用户名: 密码: 验证码:
磁性纳米材料的合成及磁场诱导组装
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在高密度磁存储介质、磁流体以及生物医学等领域中的巨大应用前景的刺激下,磁性纳米材料的合成研究受到了越来越广泛的关注。此外,磁性的有序纳米结构由于结构单元的空间取向和排列而具有许多崭新的性质,也是制备小型化纳米器件的基础,因此将磁性纳米粒子组装成各种有序结构具有显著的科学意义和应用价值。本论文旨在探索磁性纳米材料的液相合成新途径,研究磁性能与纳米材料结构之间的关联,发展简单有效的组装技术以获得新颖的有序磁性纳米结构。详细内容归纳如下:
     1.以Bi(NO_3)_3、Fe(NO_3)_3和NaOH为原料,采用温和的水热反应体系合成了方形单晶Bi_2Fe_4O_9纳米片,其边长在100—150nm之间,厚度约为17.5nm。通过变化金属粒子浓度、氢氧根离子浓度和是否加入表面活性剂CTAB,可以在一定程度上调节方形Bi_2Fe_4O_9纳米片的方形度以及尺寸(边长和厚度),基于这些实验结果我们提出了方形纳米片可能的生长机理。电子顺磁共振结果显示,Bi_2Fe_4O_9纳米片的反铁磁—顺磁转变的奈尔温度(T_N)降低约20K;同时这种具有较薄的新颖片状结构有可能诱导Fe—O—Fe之间的反对称超交换作用而在低于奈尔温度以下出现弱的铁磁性。该结果对进一步认识复杂的三元反铁磁纳米材料的反常磁性能有一定的启示作用。
     2.通过简单的两步法合成了碳基磁性纳米复合材料(Fe_3O_4/C和Fe_3O_4/α-Fe/C),即首先在水热体系中形成含高度分散的Fe_3O_4纳米粒子的聚合物PVP凝胶,然后在氮气气氛下不同温度碳化聚合物PVP。改变水热反应的温度等参数可以调控球形Fe_3O_4纳米粒子的大小(12.5~25nm)和尺寸分布以及在聚合物凝胶中的含量。高温碳化后(400℃),具有良好结晶性的球形Fe_3O_4纳米粒子被高度均匀地分散于非晶碳基质中,升高碳化温度至1000℃,发生了碳热还原Fe_3O_4反应,使一部分Fe_3O_4被还原为α-Fe。磁测量结果发现Fe_3O_4/C材料具有超顺磁性,而Fe_3O_4/α-Fe/C则为铁磁性。由于复合材料的电磁阻抗匹配不平衡(μ′<ε′)以及较低的电磁波衰减常数α(μ″值较小),所以制备的Fe_3O_4/C和Fe_3O_4/α-Fe/C纳米复合材料在0.5—16GHz区域内微波吸收性能较差。该结果对研究频率在GHz范围内的高效磁性纳米吸波材料具有一定的启示作用。
     3.通过一种有效的聚合物辅助下的磁场诱导组装法获得了新颖的一维Co纳米“豆荚”结构。在每一个“豆荚”中,Co纳米粒子(“豆子”)都沿着外磁场的磁力线方向规则地排列,并且相邻纳米粒子间存在周期性的间距,而表面吸附的聚合物PVP高分子链相互缠绕和交织来永久保持这种有序的结构,即使外磁场移走后仍然能稳定存在。变化PVP的用量和磁场强度都可以调控Co纳米“豆荚”的形貌以及Co纳米粒子的有序程度。磁性测量显示在纳米“豆荚”中Co纳米粒子之间存在明显的铁磁耦合致使其“豆荚”的磁学性能类似于一个整体的磁性纳米线而不是单个的纳米粒子的简单集合。这种新颖的磁性纳米“豆荚”结构为研究一维体系的磁化问题和磁性粒子之间的长程或短程有序交换耦合作用以及新颖的输运性质等提供了一种非常理想的模型。
     4.以二茂铁,过氧化氢和聚乙烯吡咯烷酮(PVP)为原料,用混合溶剂热法(乙醇—水)合成了尺寸均匀的单晶Fe_3O_4纳米微粒。这些Fe_3O_4纳米微粒展现了几乎完美的立方体结构,它们的平均边长约为48nm,其表面被包覆上一层厚度约为8nm的PVP层。在强烈的磁偶极子作用的驱动下,这些纳米立方体能够自组装成磁通闭合的纳米环,通常这些环都是由十几个或几十个纳米立方体构成的,其直径为200—500nm左右,同时环的厚度仅为一个纳米粒子厚,而且环中每个纳米立方体互相之间被完全的分开。此外还发现只有那些平均尺寸接近于50nm的纳米立方体可以组装成纳米环,而尺寸稍小的只能排列成常见的偶极子纳米链,这表明磁通闭合的纳米环是通过偶极子纳米链的“退化”而来的,并且从纳米链退化为纳米环可能需要克服一定的势垒,足够大的粒子因磁相互作用强才能克服这个势垒,形成环。
Driven by the promising applications in high-density magnetic data storage media, ferrofluids, and biomedicine, an important research effort has been directed towards the study on the synthesis of nanoscale magnetic materials. Moreover, ordered functional structures of magnetic nanomaterials have some brand-new properties resulted from the spatial orientation and arrangement of the building blocks and can be viewed as the foundation for the formation of novel miniaturized nanodevices. So research on the assembly of nanoscale magnetic materials is very important from the point of view of science and applications.
     The objective of this dissertation is to explore new avenue for the solution-based synthesis of nanoscale magnetic materials, investigate the relationship between their magnetic parameters and their structure (size and/or shape), and develop some simple and effective technologies for assembling the magnetic block buildings into highly ordered functional structures. The main parts of the results are summarized below:
     1. Single-crystalline, square-like Bi_2Fe_4O_9 nanosheets were synthesized via a mild hydrothermal process using ferric nitrate, bismuth nitrate and sodium hydroxide as starting materials. The edge length and the thickness of a representative square-like nanosheet were 100-150 nm and 17.5 nm, respectively. The squareness and the size (edge length and thickness) of nanosheets could be adjusted to a certain extent through varying the concentration of metal ions and OH~- and adding the surfactant CTAB. Possible mechanisms for the formation of square-like nanosheets have been tentatively proposed on the basis of experimental data. Electron spin resonance (ESR) measurement suggested that the small size of Bi_2Fe_4O_9 nanosheets could effectively lower the Néel temperature (T_N) about 20 K and the novel sheet-like structure with thin thickness would induce the antisymmetric superexchange interaction between Fe to appear the weak ferromagnetic moment below T_N. These results would help to the more understand of the abnormal magnetic properties of other antiferromagnetic ternary transition metal oxide nanomaterials.
     2. Fe_3O_4/C and Fe_3O_4/α-Fe/C nanocomposites were synthesized through the formation of polymer gel with highly dispersed magnetic iron oxide nanoparticles in hydrothermal system, followed by carbonizing the gel at different temperatures under N_2 atmosphere, respectively. The diameter and the size distribution of spherical Fe_3O_4 nanoparticles could be controlled by varying the temperature and the concentration of oxidizing agent in the hydrothermal process. After the PVP gels was carbonized at 400℃, these spherical Fe_3O_4 nanoparticles were homogeneously embedded in amorphous carbon matrix. Increasing the annealing temperature to higher temperature (1000℃) could result in the partial reduction of iron oxide to a-Fe through nanoscale carbothermic reaction. Magnetic measurement indicated that the Fe_3O_4/C nanocomposites was superparamagnetic, but the Fe_3O_4/α-Fe/C nanocomposites showed obvious ferromagnetic. Due to the imbalance of the electromagnetic match, the as-prepared carbon-based magnetic nanocomposites showed the bad microwave adsorption in the 0.5-16 GHz. These results could be in favor of the investigation of other magnetic nanocomposites with excellent microwave adsorption in the range of GHz.
     3. A unique one-dimensional (1D) legumelike structure of cobalt nanoparticles was prepared by a simple magnetic field-induced assembly approach under the assistance of polyvinylpyrrolidone (PVP). In each "legume", cobalt nanoparticles were regularly aligned along the lines of magnetic force in a row with visible spacing between adjacent nanoparticles, which were permanently conserved through the interpenetration and bridging between PVP molecules adsorbed on the surface of Co nanoparticles even after the removal of external magnetic field. Varying the concentration of PVP and changing the strength of applied magnetic field could adjust to a certain extent the shape and size of one-dimensional legumelike structures. Magnetic measurement showed that the legumelike assemblies of cobalt nanoparticles could be ferromagnetically coupled and hence behaved as magnetic nanowires rather than as individual particles. This novel legumelike structure would provide a new model system for the study of magnetization and transport properties of one-dimensional ordered magnetic nanostructures.
     4. Single-crystalline magnetite nanoparticles with a relatively narrow size distribution were solvothermally synthesized in a water-alcohol mixed solvent solution using ferrocene ((C_5H_5)_2Fe), polyvinylpyrrolidone (PVP) and hydrogen peroxide (H_2O_2) as starting materials. These magnetite nanoparticles with average size of 48 nm exhibited almost standard cubic-like shape and were coated with a thick PVP layer (~8 nm) to form magnetite-PVP core-shell structure. Driven by strong magnetic dipolar attractions, magnetite nanocubes could be assembled into flux-clusure rings around 200-500 nm in diameter, which consisted of several to dozens of nanocubes. The rings had one-particle annular thickness and individual nanocubes were spaced fully together. It was found that only nanocubes, the average size of which was close to 50 nm, could be assembled into rings, while slight smaller particles were aligned in dipolar chains, suggesting that ring self-assembly could be produced by the degradation of dipolar chains that were metastable structure with respect to rings, and only larger nanocubes with strong magnetic dipoles could overcome the potential barrier for the transformation from chains to rings.
引文
[1] 朱静等,纳米材料和器件,清华大学出版社,2003.
    [2] 张立德,牟季美,纳米材料与纳米结构,科学出版社2001.
    [3] 李永军,刘春艳,有序纳米结构薄膜材料,化学工业出版社,2006.
    [4] 陈乾旺,纳米材料基础讲义,中国科学技术大学出版社,2006.
    [5] Moreau, W. M.; Semiconductor Lithography Academic Press: San Diego, CA,2002.
    [6] Smith, H. I.; Schatternberg, M. L.; Hector, S. D.; Ferrera, J.; Moon, E. E.; Yang, I. Y.; Burkhardt, M. Microelectron. Engng. 1996, 32, 143.
    [7] Choi, J. O.; Jeong, H. S.; Pflug, D. G. Akinwande, A. I.; Smith, H. I. Appl. Phys. Lett. 1999, 74, 3050.
    [8] Djomehri, I. J.; Savas, T. A.; Smith, H. I. J. Vac. Sci. Technol. B 1998, 16, 3426.
    [9] Campbell, M.; Sharp, D. N.; Harrison, M. T.; Denning, R. G.; Turberfield, A. J. Nature 2000, 404, 53.
    [10] Hemdon, M. K.; Collins, R. T; Hollingsworth, R. E.; Larson, P. R.; Johnson, M. B. Appl. Phys. Lett. 1999, 74, 141.
    [11] Morimoto, H.; Sasaki, Y.; Saitoh, K.; Watakabe, Y.; Kato, T. Microelectron. Engng. 1986, 4, 163.
    [12] Dial, O.; Cheng, C. C.; Schere, A. J. Vac. Sci. Technol. B 1998, 16, 3887.
    [13] Nicolau, D. V.; Taguchi, T.; Taniguchi, H.; Yoshikawa, S. Langmuir 1999, 15, 3845.
    [14] Wadu-Mesthrige K.; Xu, S.; Amro, N. A.; Liu G. Langmuir 1999, 15, 8580.
    [15] Xu, S.; Miller, S.; Laibinis, P. E.; Liu, G. Langmuir 1999, 15, 7244.
    [16] Hong, S.; Mirkin, C. A. Science 2000, 288, 1808.
    [17] Chou, S. Y.; Krauss, P. R.; Renstrom, P. J. Science 1996, 272, 85.
    [18] Liu, X. G.; Fu, L.; Hong, S. H.; Dravid, V. P.; Mirkin, C. A. Adv. Mater. 2002,14, 231.
    [19] Zhang, H.; Jin, R. C.; Mirkin, C. A. Nano Lett. 2004, 4, 1493.
    [20] Smith, J. C.; Lee, K. B.; Wang, Q.; Finn, M. G.; Johnson, J. E.; Mirkin, C. A. Nano Lett. 2003, 3, 883.
    [21] Manoharan, H. C.; Lutz, C. P.; Eigler, D. M. Nature 2000, 403, 512.
    [22] Hla, S. W.; Meyer, G.; Rieder, K. H. Chem. Phys. Chem. 2001, 2, 361.
    [23] Cruchon-Dupeyrat, S.; Porthun, S.; Liu, G. Y. Appl. Surf. Sci. 2001, 175-176,636.
    [24] Hang, S. H.; Mirkin, C. A. Science 2001, 288, 1808.
    [25] Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    [26] Murray, C. B.; Kagan, C. R.; Baweidi, M. G. Annu. Rev. Mater Sci. 2000, 30,545.
    [27] Collier, C. P.; Vossmeyer, T.; Heath, J. R. Annu. Rev. Phys. Chem. 1998, 49, 371.
    [28] Collier, C. P.; Saykally, R. J.; Shiang, J. J.; Henrichs, S. E.; Heath, J. R. Science 1997, 277, 1978.
    [29] Fink, J.; Kiely, C. J.; Bethel, D.; Schiffrin, D. J. Chem. Mater 1998, 10, 922.
    [30] Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. Nature 1996, 382,607.
    [31] Denkov, N. D.; Velev, O. D.; Kralchevski, P. A..; Ivanov, I. B.; Yoshimura, H.; Nagayama, K. Langmuir 1992, 8, 3183.
    [32] Ye, Y. H.; LeBlanc, F.; Hache, A.; Truong, V. V. Appl. Phys. Lett. 2001, 78, 52.
    [33] Wong, S.; Kitaev, V.; Ozin, G. A. J. Am. Chem. Soc. 2003, 125, 15589.
    [34] Wang, L. Z.; Ebina, Y.; Takada, K.; Sasaki, T. J. Phys. Chem. B 2004, 108, 4283.
    [35] Xiong, H., Cheng, M.; Zhen, Z.; Zhang, X.; Shen, J. C. Adv. Mater. 1998, 10, 529.
    [36] Hao, E.; Lian, T. Chem. Mater. 2000, 12, 3392.
    [37] Blodgett, K. B.; Langmuir, I. Phys. Rev. 1937, 57, 964.
    [38] Hassenkamp, T.; Norgaard, K.; Iverson, L.; Kiely, C. J.; Brust, M.; Bjornholm, T.Adv. Mater. 2002, 14, 1126.
    [39] Reuter, T.; Vidoni, O.; Torma, V.; Schmid, G.; Nan, L.; Gleiche, M.; Chi, L.; Fuchs, H. Nano Lett. 2002, 2, 709.
    [40] Shenhar, R.; Rotello, V. M. Acc. Chem. Rev. 2003, 36, 549.
    [41] Fullam, S.; Rao, S. N.; Fitzmanurice, D. J. Phys. Chem. B 2000, 104, 6164.
    [42] Frankamp, B. L.; Boal, A. K..; Tuominen, M. T.; Rotello, V. M. J Am. Chem. Soc. 2005, 127, 9731.
    [43] Boal, A. K..; Frankamp, B. L.; Uzun, O.; Tuominen, M. T.; Rotello, V. M. Chem. Mater. 2004, 16, 3252.
    [44] Yao, B. D.; Wang, N. J. Phys. Chem. B 2001, 105, 11395.
    [45] Pena, D. J.; Mbindyo, J. K. N.; Carado, A. J.; Mallouk, T. E.; Keating, C. D.; Razavi, B.; Mayer, T. S. J. Phys. Chem. B 2002, 106, 7458.
    [46] Thum-Albrecht, T.; Schotter, J.; Kastle, G. A.; Emley, N.; Shibauchi, T.;Krusin-Elbaum, L.; Guarini, K.; Black, C. T.; Tuominen, M. T.; Russell, T. P. Science 2000, 290, 2126.
    [47] Pan, Z.; Lai, H. L.; Au, F. C. K.; Duan, X.; Zhou, W.; Shi, W.; Wang, N.; Lee, C.S.; Wong, N. B.; Lee, S. T.; Xie, S. Adv. Mater. 2000, 12, 1186.
    [48] Zach, M. P.; Ng, K. H.; Penner, R. M. Science 2000, 290, 2120.
    [49] Chan. E. W. L.; Yu, L. Langmuir 2002, 18, 311.
    [50] Marx, E.; Ginger, D. S.; Walzer, K.; Stokbro, K.; Greenham, N. C. Nano Lett.2002, 2, 911.
    [51] Colvin, V. L.; Goldstein, A. N.; Alivisatos, A. P. J. Am. Chem. Soc. 1992, 114,5221.
    [52] Stein, A. Microporous and Mesoporous Materials 2001, 44-45, 227.
    [53] Mirkin, C. A. MRS Bulletin 2000, 25, 43.
    [54] Lu, A. H.; Salabas, E. L.; Schuth, F. Angew Chem. Int. Ed. 2007, 46, 1222.
    [55] Iwaki, T.; Kakihara, Y.; Toda, T.; Abdulah, M.; Okuyama, K. J. Appl. Phys.2003, 94, 6807.
    [56] Sorensen, C. M. Magnetism in Nanoscale Materials in Chemistry (Ed: Klabunde,K. J.), Wiley-Interscience Publication, NewYork, 2001.
    [57] Batlle, X.; Labarta, A. J. Phys. D 2002, 35, R15.
    [58] Kodama, R. H. J. Magn. Magn. Mater. 1999, 200, 359.
    [59] B(?)dker, F.; M(?)rup, S.; Linderoth, S. Phys. Rev. Lett. 1994, 72, 282.
    [60] Wang, Y.; Yang, C. M.; Schmidt, W.; Spliethoff, B.; Bill, E.; Schuth, F. Adv. Mater. 2005, 17, 53.
    [61] Nogues, J.; Sort, J.; Langlais, V.; Skumryev, V.; Surinach, S.; Mufioz, J. S.; Baro, M. D. Phys. Rep. 2005, 422, 65.
    [62] Zeng, H.; Li, J.; Zhang, L.; Sun, S. H. Nature 2002, 420, 395.
    [63] Comstock, R. L. Introduction to Magnetism and Magnetic Recording (New York: Wiley) 1999.
    [64] Terris, B. D.; Folks, L.; Weller, D.; Baglin, J. E. E.; Kellock, A. J. Rothuizen, H.; Vettiger, P. Appl. Phys. Lett. 1999, 75, 403.
    [65] Wood, R. IEEE Trans. Magn. 2000, 36, 36.
    [66] Sellmyer, D. J.; Luo, C. P.; Qiang, Y.; Liu, J. P. Nanomaterials and magnetic thin films Handbooks of Thin Film Materials Vol 5, Nalwa, H. S (Ed.) Academic, 2002, p337.
    [67] Hayashi, T.; Hirono, S. H.; Tomita, M.; Umemura, S. H. Nature 1996, 382, 772.
    [68] Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Adv. Mater. 2004, 16, 401.
    [69] Zhang, X. F.; Dong, X. L.; Huang, H.; Liu, Y. Y.; Wang, W. N.; Zhu, X. G.; Lv, B.; Lei, J. P.; Lee, C. G. Appl. Phys. Lett. 2006, 89, 053115.
    [70] Lutz, J. F.; Stiller, S.; Hoth, A.; Kaufner, L.; Pison, U.; Cartier, R. Biomacromolecules 2006, 7, 3132.
    [71] Hu, F. Q.; Wei, L.; Zhou, Z.; Ran, Y. L.; Li, Z.; Gao, M. Y. Adv. Mater 2006, 18, 2553.
    [72] Andreas, J.; Regina, S.; Peter, W. et al. J. Magn. Magn. Mater. 1999, 201,413.
    [73] Martin, J. I.; Nogues, J.; Liu, K.; Vicent, J. L.; Schuller, I. K. J. Magn. Magn. Mater. 2003, 256. 449.
    [74] Majetich, S. A.; Sachan, M. J. Phys. D: Appl. Phys. 2006, 39, R407.
    [75] Cowbum, R. P. Science 2000, 287, 1466.
    [76] White, R. L.; New, R. M. H.; Pease, R. F. W. IEEE Trans. Magn. 1997, 33, 990.
    [77] Liu, X. G.; Fu, L.; Hong, S. H.; Dravid, V. P.; Mirkin, C. A. Adv. Mater. 2002, 14, 231.
    [78] Zhang, J. Z.; Wang, Z. L.; Liu, J.; Chen, S. W.; Liu G. Y. Self-Assembly Kluwer Academic Publishers 2004.
    [79] Sun, S. H.; Zeng, H. J. Am. Chem. Soc. 2002, 124, 8204.
    [80] Park, J.; Lee, E.; Hwang, N. M.; Kang, M.; Kim, S. C.; Hwang, Y.; Park, J.; Noh, H. J.; Kim H. Y.; Park, J. H.; Hyeon, T. Angew. Chem. Int. Ed. 2005, 44, 2.
    [81] a) Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989. b) Sun, S. H. Adv. Mater. 2006, 18, 393.
    [82] Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hwang, N. M.; Hyeon, T. Nat. Mater 2004, 3, 891.
    [83] Sun, S. H.; Zeng, H.; Robinson, D. B.; Raoux, S.; Rice, P. M.; Wang, S. X.; Li, G. X. J. Am. Chem. Soc. 2004, 126, 273.
    [84] Sun, S. H.; Murray, C. B. J. Appl. Phys. 1999, 85, 4325.
    [85] Peng, S.; Wang, C.; Xie, J.; Sun, S. H. J. Am. Chem. Soc. 2006, 128, 10676.
    [86 Yang, S. G.; Zhu, H.; Yu, D. L.; Jin, Z. Q.; Tang, S. L.; Du, Y. W. J Magn. Magn. Mater. 2000, 222, 97.
    [87] 张丽英,兰州大学博士学位论文,2005.
    [88] Daly, B.; Arnold, D. C.; Kulkami, J. S.; Kazekova, O.; Shaw, M. T.; Nikitenko, S.; Erts, D.; Morris, M. A.; Holmes, J. D. Small 2006, 2, 1299.
    [89] Gambardella, P.; Dallmeyer, A.; Maiti, K.; Malagoli, M. C.; Eberhardt, W.; Kern, K.; Carbone, C. Nature 2002, 416, 301.
    [90] Banerjee, I. A.; Yu, L. T.; Shima, M.; Yoshimo, T.; Takeyama, H.; Matsunaga, T.; Matsui, H. Adv. Mater. 2005, 17, 1128.
    [91] Weekes, S. M.; Ogrin, F. Y.; Murray, W. A. Langmuir, 2004, 20, 11208.
    [92] Weekes, S. M.; Ogrin, F. Y.; Murray, W. A.; Keatley, P. S. Langmuir, 2007, 23, 1057.
    [93] Kosiorek, A.; Kandulski, W.; Glaczynska, H.; Giersig, M. Small, 2005, 1,439.
    [94] Jiang, P. Langmuir, 2006, 22, 3955.
    [95] Kim, F.; Kwan, S.; Akana, J. Yang, P. D. J. Am. Chem. Soc. 2001, 123, 4360.
    [96] Duan, X. F.; Huang, Y.; Cui, Y.; Lieber, C. Nature 2001, 409, 66.
    [97] Sinha, A.; Ganguly, R.; Puri, I. K. Immunomagnetic separation in microchannels -from MEMS to BioNEMS. ASME International Mechanical Engineering Congress,Orlando, FL, 2005 Paper No. IMECE2005-81569.
    [98] Niu, H. L.; Chen, Q. W.; Zhu, H. F.; Lin, Y. S.; Zhang, X. J. Mater. Chem. 2003,13, 1803.
    [99] Wu, M. Z.; Xiong, Y.; Jia, Y. S.; Niu, H. L.; Qi, H. P.; Ye, J.; Chen, Q. W. Chem.Phys. Lett. 2005, 401,374.
    [100] Singamaneni, S.; Bliznyuk, V. Appl. Phys. Lett. 2005, 87, 162511.
    [101] Sun, L. X.; Chen, Q. W. unpublished data.
    [102] Cheng, G. J.; Romero, D.; Fraser, G. T.; Walker, A. R. H. Langmuir 2005, 21,12055.
    [103] Liu, X.; Guan, Y.; Ma, Z.; Liu, H. Langmuir 2004, 20, 10278.
    [104] Hong, R.; Fischer, N. O.; Emrick, T.; Rotello, V. M. Chem. Mater 2005, 17,4617.
    [105] Kim, M.; Chen, Y.; Liu, Y.; Peng, X. Adv. Mater. 2005, 17, 1429.
    [106] Kobayashi, Y.; Horie, M.; Konno, M.; Rodriguez-Gonzalez, B.; Liz-Marzan, L.M. J Phys. Chem. B 2003, 107, 7420.
    [107] Lu, A. H.; Li, W.; Matoussevitch, N.; Spliethoff, B.; Bonnemann, H.; Schuth, F.Chem. Commun. 2005, 98.
    [108] Sobal, N. S.; Hilgendorff, M.; Moehwald, H.; Giersig, M.; Spasova, M.; Radetic,T.; Farle, M. Nano Lett. 2002, 2, 62.
    [109] Lin, J.; Zhou, W.; Kumbhar, A.; Wiemann, J.; Fang, J.; Carpenter, E. E.;O'Connor, C. J. J. Solid State Chem. 2001, 159, 26
    [110] Kang, S. S.; Xiao, G. X.; Shi, S.; Jia, Z.; Nikles, D. E.; Harrell, J. W. J. Am.Chem. Soc. 2006, 128, 1042.
    [111] Zhang, L. X.; Luo, J.; Chen, Q. W. J. Phys. Condensed Matter 2005, 17, 5095.
    [112] Sacanna, S.; Philipse, A. P. Langmuir, 2006, 10209.
    [113] Sheparovych, R.; Sahoo, Y.; Motornov, M.; Wang, S.; Luo, H.; Prasad, P. N.;Sokolov, I.; Minko, S. Chem. Mater. 2006, 18, 591.
    [114] Lalatonne, Y.; Richardi, J.; Pileni, M. P. Nat. Mater. 2004, 3, 121.
    [115] Richardi, J.; Motte, L.; Pileni, M. P. Current Opinion in Colloid and Interface Science 2004, 9, 185.
    [116] Meriguet, G.; Jardat, M.; Turq, P. J. Chem. Phys. 2004, 121, 6078.
    [117] Hangarter, C. M.; Myung, N. V. Chem. Mater. 2005, 17, 1320.
    [118] Salem, A. K.; Chao, J.; Leong, K. W.; Searson, P. C. Adv. Mater 2004, 16, 268.
    [119] Tanase, M. T.; Felton, E. J.; Gray, D. S.; Hultgren, A.; Chen, C. S.; Reich, D. H.Lab chip. 2005, 5, 598.
    [120] Correa-Duarte, M. A.; Grzelczak, M.; Salgueirino-Maceira, V.; Giersig, M.; Liz-Marzan, L. M.; Farle, M.; Sierazdki, k.; Diaz, R. J. Phys. Chem. B 2005, 109, 19060.
    [121] Zaric, S.; Ostojic, G. N.; Kono, J.; Shaver, J.; Moore, V. C.; Hauge, R. H.; Smalley, R. E.; Wei, X. Nano Lett. 2004, 4, 2219.
    [122] Fujiwara, A.; Ootoshi, H.; Suematsu, H.; Yumura, M.; Uchida, K, in Proc. of SuperCarbon (IUMRS-ICA-97) (Ed:S. Fujiwara), Myu, Tokyo 1998, p. 73.
    [123] Smith, B. W.; Benes, Z.; Luzzi, D. E.; Fischer, J. E.; Waiters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E. Appl. Phys. Lett. 2000, 77, 663.
    [124] Hone, J.; Llaguno, M. C.; Nemes, N. M.; Johnson, A. T.; Fischer, J. E.; Waiters, D. A.; Casavant, M. J.; Schmidt, J.; Smalley, R. E. Appl. Phys. Lett. 2000, 77, 666.
    [125] Fischer, J. E.; Zhou, W.; Vavro, J.; Llaguno, M. C.; Guthy, C.; Haggenmueller, R.; Casavant, M. J.; Waiters, D. E.; Smalley, R. E. J. Appl. Phys. 2003, 93, 2157.
    [126] Kimura, T.; Ago, H.; Tobita, M.; Ohshima, S.; Kyotani, M.; Yumura, M. Adv. Mater. 2002, 14, 1380.
    [127] 陈瑶,中国科学技术大学硕士毕业论文,2007.
    [128] Nikitin, L. V.; Nikitenko, E. S. Proceeding of the MISM, 2005, p.81.
    [129] Nikitin, L. V.; Stepanov, G. V.; Mironova, L. S.; Samus, A. N. J. Magn. Magn. Mater. 2003, 258-259, 468.
    [130] Helseth, L. E.; Wen, H. Z.; Hansen, R. W.; Johansen, T. H.; Heinig, P.; Fischer, T. M. Langmuir 2004, 20, 7323.
    [131] Wen, H. Z.; Helseth, L. E.; Fischer, T. M. J. Phys. Chem. B 2004, 108, 16261.
    [132] Helseth, L. E. Langmuir 2005, 21, 7276.
    [133] Helseth, L. E.; Backus, T.; Johansen, T. H.; Fischer, T. M. Langmuir, 21, 7518.
    [134] Ngo, A. T.; Pileni, M. P. J. Phys. Chem. B 2001, 105, 53.
    [135] Petit, C.; Legrand, J.; Russier, V.; Pileni, M. P. J. Appl. Phys. 2002, 91, 1502.
    [136] Legrand, J.; Petit, C.; Pileni, M. P. J. Phys. Chem. B 2001, 105, 5643.
    [137] Hilgendorff, M.; Tesche, B.; Giersig, M. Aust. J. Chem. 2001, 54, 497.
    [138] Chushkin, Y.; Chitu, L.; Halahovets, Y.; Luby, S.; Majkova, E.; Satka, A.; Leo,G.; Giersig, M.; Hilgendorff, M.; Holy, V.; Konovalov, O. Mater. Sci. Engin. C 2006,26, 1136.
    [139] Gao, Y. H. Bao, Y. P.; Beerman, M.; Yasuhara, A.; Shindo, D.; Krishnan, K. M. Appl. Phys. Lett. 2004, 84, 3361.
    [140] Legrand, J.; Ngo, A. T.; Petit, C.; Pileni, M. P. Adv. Mater. 2001, 13, 58.
    [141] Richardi, J.; Ingert, D.; Pileni, M. P. Phys. Rev. E 2002, 66, 046306.
    [142] Wolf, H.; Birringer, R. J. Appl. Phys. 2005, 98, 074303.
    [143] Xu, X.; Friedman, G.; Humfeld, K. D.; Majetich, S. A.; Asher, A. S. Adv. Mater.2000, 12, 2508.
    [144] Xu, X.; Friedman, G.; Humfeld, K. D.; Majetich, S. A.; Asher, A. S. Chem. Mater. 2002, 14, 1249.
    [145] Xu, X. L.; Majetich, S. A.; Asher, S. A. J. Am. Chem. Soc. 2002, 124, 13864.
    [146] Golosovsky, M.; Neve-Oz, Y.; Davidov, D. Phys. Rev. B 2005, 71, 195105.
    [147] Fonstad, C. G. Heterogeneous Integration, Critical Reviews of Optical Engineering, Vol. CR76, ed. Elias Towe (Bellingham, WA: SPIE Optical Engineering Press, 2000), Chapter 1.
    [148] https://dspace.mit.edu./retrieve/3964/AMMNS013.pdf. (22 February 2004).
    [149] Shet, S.; Mehta, V. R.; Fiory, A. T.; Lepselter, M. P.; Ravindra, N. M. JOM 2004, 56(10), 32.
    [150] Shet, S.; Ravindra, N. M.; Fiory, A. T. U. S. patent application pendin
    [1] Li, L. S.; Hu, J. T.; Yang, W. D.; Alivisatos, A. E Nano Lett. 2001, 1,349.
    [2] Yu, D. B.; Yam, V. W. W. J. Am. Chem. Soc. 2004, 126, 13200.
    [3] Messer, B.; Song, J. H.; Huang, M.; Wu, Y.; Kim, F.; Yang, P. D. Adv. Mater. 2000, 12, 1526.
    [4] Gates, B.; Yin, Y. D.; Xia, Y. N. J. Am. Chem. Soc. 2000, 122, 12582.
    [5] Wang, Z. L. MRS Bulletin 2007, 32, 109.
    [6] Kwan, S.; Kim, F.; Arkana, J.; Yang, P. D. Chem. Commun. 2001, 447.
    [7] Gou, L.; Murphy, C. J.; J. Mater. Chem., 2004, 14, 735.
    [8] Osada, M.; Ebina, Y.; Fukuda, K.; Ono, K.; Takada, K.; Yamura, K.; Takayama-Muromachi, E.; Sasaki, T. Phys. Rev. B 2006, 73, 153301.
    [9] Osada, M.; Ebina, Y.; Takada, K.; Sasaki, T. Adv. Mater. 2006, 18, 295.
    [10] Hosono, E.; Fujihara, S.; Honma, I.; Zhou, H. S. Adv. Mater. 2005, 17, 2901.
    [11] Xu, T. G.; Zhang, C.; Shao, X.; Wu, K.; Zhu, Y. F. Adv. Func. Mater. 2006, 16, 1599.
    [12] Liu, Z. P.; Ma, R. Z.; Osada, M. Lyi, N.; Ebina, Y.; Takada, K.; Sadaki, T. J. Am. Chem. Soc. 2006, 128, 4872.
    [13] French, B. L.; Wang, J. J.; Zhu, M. Y.; Holloway, B. C. Thin Solid Films 2006, 494, 105.
    [14] Zhao, J. W.; Ye, C. H.; Fang, X. S.; Yan, P.; Zhang, L. D. Mater. Chem. Phys. 2006, 99, 206.
    [15] Poghossian, A. S.; Abovian, H. V.; Avakian, P. B.; Mkrtchian, S. H.; Haroutunian, V. M. Sens. Actuators, B, 1991, 4, 545.
    [16] Zakharchenko, N. I. Kinet. Catal. 2002, 43, 95.
    [17] Zakharchenko, N. I. Russ. J. Appl. Chem. 2002, 73, 2047.
    [18] Koizumi, H.;Niizeki, N.; Ikeda, T. Jpn. J. Appl. Phys. 1964, 3, 495.
    [19] Niizeki, N.; Wachi, V. Z. Kristallogr., 1968, 127, 173.
    [20] Bokov, V. A.; Novikov, G. V.; Trukhtanov V. A.; Yushchuk, S. I. Soy. Phys. Solid State, 1970, 11, 2324.
    [21] Shamir N.; Gurewitz, E. Acta Crystallogr., Sect. A, 1978, 34, 662.
    [22] Kostiner E.; Shoemaker, G. L. J. SolidState Chem., 1971, 3, 186.
    [23] Groult, D.; Hervieu, M.; Nguyen N.; Raveau, B. J. Solid State Chem., 1988, 76, 260.
    [24] Groult, D.; Hervieu, M.; Nguyen N.; Raveau, B. J. Solid State Chem., 1988, 76, 248.
    [25] Park, T. J.; Papaefthymiou, G. C.; Moodenbaugh, A. R.; Mao, Y. B.; Wong, S. S. J. Mater. Chem. 2005, 15, 2099.
    [26] Han, J. T.; Huang, Y. H.; Jia, R. J.; Shan, G. C.; Guo, R. Q.; Huang, W. J. Cryst. Growth 2006, 294, 469.
    [27] Yang, Z.; Huang, Y.; Dong, B.; Li, H. L.; Shi, S. Q. J. Solid State Chem. 2006, 179, 3324.
    [28] Kodama, R. H.; Makhlouf, S. A.; Berkowitz, A. E. Phys. Rev. Lett. 1997, 79,1393.
    [29] Zhang, L. Y.; Xue, D. S.; Gao, C. X. J. Magn. Magn. Mater. 2003, 267, 111.
    [30] Wang, X.; Li, Y. D. Angew. Chem. Int. Ed2002, 41, 4790.
    [31] Peng, Z. A.; Peng, X. G.J. Am. Chem. Soc. 2002, 124, 3343.
    [32] Han, J. T.; Huang, Y. H.; Wu, X. J.; Wu, C. L.; Wei, W.; Peng, B.; Huang, W.; Goodenough, J. B. Adv. Mater. 2006, 18, 2145.
    [33] Trentler, T. J.; Hickman, K. M.; Goel, S. C.; Viano, A. M.; Gibbons, P. C.; Buhro, W. E. Science, 1995, 270, 1791.
    [34] Zhang, H.; Yang, D.; Ji, Y.; Ma, X.; Xu, J.; Que, D. J. Phys. Chem. B 2004, 108, 3955.
    [35] Liu, B.; Yu, S. H.; Li, L. J.; Zhang, Q.; Zhang, F.; Jiang, K. Angew. Chem. Int. Ed 2004, 43, 4745.
    [36] Richardson, J.; Yiagas, D. I.; Turk, B.; Forster, K.; Twigg, M. V. J. Appl. Phys. 1991, 70, 6977.
    [37] Rubinsten, M.; Kodama, R. H.; Makhlouf, S. A. J. Magn. Magn. Mater. 2001, 234, 289.
    [38] Seehra, M. S.; Dutta, P.; Shim, H.; Manivannan, A. Solid State Commun. 2004, 129, 721.
    [39] Golosovsky, I. V.; Arcon, D.; Jaglicic, Z.; Cevc, P.; Sakhnenko, V. P.; Kurdyukov, D. A.; Kumzerov, Y. A. Phys. Rev. B 2005, 72, 144410.
    [40] Pishko, V. V.; Gnatchenko, S. L.; Tsapenko, V. V.; Kodama, R. H.; Makhlouf, S. A. J. Appl. Phys. 2003, 93, 7382.
    [41] Viano, A.; Mishra, S. R.; Lloyd, R.; Losby, J.; Gheyi, T. J. Non-Cryst. Solids 2003, 325, 16.
    [42] Morrish, A. H. The Physical Principles of Magnetism, IEEE, New York, 2001, p542.
    [43] Rivadulla, F.; Freita-Alvite, M.; Lopez-Quintela, M. A.; Hueso, L. E.; Miguens, Sande, P.; Rivas, J. J. Appl. Phys. 2002, 91,785.
    [44] Zhou, H. D.; Li, G.; Liu, F.; Feng, S. J.; Liu, Y.; Li, X. G.; Fang, J. Solid State Commun. 2002, 124, 83.
    [45] Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Angew. Chem. Int. Ed. 2004, 43, 1115.
    [46] Wang, Y.; Yang, C. M.; Schmidt, W.; Spliethoff, B.; Bill, E.; Schuth, F. Adv. Mater. 2005, 17, 53.
    [47] Likodirnos, V.; Pissas, M. J. Phys.: Condens. Matter 2005, 17, 3903.
    [48] Zysler, R.; Fiorani, D.; Domann, J. L.; Testa, A. M. J. Magn. Magn. Mater. 1994, 133, 71.
    [49] Dutta, P.; Manivanan, A.; Seehra, M. S.; Shah, N.; Huffman, G. P. Phys. Rev. B 2004, 70, 174428.
    [1] Roy, R.; Komameni, S.; Roy, D. M. Material Research Society Symposium Proceedings:32[C]. Chicago; American Materials Society, 1984, 347-359.
    [2] 鲁圣国,张良莹,姚熹,电子元件与材料1997,16,1.
    [3] 吴明在,中国科学技术大学博士学位论文,2005年.
    [4] Yan, M. L.; Li, X. Z.; Gao, L.; Liou, S. H.; Sellmyer, D. J.; Veerdonk, R. J. M.; Wierman, K. W. Appl. Phys. Lett. 2003, 83, 3332.
    [5] Yu, M.; Liu, Y.; Moser, A.; Weller, D.; Sellmyer, D. J. Appl. Phys. Lett. 1999, 75, 3992.
    [6] Fuertes, A. B.; Tartaj, P. Chem. Mater. 2006, 18, 1675.
    [7] Sun, Z. H.; Wang, L. F.; Liu, P. P.; Wang, S. C.; Sun, B.; Jiang, D. Z.; Xiao, F. S. Adv. Mater. 2006, 18, 1968.
    [8] Che, R. C.; Zhi, C. Y.; Liang, C. Y.; Zhou, X. G Appl. Phys. Lett. 2006, 88, 033105.
    [9] Zhang, X. F.; Dong, X. L.; Huang, H.; Liu, Y. Y.; Wang, W. N.; Zhu, X. G.; Lv. B.; Lei, J. P.; Lee, C. G Appl. Phys. Lett. 2006, 89, 053115.
    [10] Che, R. C.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Adv. Mater. 2004, 16, 401.
    [11] Bystrzejewski, M.; Huczko, A.; Lange, H. Sens. Actuators B 2005, 109, 81.
    [12] Kumar, D.; Narayan, J.; Kvit, A. V.; Sharma, A. K.; Sankar, J. J. Magn. Magn. Mater. 2001, 232, 161.
    [13] Katiyar, P.; Kumar, D.; Nath, T. K.; Kvit, A. V.; Narayan, J.; Shattopadhyay, S.; Gilmore, W. M.; Coleman, S.; Lee, C. B.; Sankar, J.; Singh, R. K. Appl. Phys. Lett. 2001, 79, 1327.
    [14] Tartaj, E; Gonzalez, C.; Sema, C. J. Adv. Mater. 2001, 13, 1620.
    [15] Xu, B. S.; Guo, J. J.; Wang, X. M.; Liu, X. G; Ichinose, H. Carbon 2006, 44, 2631.
    [16] Dravid, V. P.; Host, J. J.; Teng, M. H.; Hwang, B. E. J.; Johnson, D. L.; Mason, T. O.; Weertman, J. R. Nature 1995, 374, 602.
    [17] Mi, M. B.; Jiang, E. Y.; Bai, H. L.; Liu, H. J. Appl. Phys. 2006, 99, 034315.
    [18] Sedlackova, K.; Lobotka, E; Vavra, I.; Radnoczi, G. Carbon 2005, 43, 2192.
    [19] Qiu, J. S.; Li, Q. X.; Wang, Z.Y.; Sun, Y. F.; Zhang, H.Z. Carbon 2006, 44, 2565.
    [20] Liu, B. H.; Ding, J.; Zhong, Z. Y.; Dong, Z. L.; White, T.; Lin, J. Y. Chem. Phys. Lett. 2002, 358, 96.
    [21] Hou, H.; Sehaper, A. K.; Weller, E; Greiner, A. Chem. Mater. 2002, 14, 3990.
    [22] Lu, Y.; Zhu, Z. P.; Liu, Z. Y. Carbon 2005, 43, 369.
    [23] Cao, F. Y.; Chert, C. L.; Wang, Q.; Chen, Q. W. Carbon 2007, 45, 727.
    [24] Xu, L. Q.; Zhang, W. Q.; Ding, Y. W.; Peng, Y. Y.; Zhang, S. Y.; Yu, W. C.; Qian, Y. T. J. Phys. Chem. B 2004, 108, 10859.
    [25] Luo, T.; Chen, L. Y.; Bao, K. Y.; Yu, W. C.; Qian, Y. T. Carbon 2006, 44, 2844.
    [26] Lee, J. W.; Jin, S. M.; Huang, Y. S.; Park, J. G.; Park, H. M.; Hyeon, T. W. Carbon 2005, 43, 2536.
    [27] Jiang, L. G.; Gao, L. Chem. Mater 2003, 15, 2848.
    [28] Qian, W.; Chen, J. F.; Wu, L. S.; Cao, F. Y.; Chen, Q. W. JPhys. Chem. B 2006, 110, 16404.
    [29] Zou, G. F.; Xiong, K.; Jiang, C. L.; Li, H.; Li, T. W.; Du, J.; Qian, Y. T. J Phys. Chem. B 2005, 109, 18356.
    [30] 严瑞碹,《水溶性高分子》,1998.
    [31] Chen, W.; Pan, X. L.; Willinger, M. G.; Su, D. S.; Bao, X. H. J Am. Chem. Soc. 2006, 128, 3136.
    [32] del-Barco, E.; Asenjo, J.; Zhang, X. X.; Pieczynski, R.; Julia, A.; Tejada, J.; Ziolo, R. F. Chem. Mater 2001, 13, 1487.
    [33] Leslie-Pelecky, D. L.; Rieke, R. D. Chem. Mater 1996, 8, 1770.
    [34] Rarno, S.; Whinnery, J. R.; Duzer, T. V. Fields and Waves in Communication Electronics (Wiley, New York, 1984).
    [35] Che, C. R.; Peng, L. M.; Duan, X. F.; Chen, Q.; Liang, X. L. Adv. Mater 2004, 16, 401.
    [36] Naito, Y.; Suetake, K. IEEE Trans. Microwave Theory Tech. 1971, 19, 65.
    [37] Yusoff, A. N.; Abdullah, M. H.; Mansor, A. A.; Hamid, S. A. A. J. Appl. Phys. 2002, 92, 876.
    [38] Wadhawan, A.; Garrett, D.; Perez, J. M. Appl. Phys. Lett. 2003, 83, 2683.
    [39] Liu, J. R.; Itoh, M.; Horikawa, T.; Machida, K.; Sugimoto, S.; Maeda, T. J. Appl. Phys. 2005, 98, 054305.
    [40] Liu, J. R.; Itoh, M.; Horikawa, T.; Machida, K. Appl. Phys. Lett. 2003, 83, 4017.
    [41] Liu, J. R.; Itoh, M.; Horikawa, T.; Machida, K. Chem. Lett. 2003, 394.
    [1] Collier, C. P.; Vossmeyer, T.; Heath, J. R. Annu. Rev. Phys. Chem. 1998, 49, 371.
    [2] Whitesides, G. M.; Boncheva, M. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4769.
    [3] Rabani, E.; Reichman, D. R.; Geissler, P. L.; Brus, L. E. Nature 2003, 426, 271.
    [4] Ngo, A. T.; Pileni, M. P. Adv. Mater. 2000, 12, 276.
    [5] Sahoo, Y.; Cheon, M.; Wang, S.; Luo, H.; Furlani, E. P.; Prasad, P. N. J. Phys. Chem. B 2004, 108, 3380.
    [6] Sun, S. H.; Murray, C. B. J. Appl. Phys. 1999, 85, 4325.
    [7] Yin, J. S.; Wang, Z. L. J. Mater. Res. 1999, 14, 503.
    [8] Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Science 1995, 270, 1335.
    [9] Korgel, B. A.; Fitznmaurice, D. Adv. Mater. 1998, 10, 661.
    [10] Sun, S. H.; Murray, C. B.; Weller, D.; Folks, L.; Moser, A. Science 2000, 287, 1989.
    [11] Hyeon, T. Chem. Comm. 2003, 8, 927.
    [12] Sun, S. H. Adv. Mater. 2006, 18, 393.
    [13] Chen, M.; Liu, J. P.; Sun, S. H. J. Am. Chem. Soc. 2004, 126, 8394.
    [14] Sudfeld, D.; Wojczykowski, K.; Hachmann, W.; Heitmann, S.; Rott, K.; Hempel, T.; Kammerer, S.; Jutzi, R.; Hutten, A.; Reiss, G. IEEE Trans. Magn. 2002, 38, 2601.
    [15] Cross, A. F.; Diehl, M. R.; Beverly, K. C.; Richman, E. K.; Tolbert, S. H. J. Phys. Chem. B 2003, 107, 5475.
    [16] Yu, C. T.; Li, D. Q.; Pearson, J.; Bader, S. D. Appl. Phys. Lett. 2001, 79, 3848.
    [17] Scheffel, A.; Gruska, M.; Faivre, D.; Linaroudis, A.; Plitzko, J. M.; Schuler, D. Nature 2006, 440, 110.
    [18] Lee, H.; Purdon, A. M.; Chu, V.; Westervelt, R. M. Nano Lett. 2004, 4, 995.
    [19] Philipse, A. P.; Mass, D. Langmuir 2002, 18, 9977.
    [20] Wu, M. Z.; Xiong, Y.; Jia, Y. S.; Niu, H. L.; Qi, H. P.; Ye, J.; Chen, Q. W. Chem. Phys. Lett. 2005, 401,374.
    [21] Niu, H. L.; Chen, Q. W.; Zhu, H. F.; Lin, Y. S.; Zhang, X. J. Mater. Chem. 2003, 13, 1803.
    [22] Sun, L. X.; Chen, Q. W.; Tang, Y.; Xiong, Y. Chem. Commun. 2007, in press.
    [23] Lalatonne, Y.; Richardi, J.; Pileni, M. P. Nat. Mater. 2004, 3, 121.
    [24] Sheparovych, R.; Sahoo, Y.; Motomov, M.; Wang, S. M.; Luo, H.; Prasad, P. N.;Sokolov, I.; Minko, S. Chem. Mater. 2006, 18, 591.
    [25] Cheng, G. J.; Romero, D.; Fraser, G. T.; Walker, H. A. R. Langmuir 2005, 21,12055.
    [26] Biswal, S. L.; Gast, A. P. Phys. Rev. E 2003, 68, 021402.
    [27] Goubault, C.; Jop, P.; Fermigier, M.; Baudry, J.; Bertrand, E.; Bibette, J. Phys.Rev. Lett. 2003, 91, 260802.
    [28] Doyle, P. S.; Bibette, J.; Bancaud, A.; Viovy, J. L. Science 2002, 295, 2237.
    [29] Koenig, A.; Hebraud, P.; Gosse, C.; Dreyfus, R.; Baudry, J.; Bertrand, E.;Bibette, J. Phys. Rev. Lett. 2005, 95, 128301.
    [30] Furst, E. M.; Suzuki, C.; Fermigier, M.; Gast, A. P. Langmuir, 1998, 14, 7334.
    [31] Singh, H.; Laibinis, P. E.; Hatton, T. A. Langmuir, 2005, 21, 11500.
    [32] Goubault, C.; Leal-Calderon, F.; Viovy, J. L.; Bibette, J. Langmuir, 2005, 21,3725.
    [33] Tannoudji, L. C.; Bertrand, E.; Bressy, L.; Goubault, C.; Baudry, J.; Klein, J.;Joanny, J. F.; Bibette, J. Phys. Rev. Lett. 2005, 94, 038301.
    [34] Dreyfus, R.; Baudry, J.; Roper, M. L.; Fermigier, M.; Stone, H. A.; Bibette, J.Nature 2005, 43 7, 863.
    [35] Furst, E. M.; Gast, A. P. Phys. Rev. E 2000, 61, 6732.
    [36] Zhang, L.; Manthiram, A. Appl. Phys. Lett. 1997, 70, 2469.
    [37] Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C. Langmuir 1992, 8, 771.
    [38] Glavee, G. N.; Klabunde, K. J.; Sorensen, C. M.; Hadjipanayis, G. C. Langmuir 1993, 9, 162.
    [39] Zhang, Z. T.; Zhao, B.; Hu, L. M. J. SolidState Chem. 1996, 121, 105.
    [40] Vasquez, Y.; Sra, A. K.; Schaak, R. E. J. Am. Chem. Soc. 2005, 127, 12504.
    [41] Pastoriza-Santos, I.; Liz-Marzan, L. M. Langmuir 2002, 18, 2888.
    [42] Thomas, J. R. J. Appt. Phys. 1966, 37, 2914.
    [43] Tripp, S. L.; Pusztay, S. V.; Ribbe, A. E.; Wei, A. J. Am. Chem. Soc. 2002, 124, 7914.
    [44] Ohara, P. C.; Left, D. V.; Heath, J. R.; Gelbart, W. M. Phys. Rev. Lett. 1995, 75, 3466.
    [45] Rosensweig, R. E. Ferrohydrodynamics (Cambridge Univ. Press, Cambridge, 1985).
    [46] Ewers, T. D.; Sra, A. K.; Norris, B. C.; Cable, R. E.; Cheng, C. H.; Shantz, D. F.; Schaak, R. E. Chem. Mater 2005, 17, 514.
    [47] Shin, H. S.; Yang, H. J.; Kim, S. B.; Lee, M. S. J. Colloidal lnter. Sci. 2004, 274, 89.
    [48] Ely, O. T.; Amiens, C.; Chaudret, B.; Snoeck, E.; Verelst, M.; Respaud, M.; Broto, J. M. Chem. Mater 1999, 11,526.
    [49] Safran, S. A. Nat. Mater 2003, 2 71.
    [50] Philipse, A. P.; Maas, D. Langmuir, 2002, 18, 9977.
    [51] O'handley, R. C. in Modern Magnetic Materials Principle and Applications, 1st ed, Wiely: New York, 1999.
    [52] Russier, V.; Petit, C.; Pileni, M. P. J. Appl. Phys. 2003, 93, 10001.
    [53] Dormann, J. L.; Fiorani, D.; Tronc, E. Adv. Chem. Phys. 1997, 98, 283.
    [54] Poddar, P.; Telem-Shafir, T.; Fried, T.; Markovich, G. Phys. Rev. B 2002, 66, 060403.
    [55] Chantrell, R. W.; Walmsley, N.; Gore, J.; Maylin, M. Phys. Rev. B 2000, 63, 024410.
    [1] 龙毅,张正义等,新功能磁性材料以及应用,机械工业出版社,1997
    [2] 田莳,材料物理性能,北京航空航天大学出版社,2001
    [3] 赵继周,高等无机化学,北京师范大学出版社,1987
    [4] Black, C. T.; Murray, C. B.; Sandstrom, R. L.; Sun, S. H..Science 2000, 290, 1131.
    [5] Bate, G. In Ferromagnetic Materials, Recording Materials; Wohlfarth, E. D.Ed.; North-Holland: Amsterdam, 1980; Vol. 2, p 381.
    [6] Braehler, M.; Georgieva, R.; Buske, N.; Muller, A.; Muller, S.; Pinkernelle, J.; Teichgraber, U.; Voigt, A.; Baumler, H. Nano Lett. 2006, 6, 2505.
    [7] Hu, F. Q.; Wei, Li, Zhou, Z.; Ran, Y. L.; Li, Z.; Gao, M. Y. Adv. Mater. 2006, 18, 2553.
    [8] Raj, K.; Moskowitz, B.; Casciari, R. J. Magn. Magn. Mater. 1995, 149, 174.
    [9] Zeng, H.; Li, J.; Liu, J. P.; Wang, Z. L.; Sun, S. H. Nature 2002, 420, 395.
    [10] Lu, Z. L.; Zou, W. Q.; Lv, L. Y.; Liu, X. C.; Li, S. D.; Zhu, J. M.; Zhang, F. M.; Du, Y. W. J. Phys. Chem. B 2006, 110, 23817.
    [11] Liao, Z. M.; Li, Y. D.; Xu, J.; Zhang, J. M.; Xia, K.; Yu, D. P. Nano Lett. 2006, 6, 1087.
    [12] Zhang, D.; Liu, Z.; Han, S.; Li, C.; Lei, B.; Stewart, M. P.; Tour, J. M.; Zhou, C. M. Nano Lett. 2004, 4, 2151.
    [13] Momet, S.; Vasseur, S.; Grasset, F.; Duguet, E. J. Mater. Chem. 2004, 14, 2161.
    [14] Stoeva, S. I.; Huo, F. W.; Lee, J. S.; Mirkin, C. A. J. Am. Chem. Soc. 2005, 127, 15362.
    [15] Won, J.; Kim, M.; Yi, Y. W.; Kim, Y. H.; Jung, N.; Kim, T. K. Science 2005, 309, 121.
    [16] Brahler, M.; Georgieva, R.; Buske, N.; Muller, A.; MUller, S.; Pinkernelle, J.; Teichgraber, U.; Voigt, A.; Baumler, H. Nano Lett. 2006, 6, 2505.
    [17] Peng, X.; Manno, L.; Wang, W.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A. P. Nature 2000, 404, 59.
    [18] O'Handley, R. C. in Mordern Magnetic Materials, Wiley: New York, 1999.
    [19] Park, J.; Lee, E.; Hwang, N. M.; Kang, M.; Kim, S. C.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.; Hyeon, T. W. Angew. Chem. Int. Ed. 2005, 44, 2.
    [20] Wang, J.; Chen, Q. W.; Zeng, C.; Hou, B. Y. Adv. Mater. 2004, 16, 137.
    [21] Daly, B.; Arnold, D. C.; Kulkami, J. S.; Kazakova, O.; Shaw, M. T.; Nikitenko, S.; Erts, D., Morris, M. A., Holmes, J. D. Small 2006, 2, 1299-1307.
    [22] Liu, Z. Q.; Zhang, D. H.; Han, S.; Li, C.; Lei, B.; Lu, W. G.; Fang, J. Y.; Zhou, C.W. J. Am. Chem. Soc. 2005, 127, 6.
    [23] Morber, J. R.; Ding, Y.; Haluska, M. S.; Li, Y.; Liu, J. P.; Wang, Z. L.; Snyder, R. L. J. Phys. Chem. B 2006, 110, 21672.
    [24] Zhong, L. S.; Hu, J. S.; Liang, H. P.; Cao, A. M.; Song, W. G.; Wan, L. J. Adv.Mater. 2006, 18, 2426.
    [25] Dumestre, F.; Chaudret, B.; Amiens, C.; Renaud, P.; Fejes, P. Science 2004, 303,821.
    [26] Chen, M.; Kim, J. Liu, J. P.; Fan, H. Y.; Sun, S. J. Am. Chem. Soc. 2006, 128,7132.
    [27] Graf, C. P.; Birringer, R.; Michels, A. Phys. Rev. B 2006, 73, 212401.
    [28] Urban, J. J.; Ouyang, L.; Jo, M. H.; Wang, D. S.; Park, H. K. Nano Lett. 2004, 4,1547.
    [29] Tang, K. B.; Qian, Y. T.; Zeng, J. H.; Yang, X. G. Adv. Mater. 2003, 15, 448.
    [30] Xie, Y.; Qian, Y. T.; Wang, W. Z.; Zhang, S. Y. Science 1996, 272, 1926.
    [31] Wang, D. B.; Yu, D. B.; Mo, M. S.; Liu, X. M.; Qian, Y. T. J. Cryst. Growth 2003, 253, 445.
    [32] Yang, J.; Zeng, J. h.; Yu, S. H.; Wang, L.; Zhou, G. E.; Qian, Y. T. Chem. Mater. 2000, 12, 3259.
    [33] Li, Y. D.; Qian, Y. T.; Liao, H. W. et al. Science, 1998, 281,246.
    [34] Liu, Z. P.; Peng, S.; Xie, Q.; Hu, Z. K.; Yang, Y.; Zhang, S. Y.; Qian, Y. T. Adv.Mater. 2003, 15, 936.
    [35] Yu, D. B.; Wang, D. B.; Meng, Z. Y.; Lu, J.; Qian, Y. T. J. Mater. Chem. 2002, 12, 403.
    [36] Shen, G. Z.; Chen, D.; Jiang, X.; Tang, K. B.; Liu, Y. K.; Qian, Y. T. Chem. Lett.2003, 32, 426.
    [37] Yao, W. T.; Yu, S. H.; Liu, S. J.; Chen, J. P.; Liu, X. M.; Li, F. Q. J. Phys. Chem.B 2006, 110, 11704.
    [38] Yao, W. T.; Yu, S. H.; Jiang, J.; Zhang, L. Chem. Eur. J. 2006, 12, 2066.
    [39] Yao, W. T.; Yu, S. H.; Huang, X. Y.; Jiang, J.; Zhao, L. Q. X; Pan, L.; Li, J. Adv.Mater. 2005, 17, 2799.
    [40] Yao, W. T.; Yu, S. H.; Pan, L.; Li, J.; Wu, Q. S.; Zhang, L.; Jiang, J. Small 2005 1,320.
    [41] Thewlis, J. Phil. Mag. 1931, 12, 1089.
    [42] Daou, T. J.; Pourroy, G.; Begin-Colin, S.; Greneche, J. M.; Ulhaq-Bouillet, C.; Legare, P.; Bernhardt, P.; Leuvrey, C.; Rogez, G. Chem. Mater. 2006, 18, 4399.
    [43] Pinna, N.; Grancharov, S.; Beato, P.; Bonville, P.; Antonietti, M.; Niederberger,M. Chem. Mater. 2005, 17, 3044.
    [44] Cornell, R. M.; Schwertmann, U.; The Iron Oxide: Structure, Properties,Reactions, Occurences and Uses; 2nd ed.; Wiely-VCH Verlag GmbH & Co. KGaA:Weinheim, 2003.
    [45] De Faria, D. L. A.; Venancio Silva, S.; De Oliveira, M. T. J. Raman Spectrosc. 1997, 28, 873.
    [46] Shebanova, O. N.; Lazor, P. J. Raman Spectrosc. 2003, 34, 845.
    [47] Nasrazadani, S.; Raman, A. Corros. Sci. 1993, 34, 1355.
    [48] Zhang, Z. T.; Zhao, B.; Hu, L. M. J. Solid State Chem. 1996, 121, 105.
    [49] Lee, H. Y.; Lim, N. H.; J. Seo, A.; Yuk, S. H.; Kwak, B. K.; Khang, G.; Lee, H.B.; Cho, S. H. J. Biomedical Mater Res. Part B: Appl. Biomater. 2006, 79, 142.
    [50] Yu, D. B.; Yam, V. W. W. J Am. Chem. Soc. 2004, 126, 13200.
    [51] Xu, R.; Zeng, H. C. J. Phys. Chem. B 2003, 107, 926.
    [52] Feng, J.; Zeng, H. C.; Chem. Mater. 2003, 15, 2829.
    [53] Wang, Z. L. J Phys. Chem. B 2000, 104, 1153.
    [54] Thomas-Keprta, K. L.; Clemett, S. J.; Bazylinski, D. A.; Kirschvink, J. L.; McKay, D. S.; Wentworth, S. J.; Vali, H.; Gibson, E. K.; McKay, M. F.; Romanek, C. S. PNAS 2001, 98, 2164.
    [55] Zheng, R. K.; Gu, H. W.; Xu, B.; Fung, K. K.; Zhang, X. X.; Ringer, S. M. Adv. Mater. 2006, 18, 2418.
    [56] Park, J.; An, K.; Hwang, Y.; Park, J. G.; Noh, H. J.; Kim, J. Y.; Park, J. H.;Hwang, N. M.; Hyeon, T. Nat. Mater. 2004, 3, 891.
    [57] Zeng, H.; Rice, P. M.; Wang, S. X.; Sun, S. H. J. Am. Chem. Soc. 2004, 126,11458.
    [58] Caruntu, D.; Caruntu, G.; Chen, Y. X.; O'Conner, C. J.; Goloverda, G.;Kolesnichenko, V. L. Chem. Mater. 2004, I6, 5527.
    [59] Zhang, J. Z.; Wang, Z. L.; Liu, J.; Chen, S. W.; Liu, G. Y. Self-Assembly Nanostructures Kluwer Academic Publishers 2004, p78.
    [60] Xiong, Y. J.; Washio, I.; Chen, J. Y.; Cai, H. G.; Li, Z. Y.; Xia, Y. N. Langmuir 2006, 22, 8563.
    [61] Xiong, Y. J.; McLellan, J. M.; Chen, J. Y.; Yin, Y. D.; Li, Z. Y.; Xia, Y. N. J. Am. Chem. Soc. 2005, 127, 17118.
    [62] Sun, Y. G.; Xia, Y. N. Science 2002, 298, 2176.
    [63] Han, D. H.; Wang, H. L.; Luo, J. J. Magn. Magn. Mater 1994, 136, 176.
    [64] Wang, L. Y.; Bao, J.; Wang, L.; Zhang, F.; Li, Y. D. Chem. Eur J 2006, 12,6341.
    [65] Wu, M. Z.; Xiong, Y.; Jia, Y. S.; Niu, H. L.; Qi, H. P.; Ye, J.; Chen, Q. W. Chem.Phys. Lett. 2005, 401,374.
    [66] Song, Q.; Zhang, Z. J. J. Phys. Chem. B 2006, 110, 11205.
    [67] Li, Z.; Sun, Q.; Gao, M. Y. Angew. Chem. Int. Ed. 2005, 44, 123.
    [68] de Gennes, P. G.; Pincus, P. A. Phys. Kondens. Mater 1970, 11, 189.
    [69] Shen, L.; Stachowiak, A.; Fateen, S. K.; Laibinis, P. E.; Hatton, T. A.; Langmuir 2001, 17, 288.
    [70] Weis, J. J. Mol. Phys. 1998, 93,361.
    [71] Tavares, J. M.; Weis, J. J.; Telo da Gama, M. M. Phys. Rev. E 1999, 59, 4388.
    [72] Chantrell, R. W.; Bradbury, A.; Popplewell, J.; Charles, S. W. J. Appl. Phys. 1982, 53, 2742.
    [73] Tavares, J. M.; Weis, J. J.; Telo da Gama, M. M. Phys. Rev. E 2002, 65, 061201.
    [74] Odenbach, S. (ed) Magnetically Controllable Fluids and Their Applications Berlin: Springer, 2003.
    [75] Holm, C.; Weis, J. J. Curt Opin. Colloidlnterface Sci. 2005, 10, 133.
    [76] Klapp, S. H. J. Phys.: Conderns. Matter 2005, 17, R525.
    [77] Blakemore, R. P. Science 1975, 190, 377.
    [78] Butter, K.; Bomans, P. H. H.; Frederik, P. M.; Vroege, G. J.; Philipse, A. P. Nat. Mater. 2003, 2, 88.
    [79] Klokkenburg, M.; Vonk, C.; Claesson, E. M.; Meeldijk, J. D.; Erne, B. H.; Philipse, A. P. J. Am. Chem. Soc. 2004, 126, 16706.
    [80] Safran, S. A. Nat. Mater. 2003, 2 71.
    [81] Dunin-Borkowski, R. E.; McCartney,. M. R.; Kardynal, B.; Smith, D. J. J. Appl. Phys. 1998, 84, 374.
    [82] Cowbum, R. P.; Koltsov, D. K.; Adeyeye, A. O.; Welland, M. E. Phys. Rev. Lett. 1999, 83, 1042.
    [83] Cullity, B. D. Introduction to Magnetic Materials. Addison-Wesley Publishing Co. Reading, MA, 1972.
    [84] Zhu, J. G.; Zheng, Y.; Prinz, G. A. J. Appl. Phys. 2000, 87, 6668.
    [85] Li, S. P.; Peyrade, D.; Natali, M.; Lebib, A.; Chen, Y.; Ebels, U.; Buda, L. D.; Ounadjela, K. Phys. Rev. Lett. 2001, 86, 1102.
    [86] Tripp, S. L.; Pusztay, S. V.; Ribbe, A. E.; Wei, A. J. Am. Chem. Soc. 2002, 124, 7914.
    [87] Tripp, S. L.; Dunin-Borkowski, R. E.; Wei, A. Angew. Chem. Int. Ed 2003, 42, 5591.
    [88] Jacobs, I. S.; Bean, C. P.; In Magnetism; Rado, G. T.; Suhl, H., Eds.; Academic Press: New York, 1963, Vol. Ⅲ.
    [89] Elbaum, M.; Lipson, S. G. Phys. Rev. Lett. 1994, 72, 3562.
    [90] Ohara, P. C.; Gelbart, W. M. Langmuir 1998, 14, 3418.
    [91] Yosef, G.; Rabani, E. J. Phys. Chem. B 2006, 110, 20965.
    [92] The data of vapor pressure were obtained by this website:http://www.s-ohe.com/
    [93] Philipse, A. P.; Maas, D. Langmuir, 2002, 18, 9977.
    [94] Shen, L.; Stachowiak, A.; Fateen, S. K.; Laibins, P. E.; Hatton, T. A. Langmuir 2001, 17, 288.
    [95] Donselaar, L. D.; Frederik, P. M.; Bomans, P.; Buining, P. A.; Humbel, B. M.; Philipse, A. P. J. Magn. Magn. Mater. 1999, 201, 58.
    [96] Rosensweig, R. E. Ferrohydrodynamics; Cambridge Univ. Press: Cambridge, 1985.
    [97] Cho, K. S.; Talapin, D. V.; Gaschler, W.; Murray, C. B. J. Am. Chem. Soc. 2005, 127, 7140.
    [98] Zhang, X.; Zhang, Z. L.; Glotzer, S. C. J. Phys. Chem. C 2007, 111, 4132.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700