用户名: 密码: 验证码:
增压器噪声控制与进气消声器设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
进气噪声是增压型发动机的主要噪声源,本文介绍了增压型发动机进气噪声的研究现状和方法,阐述了进气噪声源特性、产生机理以及控制方法。本文根据涡轮增压器中主要噪声源特性,设计了两套进气消声器。由于能改善消声效果和保护吸声材料不被气流吹出,穿孔元件在阻性消声器中广泛应用。为预测消声器的声学性能,首先需要确定贴附有吸声材料的穿孔元件的声学特性。本文将针对消声器声学性能的计算方法和贴附有吸声材料的穿孔元件的声学特性开展系统研究。
     采用有限元方法研究贴附有吸声材料的穿孔元件的声学特性,首先需建立穿孔板声阻抗的有限元模型,分析各种结构参数对穿孔板声学厚度修正系数的影响,并根据计算结果给出贴附有吸声材料的穿孔板声学厚度修正系数的近似公式。
     以长纤维玻璃丝棉作为吸声材料实验样品,验证两载荷法测量吸声材料声学特性方法的正确性,并测量出硅酸铝岩棉的声学特性参数——复波数和复阻抗。
     以设计的两套进气消声器为研究对象,建立其有限元模型,将本文获得的贴附有吸声材料的穿孔声阻抗新模型和所测得的硅酸铝的声学特性参数导入声学软件SYSNOISE,通过声学仿真预测进气消声器的传递损失,并与实验测量结果比较,可验证对进气消声器模型的处理是合理的。研究各种结构参数对进气消声器声学特性的影响,结果表明,可以通过调整穿孔率、吸声材料填充密度、吸声材料的厚度等参数来改善进气消声器的消声性能。
The induction noise is a major noise source of turbocharged engine. This thesis introduced the situation and methods of turbocharged engine intake system noise study, explained the source characteristics and generation mechanisms as well as the control method of intake noise. The present works design two kinds of intake silencers according to the source characteristics of intake system noise. The perforated elements are commonly used in dissipative silencers to improve the acoustic attenuation and protect the absorbing material from running. To predict the acoustic attenuation performance of silencers, the acoustic characteristics of perforated elements in contact with fibrous material need to be determined first. Therefore, the present thesis will investigate in detail the calculation methods of acoustic attenuation performance of silencers and the acoustic characteristics of perforated elements in contact with fibrous material.
     The acoustic characteristics of perforated elements in contact with fibrous material are studied by using finite element methods. The finite element model for determination of the acoustic impedance of perforation is first built, and then the effect of various structure factors on the acoustic thickness correction coefficient of perforated element is investigated. A curve-fitting expression for the end correction coefficient is obtained based on the numerical results.
     According to the principle of Two-Load method, the fiber glass was used to verify the methods of measuring the acoustic characteristic parameters of absorptive material, and then the characteristic impedance and complex wavenumber of aluminium silicate had also been measured.
     The finite element models of intake silencer were created based on the physical model of the two mufflers. The models for the acoustic impedance of perforation in contact with fibrous material and the acoustic characteristic parameters of aluminium silicate were imported to software SYSNOISE. The transmission loss of intake silencer had been calculated and compared with the measured results. The results indicated that the model created for intake silencer was reasonable. The effects of various structure factors on the intake silencer are studied. The results indicated that the desired acoustic attenuation performance of intake silencer can be obtained by accommodating porosity, the density of sound-absorbing material, thickness of sound-absorbing material and so on.
引文
[1] H. Rammal, M. Abom. Acoustics of Turbochargers. SAE paper 2007-01-2208
    [2]蒋国鑫.涡轮增压器的噪声控制.噪声与振动控制.1986,8
    [3]要志斌.柴油机噪声机理分析及其声强识别技术研究.中北大学硕士学位论文.2007
    [4]马大猷.噪声与振动控制工程手册.北京:机械工业出版社,2002,9
    [5]李海光.车用涡轮增压器气动声学计算及分析研究.北京理工大学硕士学位论文.2008
    [6] J.A. Calvo, V. Diaz, J. L. San Roman. Controlling the turbocharger whistling noise in diesel engines[J]. International Journal of Vehicle Noise and Vibration, 2006, 2(1): 17-28
    [7]居鸿宾,沈孟育.气动声学的问题、方法与进展[J].力学与实践,1995,17(5):1-10
    [8]王泽晖,罗柏华,刘宇陆.关于气动力声学数值计算的方法与进展[J].力学季刊,2003,24(2):219-226
    [9]王保国,刘淑艳,黄伟光.气体动力学[M].北京:北京理工大学出版社.2005
    [10] Li Huibin, Zhou Lilin, Shangguan Yunfei, et al. Analysis on the Vibration Modes of the Rotor System of the Turbocharger[J]. Journal of Beijing Institute of Technology, 2006, 15(S): 108-112
    [11]王延飞.新一代大型涡轮增压器.国外内燃机车.2006(1):17-23
    [12]吴魏雄,沈保罗.增压式柴油发电机组的噪声治理技术.环境工程.1998,16(2)
    [13]邵恩坡,程汉华.发动机进气噪声产生的机理及其控制.小型内燃机.1994,23(4):44-47页
    [14]林进修,林晓.空气滤清器与进气消声.汽车研究与开发.1996(6):32-37页
    [15] Hao Zhi-yong, Jia Wei-xin, Fang Fang. Virtual design and performance prediction of a silencing air cleaner used in an I. C. engine intake system. Journal of Zhejiang University SCIENCE, 2005, 6A(10): 1107-1114P
    [16]方丹群编著.空气动力性噪声与消声器.北京:科学出版社,1978:59-91页
    [17]方丹群,王文奇,孙家麒编著.噪声控制.北京:北京出版社,1986:401-403页
    [18]任文堂,郄维周编著.交通噪声及其控制.人民出版社.1984:249-257页
    [19] R. van Basshuysen, F. Schafer. Internal combustion engine handbook. SAE International: Warrendale, Pa. 2004: 240-247P
    [20]朱廉洁,季振林.汽车发动机空气滤清器消声特性研究.汽车工程.2008,30(3):260-263页
    [21] M. Knutsson, M. Abom. Acoustic analysis of charge air coolers. SAE paper 2007-01-2208
    [22] S.H. Jang, J.G. Ih. On the multiple microphone method for measuring induct acoustic properties in the presence of mean flow. Journal of the Acoustical Society of America, 1998, 103: 1520-1526P
    [23] M.G. Jones, P.E. Stiede. Comparison of methods for determining specific acoustic impedance. Journal of the Acoustical Society of America, 1997, 101: 2694-2704P
    [24] A.F. Seybert, D.F. Ross. Experimental determination of acoustic properties using a two-microphone random-excitation technique. Journal of the Acoustical Society of America, 1977, 61: 1362-1370P
    [25] A.F. Seybert. Two-sensor methods for the measurement of sound intensity and acoustic properties in ducts. Journal of the Acoustical Society of America, 1988, 83(6): 2233-2239P
    [26] J.Y. Chung, D.A. Blaser. Transfer function method of measuring in-duct acoustic properties. I. Journal of the Acoustical Society of America,1980a, 68: 907-913P
    [27] J.Y. Chung, D.A. Blaser. Transfer function method of measuring in-duct acoustic properties. II. Experiment. Journal of the Acoustical Society of America, 1980b, 68: 914-921P
    [28] M.E. Delany, E.N. Bazley. Acoustical properties of fibrous absorbent materials. Applied Acoustics. 1970, 3: 105-116P
    [29] S.L. Yaniv. Impedance tube measurement of propagation constant and characteristic impedance of porous acoustical material. Journal of the Acoustical Society of America, 1973, 54: 1138-1142P
    [30] H. Utsuno, T. Tanaka, T. Fujikawa, A.F. Seybert. Transfer function method for measuring characteristic impedance and propagation constant of porous materials. Journal of the Acoustical Society of America, 1989, 86: 637-643P
    [31] Z. Tao, D.W. Herrin, A.F. Seybert. Measuring bulk properties of sound-absorbing materials using the two-source method. Noise and Vibration Conference SAE, 2003
    [32] I. Lee, A. Selamet, N.T. Huff. Acoustic impedance of perforations in contact with fibrous material. Journal of the Acoustical Society of America, 2006, 119(5): 2785-2797P
    [33] L. Rayleigh. The theory of sound. London: Macmillan, 1894
    [34] U. Ingard. On the theory and design of acoustic resonators. The Journal of the Acoustical Society of America, 1953, 25(6): 1037-1061P
    [35] T.H. Melling. The acoustic impedance of perforates at medium and high sound pressure levels. Journal of Sound and Vibration, 1973, 29(1):1-65P
    [36] V.A. Fok. A theoretical investigation of the acoustical conductivity of a circular aperture in a well put across a tube. Comptes Rendus (Doklady) de l’Acadamie des Sciences de l’URSS, 1941, XXXI(9): 875-878P
    [37] J.W. Sullivan, M.J. Crocker. Analysis of concentric-tube resonators having unpartitioned cavities. The Journal of the Acoustical Society ofAmerica, 1978, 64(1): 207-215P
    [38] J.W. Sullivan. A method for modeling perforated tube muffler components. II. Applications. The Journal of the Acoustical Society of America, 1979, 66(3): 779-787P
    [39]康钟绪,季振林.穿孔板的声学厚度修正,声学学报,2008,33(4):327-333页.
    [40] R. Kirby, A. Cummings. The impedance of perforated plates subjected to grazing gas flow and backed by porous media [J]. Journal of Sound and Vibration, 1998, 217: 619-636.
    [41] G.W. Stewart. Acoustic wave filters. Physics Review, 1922, 20: 528-551P
    [42] D.D. Davis, G.M. Stokes. Theoretical and experimental investigation of mufflers with comments on engine-exhaust muffler design. National Advisory Committee for Aeronautics Report, 1954, No. 1192: 1-47P
    [43] M.G. Prassad, M.J. Crocker. Evaluation of four-pole parameters for a straight pipe with a mean flow and linear temperature gradient. Journal of the Acoustical Society of America, 1981, 69(4): 916-921P
    [44] M.L. Munjal, K.N. Rao, A.D. Sahasrabudhe. Aeroacoustic analysis of perforated muffler components. Journal of Sound and Vibration, 1987, 114(2): 173-188P
    [45]盛胜我.抗性消声器设计的研究.声学技术.1986,5(1):44-47页
    [46]黄其柏.穿孔管消声器消声性能研究.农业机械学报.1990,3(1):36-42页
    [47]黄其柏,师汉民.计及气流和线性温度梯度的内燃机穿孔管消声器研究.内燃机学报.1993,11(1):20-25页
    [48] C.N. Wang. Numerical decoupling analysis of a resonator with absorbent material[J]. Applied Acoustics, 1999, 58: 529-545.
    [49] T.W. Wu, C.Y.R. Cheng, Zhang P. A direct mixedbody boundary element method for packed silencers[J]. Journal of the Acoustical Aociety of America, 2002, 111: 2566-2572.
    [50]季振林,穿孔管阻性消声器消声性能计算及分析,振动工程学报,2005,18(4):453-457P
    [51] C.I.J. Young, M.J. Crocker. Prediction of transmission loss in mufflers by the finite element method. Journal of the Acoustical Society of America, 1975, 57: 144-148P
    [52] A. Craggs. A finite element method for damped acoustic system: An application to evaluate the performance of reactive muffler. Journal of Sound and Vibration, 1976, 48: 377-392P
    [53] R.J. Astley, W.Eversman. A finite element formulation of the eigenvalue problem in lined ducts with flow. Journal of Sound and Vibration, 1979, 65(1): 61-74P
    [54] K.S. Peat. Evaluation of four-pole parameters for ducts with flow by the finite element method. Journal of Sound and Vibration, 1982, 84(3): 389-395P
    [55] M.L. Munjal. Acoustics of ducts and mufflers. New York, Wiley-interscience, 1987
    [56]蔡超,宫镇,诸圣国.存在气流时轴对称抗性消声器传递损失的有限元解法.汽车工程.1994,16(5):296-302页
    [57]王耀前,陆森林,ANSYS在抗性消声器分析中的应用.江苏大学学报(自然科学版).2003,24(3):53-56页
    [58] O.Z. Mehdizadeh,M. Paraschivoiu. A three-dimensional finite element approach for predicting the transmission loss in mufflers and silencers with no mean flow. Applied Acoustics, 2005, 66: 902-918P
    [59] F.D. Denia, A. Selamet, F.J. Fuenmayor, R. Kirby. Acoustic attenuation performance of perforated dissipative mufflers with empty inlet/outlet extensions. Journal of Sound and Vibration, (2007), doi: 10.1016/j. jsv. 2007. 01. 005
    [60] Z.L. Ji, Q. Ma, Z.H. Zhang. A boundary element scheme for evaluation of four-pole parameters of ducts and mufflers with low Mach number non-uniform flow. Journal of Sound and Vibration, 1995, 185(1):107-117P
    [61] Z.L. Ji, J.Z. Sha. A boundary element approach to sound transmission/ radiation problems. Journal of Sound and Vibration, 1997, 206(2): 261-265P
    [62] Z.L. Ji, A. Selamet. Boundary element analysis of three-pass perforated duct mufflers. Noise Control Engineering Journal, 2000, 48(5): 151-156P
    [63] A. Selamet, N.S. Dickey. A time-domain computational simulation of acoustic silencers. Journal of Vibration and Acoustics, 1995, 117: 323-331P
    [64] N.S. Dickey, A. Selamet. Effects of numerical dissipation and dispersion on acoustic predictions from a time-domain finite difference technique for non-linear wave dynamics. Journal of Sound and Vibration, 2002, 259(1): 193-208P
    [65] A.I. Abd El-Rahman, A.S. Sabry, A. Mobarak. Non-linear simulation of single pass perforated tube silencers based on the method of characteristics. Journal of Sound and Vibration, 2004, 278(1): 63-81P
    [66] A. Broatch, J.R. Serrano, F.J. Arnau, D. Moya. Time-domain computation of muffler frequency response: Comparision of different numerical schemes. Journal of Sound and Vibration, 2007, 305(1): 333-347P
    [67] J.M. Middelberg, T.J. Barber, S.S. Leong. Computational fluid dynamic analysis of the acoustic performance of various simple expansion chamber mufflers. Proceedings of Acoustics 2004 ,2004: 123-127P
    [68] A. Broatch, X. Margot, A. Gil. A CFD approach to the computation of the acoustic response of exhaust mufflers. Journal of Computational Acoustics, 2005, 13(2): 301-316P
    [69] K.S. Peat. Evaluation of four-pole parameters for ducts with flow by the finite element method. Journal of Sound and Vibration, 1982, 84(3): 389-395P
    [70]王雪仁,季振林.有流消声器四极参数和传递损失的边界元法预测.计算物理,2007,24(6):717-724页
    [71]杜功焕,朱哲民,龚秀芬.声学基础.第二版.南京:南京大学出版社,2001:168-180页
    [72] J.F. Allard. Propagation of sound in porous media: Modelling sound absorbing materials. England: Elsevier Science, 1993, 24-25P
    [73] American Society for Testing and Materials 1993 ASTM C522-87(Reapproved 1993), Philadephia, PA. Standard test method for airflow resistance of acoustical materials
    [74] M.E. Delany, E.N. Bazley. Acoustical properties of fibrous absorbent materials. Applied Acoustics. 1970, 3: 105-116P
    [75] I. Lee. Acoustic characteristics of perforated dissipative and hybrid silencers. PH. D thesis, The Ohio State University, Columbus, American, 2005
    [76] A. Selamet, Z.L. Ji. Circular asymmetric Helmholtz resonators. Acoustical Society of America, 2000: 2360-2369P
    [77] Z.L. Ji. Acoustic length correction of closed cylindrical side-branched tube. Journal of Sound and Vibration 283(2005)1180-1186.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700