eds), GeoSupport 2004, ASCE Geo-Institute and ADSC, Jan. 29-31, Orlando, 945-954.
    [58] Yah, L., Yang, J.S., and Han, J. (2006)."Parametric study of geosynthetie-reinforeed pile-supported embankments." Advances in Earth Structures: Research to Practice, ASCE Geotechnical Special Publication No. 151, Proceedings of the GeoShanghai International Conference 2006, edited by Han, Yin, White, and Lin, Shanghai, China, June 6to 8, 255-261.
    [59] 饶为国,江辉煌,尤昌龙.桩-网复合地基工后沉降量的三点推算法[J].岩土工程界,2001.4(8):55~57
    [60] 绕为国,江辉煌,邓安雄.桩-网复合路基工后沉降的实时预测[J].北京交通管理干部学院学报,2001.11(1):10~16
    [61] 饶为国,赵成刚.复合地基工后沉降的薄板变形模拟[J].应用力学学报,2002.19(2):133~136
    [62] 饶为国,江辉煌,侯庆华.桩-网复合地基工后沉降的薄板理论解[J].水利学报,2002.4:24~27
    [63] 于延寿,张卉,饶为国.土工合成材料加固软土路堤的力学分析[J].铁道标准设计,2002.8:45~46
    [64] 鲁长亮,黄生文,朱树彬.桩承土工加筋地基桩土应力比计算及其优化设计[J].西部探矿工程,2005(5):43~45
    [65] 李昌宁,王炳龙,周顺华.CFG桩-网复合结构软基加固技术及其实际应用[J].铁道工程学报,2006.1:27~31
    [66] 曹新文,卿三惠,周立新.桩网结构路基土工格栅加筋效应的试验研究[J].岩石力学与工程学报,2006.25(增1):3162~3167
    [67] 晏莉.桩承土工合成材料加筋垫层复合地基作用机理数值分析[D].长沙:长沙理工大学硕士学位论文,2004.5
    [68] 陈凯杰.桩-网复合地基工作性状的研究.武汉:武汉科技大学硕士学位论文,2005.11
    [69] 闫澍旺,周宏杰,崔溦,等.水泥土桩与土工格栅联合加固沟谷软基机理研究[J].岩土力学,2005.26(4):633~637
    [70] 陈福全,李大勇.桩承加筋路堤性状的有限元分析[J].山东科技大学学报(自然科学版),2006.25(2):50~53
    [71] 强小俊.桩-网复台地基的性状分析研究[D].南昌:南昌大学硕士学位论文,2006.6
    [72] 汪强.新建时速200 km遂渝线站场设计[J].铁道运输与经济,27(10):20~21
    [73] 魏永幸,蒋关鲁.无碴轨道路基关键技术探讨-以遂渝线无碴轨道综合试验段为例[J].铁道工程学报,2006.5:39~44
    [74] #12
    [75] #12
    [76] 饶为国.桩网结构路基沉降机理及设计方法研究[D].北京:北方交通大学博士学位论文,2002.4
    [77] 赵圆圆.桩-网新工法处理软土地基的原理与实践[J].北京交通管理干部学院学报,2004.14(1):24~26
    [78] 马彩雯,张卉,等.桩-网法加固软土地基的机理与工程实践[J].铁道建筑,2002.6:36~38
    [79] 李强,郑健龙.桩承土工格网褥垫层的承载特性与设计计算[J].公路,2005.(5):6~9
    [80] 陈宏友,李彬.桩承土工合成材料复合地基在潭邵高速公路软基处理中的应用[J].中南公路工程,2002.27(1):40~44
    [81] 饶为国.桩-网复合地基原理及实践[M].中国水利水电出版社,2004.8:35
    [82] C.J.F.P.Jones, C.R.Lawson, D.J.Ayres. Geotextile reinforced piled embankments [A]. Geotextile, Geomembranes and Related Products [C], 1990: 155-160
    [83] 龚晓南.复合地基理论及工程应用[M].北京:中国建筑工业出版社,2002
    [84] 叶永峰.排桩支护结构中的土拱效应[D].河南郑州:郑州大学硕士学位论文,2006.4:7~13
    [85] Hewlett W J, Randolph M F. Analysis of piled embankments [J]. Ground Engineering, 1988, 21(3): 12~18
    [86] 夏元友,芮瑞.刚性桩加固软土路基竖向土拱效应的试验分析[J].岩土工程学报,2006.28(3):327~331
    [87] 曹卫平,陈仁朋,陈云敏.桩承式加筋路堤土拱效应试验研究[J].岩土工程学报,2007.29(3):436~441
    [88] HSIEN-JEN S T. The arching mechanism on the micro level utilizing photoelasticity modeling[D]. University of Massachusetts Lowell, 2001
    [89] 陈云敏,贾宁,陈仁朋.桩承式路堤土拱效应分析[J].中国公路学报,2004.17(4):1~6
    [90] 周镜,叶阳升,蔡德钩.国外加筋垫层桩支承路基计算方法分析[J].中国铁道科学,2007.28(2):1~6
    [91] British Standard Institute. British Standard. 8006 Strengthened/Reinforced Soils and Other Fills IS]. London: British Standard Institute, 1995
    [92] Nordic Geotechnical Society. Nordic Handbook. Reinforced Soils and Fills [S]. Stockholm: Nordic Geolechnieal Society, 2002
    [93] Railway Technology Research Institute. The design and Construction Handbook of Mixing Piled Foundation (Machine Mixing) [M]. Tokyo: Railway Technology Research Institute, 2001. in Japanese
    [94] Deutsche Gesellschaft fur Geoleehnike E V. Entwurf der Empfeblung "Bewehrte Erdkorper Auf Punkf-Order Linienfomigen Traggliendem" [S]. Berlin: Emst&Sohn, 2004.
    [95] 《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1997.3
    [96] 蒋关鲁,吴丽君,李华明,等.桩网结构加固京沪高速铁路饱和松软土地基的研究[A].中国土木工程学会第十届土力学及岩土工程学术会议论文集[C](已录用)
    [97] 李海芳.路堤荷载下复合地基沉降计算方法研究[D].杭州:浙江大学博士学位论文,2004.4
    [98] 龚晓南.复合地基设计和施工指南[M].北京:人民交通出版社,2003.9
    [99] 吴慧明.不同刚度基础下复合地基性状研究[D].杭州:浙江大学博士 学位论文,2000
    [100] 张土乔.水泥土的应力应变关系及搅拌桩破坏特性研究[D].杭州:浙江大学博士学位论文,1992
    [101] 张捷.地基处理中双层地基的应力与变形分析[D].上海:同济大学硕士学位论文,1995
    [102] Schweiger H F, Pande G N. Numerical analysis of stone column reinforced foundation[J]. Computers and Geotechmics, 1998 (2): 347~372.
    [103] 曾朝杰,曹名葆.水泥土搅拌桩复合地基沉降实用计算方法[A].复合地基理论与实践学术讨论会论文集[C].杭州:浙江大学出版社,1996.234~238.
    [104] 杨涛.复合地基沉降计算理论、位移反分析模型和二灰土桩软基加固试验研究[D].南京:河海大学博士学位论文,1997
    [105] Onaine K, Ohno S. Deformation analysis of composite ground by homogenization method[A]. Proceeding of the Fourteenth International Conference on Soil Mechanics and Foundation Engineering[C]. Rotterdam Balkema AA, 1997:719~722
    [106] 徐洋.复合双层地基应力扩散效应研究[D].南京:河海大学硕士学位论文,2001.1
    [107] 闫明礼,王明山,闫雪峰,张东刚.多桩型复合地基设计计算方法探讨[J].岩土工程学报,2003.25(3):352~355
    [108] 郑俊杰,区剑华,袁内镇,等.多元复合地基压缩模量参变量变分原理解析解[J].岩土工程学报,2003.25(3):317~321
    [109] 尚新生,邵生俊,谢定义.多元复合地基的复合模量计算[J].西安理工大学学报,2004.20(3):233~236
    [110] 王凤池,朱浮声,王晓初.复合地基复合模量的理论修正[J].东北大学学报(自然科学版),2003.24(5):491~494
    [111] 杨慧.双层地基和复合地基压力扩散角比较分析[D].杭州:浙江大学硕士学位论文,2000
    [112] Geddes J.D..Stress in Foundation Soils Due to Vertical Subsurface Load. Geotechnique, 1966, 231 (15)
    [113] 黄绍铭.减少沉降量桩基的设计与初步实践[A].第六届全国土力学及基础工程学术会议论文集[C].上海:同济大学出版社,1991
    [114] 王炳龙,周顺华,杨龙才.高速铁路软土路基工后沉降试验研究[J].同 济大学学报,2003.31(10):1163~1167
    [115] 王强.塑料板排水预压法加固软基机理及沉降计算方法研究[D].南京:河海大学硕士学位论文,2004.3
    [116] 张惠明,徐玉胜,曾巧玲.深圳软土变形特性与工后沉降[J].岩土工程学报,2002.24(4):509~514
    [117] Newland P L, Allely B H. A study of the consolidation characterislics of a clay[J].Geolechnique, 1960, 10 (2): 62-74
    [118] Ahoshi H. An experimental invesliaalion on the similitude in the consolidation of a soll clay including the secondary creep settlement[A]. Proc 80th ICSMFE: 1973 (4)
    [119] Horn H M, Lambe T W. Settlement of huildinn on the MIT Campus[J]. J Soil Mechanics and Foundation Engineering Division, ASCE, 1964, 90 (5): 181-195
    [120] 刘世明.软粘上次固结变形特性研究[D].杭州:浙江大学博士学位论文,1988
    [121] Wahls H E. Analysis of primary and secondary consolidation[J]. J Soil Mechanics and Foundation Engineering Division, ASCE, 1962, 88 (6): 207-231.
    [122] Johnson S J. Precompression for improved foundation soils[J].J Soil Mechanics and Foundation Engineering Division, ASCE, 1970, 96 (1): 111-144.
    [123] 深圳市标准,深圳地区地基处理技术规范(SJG04-96)[S],1996.7
    [124] 肖波.成稚高速路堤质量评估与工后沉降控制的研究[D].成都:西南交通大学硕士学位论文,2005.9
    [125] 贾海莉,王成华,李江洪.基于土拱效应的抗滑桩与护壁桩的桩间距分析[J].工程地址学报,2004,12(1):98~103
    [126] 铁道部第三勘测设计院.铁路桥涵地基和基础设计规范(TB10002.5-99)[S].中国铁道出版社,2000.1:25~26
    [127] 中国建筑科学研究院.建筑桩基技术规范(JGJ 94-94)[S].中国建筑工业出版社,1995.9:43~44
    [128] 邢建营,邢义川,梁建辉.土工离心模型试验研究的进展与思考[J].水利与建筑工程学报,2005.3(1):27-31
    [129] 白冰,周健.土工离心模型试验技术的一些进展[J].大坝观测与士工 测试,2001.25(1):36~39,42
    [130] Schofield A N. Cambridge geotechnical centrifuge operation. Geotechnique, 1981, 30 (3): 227~268.
    [131] 张俊,杨志银.土工离心模型试验的发展与应用[J].岩土工程界,2005.8(6):29~30
    [132] Miyake, M., Yanagihata, T. Heap shape of Materials Dumped from Hopper barges by drum Centrifuge [C], 1999:745-748
    [133] De Souza, E.A centrifuge for solving mining problems [C]. ICPMG'02, PiIlips, R., Guo, P&Popeseu, R. (edds): 49-54.
    [134] Srnith.R.W.Pavne.S.J.& Miller, D.L. INEEL environmental geocentrifuge facility developments [C]. ICPMG'02, Pillips, R., Guo, P & Popeseu, R. (edds): 55~58
    [135] Matsuda, T., Higuchi, s.Development of the large geoteehnical centrifuge and shaking table of obayashi[C]. ICPMG'02, Pillips, R., Guo, P&Popeseu, R. (edds): 63~68
    [136] 邢建营.土工离心模型试验技术的研究和应用[D].陕西杨凌:西北农林科技大学硕士学位论文,2005.3:7~9
    [137] 左东启.相似理论20世纪的演进和21世纪的展望[J].水利水电科技进展,1997(2):10~15.
    [138] 侯瑜京.高土石坝离心模型试验技术及位移反分析研究[D].北京:中国水利水电科学研究院博士学位论文,1996
    [139] 周健,刘宁.离心模型试验技术应用的新进展[J].上海地质,2002,(1):52-56
    [140] 吴庆勇.钻孔桩受力性状的离心模型试验研究[D].杭州:浙江大学硕士学位论文,2006.1:15~17
    [141] 袁文忠.相似理论与静力学模型试验[M].成都:西南交通大学出版社,1998.5:7-40
    [142] 林皋,朱彤,林蓓.结构动力模型试验的相似技巧[J].大连理工大学学报,2000.40(1):1~8
    [143] 王智猛,蒋关鲁,魏永幸.红层泥岩填料物理力学特性的试验研究[J].路基工程,2006.5:86-88
    [144] 肖宏,蒋关鲁,魏永幸.遂渝线无碴轨道桩网结构解析计算探讨[J].铁道建筑,2006.11:93~95
    [145] 刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.9:3~15
    [146] 龚晓南.土工计算机分析[M].北京:中国建筑工业出版社,2000.10:11~31
    [147] 邹栋,郑宏.快速拉格朗日法及其在边坡稳定性分析中的应用[J].矿业研究与开发,2005.25(5):80~83
    [148] 胡伟.软土地层地铁车站深基坑开挖围护结构稳定性数值模拟分析[D].成都:西南交通大学硕士学位论文,2005.9:13~14
    [149] 吴洪词.长江三峡水利枢纽船闸陡高边稳定性的拉格朗日元分析[J].贵州工业大学学报,1998.27(1):32~38
    [150] 杨新安,黄宏伟,丁全录.FLAC程序及其在隧道工程中的应用[J].上海铁道大学学报(自然科学版),1996.17(4):39~44
    [151] 胡斌.深切峡谷区大型地下洞室群围岩稳定性的动态数值仿真研究[D].成都:成都理工学院博士学位论文,2001.7:48~49
    [152] 马健.粘性土坡破坏机制及FLAC数值模拟[D].上海:同济大学博士学位论文,2006.2:38~39
    [153] 郝瀛.铁道工程[M].北京:中国铁道出版社,2000:18
    [154] 厚美瑛,陆坤权.奇异的颗粒物质[J].新材料产业,2001.2:26~28
    [155] 王乾坤.抗滑桩的桩间土拱和临界间距的探讨[J].武汉理工大学学报,2005.27(8):64~67
    [156] 周小文,濮家骝.隧洞结构受力及变形特征的离心试验模型研究[J].清华大学学报(自然科学版),2001.41(8):110~112,116.
    [157] 周小文,濮家骝,包乘纲.砂土中隧洞开挖稳定机理及松动土压力研究[J].长江科学院院报,1999.16(4):9~14
    [158] 遂渝线无碴轨道综合试验段沉降观测组.遂渝线无碴轨道综合试验段路基-沉降观测分析报告[R].重庆:2006.10

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700