用户名: 密码: 验证码:
毛细管放电Z箍缩Xe等离子体EUV光源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现更小特征尺寸的集成电路,采用更短曝光波长的下一代光刻技术被提出来。极紫外(EUV)光刻相比其他下一代光刻技术,在光学光刻技术上的延续性较好,是目前发展的一种主要技术方案。根据实际应用需求,目前极紫外光刻光源主要沿着两条路线发展:满足大规模工业生产需求的高功率、高重复频率光源;用于光刻机中光学系统、掩膜版、光刻胶等系统检测用的中小功率光源。后者要求光源具有较高的功率稳定性和适中的光源功率,同时要求光源结构简单、工作成本较低。毛细管放电Z箍缩Xe等离子体EUV光源具有结构较为简单、稳定性好、收集效率较高等优点,是目前实现检测用的中小功率光源主要技术方案之一。
     关于毛细管放电Z箍缩Xe等离子体EUV光源,系统的机理研究、良好的放电结构和工作参数,是实现功率较高、稳定性良好的13.5nm(2%带宽)辐射光输出的关键。围绕这一目标,本文开展了EUV光源理论分析、实验装置的改造、EUV光源实验研究和1kHz光源设计及建造等四方面的研究工作,以实现较高功率和稳定性的13.5nm(2%带宽)辐射光输出。
     在理论方面,本文采用Cowan程序计算了Xe离子能级参数。采用碰撞-辐射模型模拟了不同条件下等离子体中不同价态离子丰度分布。根据离子能级参数和丰度分布计算结果,考虑谱线展宽的影响,结合离子丰度分布计算结果,模拟了不同条件下辐射光谱的变化。采用雪耙模型模拟了毛细管放电Xe等离子体EUV光源中的Z箍缩过程,分析了箍缩过程中存在的多次箍缩效应。同时,深入分析了不同电流、气压和毛细管内径等参数,对等离子体Z箍缩过程的影响。结合光学收集系统相关参数,计算了不同毛细管内径和等离子体长度对收集效率和中间焦点处功率的影响。
     毛细管放电Z箍缩Xe等离子体EUV光源实验装置,主要包括电源系统、放电系统、充配气系统、真空系统、探测系统等五部分。本文针对光源工作中出现的问题做出了相应的改进,以满足放电过程中实现较高功率和稳定性的极紫外辐射的要求。改造后的结构可以实现等离子体的有效箍缩,实现了EUV辐射光输出。
     实验上,系统地研究了预脉冲放电对辐射光谱和光源的时间及功率稳定性的影响,为后续采用预-主脉冲联合放电提供了实验依据。在此基础上,结合理论分析,系统地研究了主脉冲电流幅值、Xe气流量、毛细管内径、辅助气体和等离子体长度等参数对Xe等离子体EUV光谱的影响,优化了上述实验参数。详细的测量了各种实验参数对13.5nm(2%带宽)辐射信号时间特性的影响,深入分析了毛细管放电Z箍缩Xe等离子体EUV光源物理机制。实验发现大电流、低气压时13.5nm(2%带宽)辐射信号时间特性存在多个峰值,但目前国际上并没有系统的研究和解释,本文结合理论模拟,证实了多峰现象来源于等离子体的多次箍缩。Xe气中掺入He气可以提高13.5nm(2%带宽)辐射强度,本文通过在Xe气中掺入不同比例He气,优化了He与Xe的流量比,并对比掺入He、Ne和Ar等气体时的光谱及13.5nm(2%带宽)时间特性,解释了掺入He气提高13.5nm(2%带宽)辐射强度的物理机制。
     在前期实验和理论研究的基础上,设计建造了一套1kHz毛细管放电Z箍缩Xe等离子体EUV光源,主要包括电源系统、放电系统、充配气系统、真空系统、探测系统、冷却系统、光学收集系统和去碎屑系统等。独立测试了各关键部件的性能,测试结果表明,均基本满足设计指标和实验要求。完成了系统的集成,并在单脉冲和重复频率条件下Xe气放电,实现了13.5nm辐射光输出,优化了Xe气流量和掺入He气比例。
In order to get much smaller feature for the ICs, the technology of next generation lithography(NGL) has been put forward. Comparing with other technologies, the extreme ultraviolet(EUV) lithograph technology, which has better continuity in the optical lithography, is one of the most important technologies. According to the requirements, the EUV source has been developed along two ways. One way is to develop a high power and high repetition frequency source, which is used to satisfy the high volume manufacturing requirements. And the other way is to build a moderate power test source to detect the collectors, mask and photosensitive resist. The latter source requires more steady, moderate power, simple and cheap. And the EUV source of Z-pinch xenon plasma pumbed by capillary discharge, which has the advantages of simple structure, steady power, high collection efficiency and so on, is one of the key technology as the test source.
     For a capillary discharge Z-pinch Xe plasma EUV source, systemic researches about mechanism, better discharge structures and parameters are the key factors to achieve high power and better stability13.5nm(2%bandwidth) emission. In order to achieve high power and high stability13.5nm(2%bandwidth) emission, the theoretical researches, experimental equipment improvements, experimental researches, as well as the design and building of the1kHz EUV source have been studied in this paper.
     Theoretically, the energy level parameters of Xe ions have been calculated with the Cowan code. The abundances of different valences for Xe ions under different conditions have been calculated by the collision-radiation model as well. According to the upper results, the emission spectra under different conditions have been simulated in consideration of the broadening of spectral line. Moreover, the pinch processes of Xe plasma in the capillary under different discharge current and Xe pressure, have been simulated with the snow-plow model. And the multi-pinch process has been studied as well. In combination with the experimental results, the effect of the discharge current, Xe pressure and the inner diameter of capillary on the pinch processes have been analyzed. In addition, the influence of the nner diameter of capillary and plasma length on the collection efficiency and power at the intermediate focus have been calculated in consideration of the parameters of the collectors.
     The EUV source of Z-pinch xenon plasma pumbed by capillary discharge mainly consists of five parts: the power system, discharge system, gas system, vacuum system and detection system. The problems which existed in the source have been improved to satisfy the requirements for high power and high stability.The effective pinch of plasma and EUV radiation have been realized with the rebuilt structure.
     Experimentally, the effect of the pre-pulse on the EUV sepctra, the time and power stabilities have been studied systemically. Based on the experimental results, the pre discharge and main discharge were used in the latter experiments. In order to optimize the value of the main current, flow rate of Xe, inner diameter of the capillary, the assist gas and the length of the plasma, the effects of these parameters on the spectra and the plasma state of the EUV source have been studied scientifically. Moreover, The physical mechanism of the EUV source of Z-pinch xenon plasma pumbed by capillary discharge have been studied by detection the effects of these parameters on the temporal evolution of the13.5nm(2%bandwidth) emission. The results show that there are multi-peaks for the temporal evolution of the13.5nm(2%bandwidth) emission under high current and low Xe pressure. However, there are little researches and analysis about the phenomena. Moreover, it can be founded that the13.5nm(2%bandwidth) emission intensity can be increased by mixing Xe with He. The optimum mixing ratio has been got. By comparing the spectra and temporal evolution of the13.5nm(2%bandwidth) emission under different He: Xe mixing ratio and the Xe/Ne, Xe/Ar mixture, the physical mechanism that mixing Xe with He can increase13.5nm(2%bandwidth) emission intensity has been interpreted.
     According to the upper researches, an1kHz capillary discharge Z-pinch EUV source has been built, which includes the power system, the discharge system, the pumped gas system, the vacuum system, the detection system, the cooled system, the collectors and the debris mitigation tool. The performance for each component has been tested. The results show that all of them can basically meet the design index and experimental requirements. The13.5nm emission under monopulse and frequency condition, the optimum Xe flow rate and He: Xe ratio have been got with the integrated1kHz EUV source.
引文
[1] G. O’sullivan, D. Kilbane and R. D’arcy. Recent progress in source development forextreme UV lithography[J]. Journal of Modern Optics.2012,59(10):855-872.
    [2] R. H. Stulen and D. W. Sweeney. Extreme Ultraviolet Lithography[J]. IEEE journalof Quantum Electronics.1999,35(5):694-699.
    [3] J. Jonkers. High power extreme ultra-violet (EUV) light sources for futurelithography[J]. Plasma Sources Science and Technology.2006,15: S8.
    [4] B. Wu and A. Kumar. Extreme ultraviolet lithography: A review[J]. Journal ofVacuum Science&Technology B: Microelectronics and Nanometer Structures.2007,25(6):1743-1761.
    [5] J. P. Silverman. X-ray lithography: status, challenges, and outlook for0.13μm[J].Journal of Vacuum Science&Technology B: Microelectronics and NanometerStructures.1997,15(6):2117-2124.
    [6] L. R. Harriott. Scattering with angular limitation projection electron beamlithography for suboptical lithography[J]. Journal of Vacuum Science&Technology B: Microelectronics and Nanometer Structures.1997,15(6):2130-2135.
    [7] D. Osin, J. Reader, J. Gillaspy, et al. Extreme ultraviolet spectra of highly chargedxenon observed with an electron beam ion trap[J]. Journal of Physics B: Atomic,Molecular and Optical Physics.2012,45(24):245001.
    [8] H. Kinoshita, K. Kurihara, Y. Ishii, et al. Soft x-ray reduction lithography usingmultilayer mirrors[J]. Journal of Vacuum Science&Technology B:Microelectronics and Nanometer Structures.1989,7(6):1648-1651.
    [9] J. Bjorkholm, J. Bokor, L. Eichner, et al. Reduction imaging at14nm usingmultilayer-coated optics: Printing of features smaller than0.1μm[J]. Journal ofVacuum Science&Technology B: Microelectronics and Nanometer Structures.1990,8(6):1509-1513.
    [10] S. Pearton. Metal Based Thin Films for Electronics[J]. Plasma Processes andPolymers.2006,3(8):638-638.
    [11] C. Zaczek, S. Müllender, H. Enkisch, et al. Coatings for next generationlithography[C]. Proceedings of SPIE.2008,7101:71010X.
    [12] T. Otsuka, D. Kilbane, T. Cummins, et al. Shorter wavelength EUV source around6.X nm by rare-earth plasma[C]. Proceedings of SPIE.2011,8139:81390T.
    [13] S. Amano and T. Inoue. Laser-plasma extreme ultraviolet source at6.7nm using arotating cryogenic Xe target[J]. Applied Physics B: Lasers and Optics.2012,108:743-747.
    [14] J. B. Alameda, T. W. Barbee, W. M. Clift, et al. Improved reflectance and stabilityof Mo-Si multilayers[J]. Optical Engineering.2002,41(8):1797-1804.
    [15] N. Kaiser, S. Yulin, M. Perske, et al. High performance EUV multilayer optics[C].Proceedings of SPIE.2008,7101:71010Z.
    [16] I. V. Fomenkov, D. C. Brandt, N. R. Farrar, et al. Laser Produced Plasma EUVLight Source for EUVL Patterning at20nm Node and Beyond[C]. Proceedings ofSPIE.2013,8679:86792I.
    [17] G. O’sullivan and B. Li. Development of laser-produced plasma sources forextreme ultraviolet lithography[J]. Journal of Micro/Nanolithography, MEMS,and MOEMS.2012,11(2):021108.
    [18] X. Bozec, L. Moine, R. Wevers, et al. Cooled EUV collector optics for LPP andDPP sources[C]. Proceedings of SPIE.2011,7969:79690A.
    [19] T. Feigl, M. Perske, H. Pauer, et al. Lifetime and refurbishment of multilayer LPPcollector mirrors[C]. Proceedings of SPIE.2013,8679:86790C.
    [20] T. Sasaki, K. Kajiyama, H. Morishima, et al. Performance estimation of EUVexposure optics for below32nm node in consideration of Mo/Si multilayercoating[C]. Proceedings of SPIE.2007,6517:65171P.
    [21] B. Wu, A. Kumar, M. Chandrachood, et al. Extreme ultraviolet lithography masketch study and overview[J]. Journal of Micro/Nanolithography, MEMS, andMOEMS.2012,12(2):021007.
    [22] P. Naulleau, K. A. Goldberg, E. Anderson, et al. EUV microexposures at the ALSusing the0.3-NA MET projection optics[C]. Proceedings of SPIE.2005,5751:52-63.
    [23] T. Wallow, C. Higgins, R. Brainard, et al. Evaluation of EUV resist materials foruse at the32nm half-pitch node[C]. Proceedings of SPIE.2008,6921:69211F.
    [24] K. C. Thompson, S. N. Srivastava, E. L. Antonsen, et al. Debris mitigationtechniques for a Sn-and Xe-fueled EUV light source[C]. Proceedings of SPIE.2007,6517:65173L.
    [25] J. Sporre, C. Casta O, R. Raju, et al. Ionic debris measurement of three extremeultraviolet sources[J]. Journal of Applied Physics.2009,106(4):043304.
    [26] M. J. Partlow, M. M. Besen, P. A. Blackborow, et al. Extreme-ultraviolet lightsource development to enable pre-production mask inspection[J]. JournalMicro/Nanolithography, MEMS, and MOEMS.2012,11(2):021105.
    [27] K. Nishihara, A. Sunahara, A. Sasaki, et al. Plasma physics and radiationhydrodynamics in developing an extreme ultraviolet light source forlithography[J]. Physics of Plasmas.2008,15(5):056708.
    [28] S. F. Horne, M. J. Partlow, D. S. Gustafson, et al. High brightness ElectrodelessZ-PinchTM EUV Source for Mask Inspection Tools[C]. Proceedings of SPIE.2012,8322:83222M.
    [29] H. Oizumi, Y. Maejima, T. Watanabe, et al. Sub-0.1m Resist Patterning in SoftX-Ray (13nm) Projection Lithography[J]. Japanese Journal of Applied Physics.1993,32:5914-5914.
    [30] H. Bender, D. O’connell and W. Silfvast. Velocity characterization of particulatedebris from laser-produced plasmas used for extreme-ultraviolet lithography[J].Applied Optics.1995,34(28):6513-6521.
    [31] M. Banyay and L. Juschkin. Innovative approaches to surface sensitive analysistechniques on the basis of plasma-based off-synchrotron XUV/EUV lightsources[C]. Proceedings of SPIE.2008,7077:707714.
    [32] P. P. Naulleau, P. E. Denham, B. Hoef, et al. A design study for synchrotron-basedhigh-numerical-aperture scanning illuminators[J]. Optics Communications.2004,234:53-62.
    [33] A. Egbert, S. Becker and B. N. Chichkov. Off-synchrotron at-wavelength EUVmetrology[C]. Proceedings of SPIE.2005,5751:1178-1184.
    [34] H. Mizoguchi, H. Nakarai, T. Abe, et al. LPP-EUV light source development forhigh volume manufacturing lithography[C]. Proceedings of SPIE.2013,8679:86790A.
    [35] D. C. Brandt, I. V. Fomenkov, N. R. Farrar, et al. CO2/Sn LPP EUV Sources fordevice development and HVM[C]. Proceedings of SPIE.2013,8679:86791G.
    [36] R. C. Spitzer. Soft x-ray production from laser plasmas for lithographyapplications[J]. Journal of Vacuum Science&Technology A.1993, B11(6):2986–2999.
    [37] T. Tomie. Tin laser-produced plasma as the light source for extreme ultravioletlithography high-volume manufacturing: history, ideal plasma, present status, andprospects[J]. Journal Micro/Nanolithography, MEMS, and MOEMS.2012,11(2):021109.
    [38] P. W. Wachulak, L. Wegrzynski, Z. Zaprazny, et al. Extreme ultraviolet tomographyusing a compact laser-plasma source for3D reconstruction of low densityobjects[J]. Optics Letters.2014,39(3):532-535.
    [39] B. Rollinger, L. Bozinova, N. Gambino, et al. Tin Droplets for LPP EUVSources[C]. Proceedings of SPIE.2012,8322:83222P.
    [40] A. Z. Giovannini and R. S. Abhari. Three-dimensional extreme ultraviolet emissionfrom a droplet-based laser-produced plasma[J]. Journal of Applied Physics.2013,114(3):033303.
    [41] G. Schriever, O. Semprez, J. Jonkers, et al. Laser-produced plasma versuslaserassisted discharge plasma: physics and technology of extreme ultravioletlithography light sources[J]. Journal Micro/Nanolithography, MEMS, andMOEMS.2012,11(2):021104.
    [42] J. R. Freeman, S. S. Harilal, B. Verhoff, et al. Laser wavelength dependence onangular emission dynamics of Nd:YAG laser-produced Sn plasmas[J]. PlasmaSources Science and Technology.2012,21:055003.
    [43] A. Endo. Scaling of high average power, short-pulse CO2lasers[J]. JournalMicro/Nanolithography, MEMS, and MOEMS.2012,11(2):021113.
    [44] J. R. Freeman, S. S. Harilal, A. Hassanein, et al. Effect of prepulse laserwavelength on EUV emission from CO2reheated laser-produced Sn plasma[J].Applied Physics A-Materials Science&Processing.2013,110(4):853-856.
    [45] D. C. Brandt, I. V. Fomenkov, A. I. Ershov, et al. LPP Source System Developmentfor HVM[C]. Proceedings of SPIE.2011,7636:76361I.
    [46] J. Pouvesle, E. Robert, T. Gonthiez, et al. Discharge-based sources of XUV-Xradiations: development and applications[J]. Plasma Sources Science andTechnology.2003,12: S43-S50.
    [47] T. Krucken, K. Bergmann, L. Juschkin, et al. Fundamentals and limits for the EUVemission of pinch plasma sources for EUV lithography[J]. Journal of Physics D:Applied Physics.2004,37:3213–3224.
    [48] I. V. Fomenkov, N. B Wering, C. L. Rettig, et al. EUV discharge light source basedon a dense plasma focus operated with positive and negative polarity[J]. Journalof Physical D: Applied Physics.2004,37:3266-3276.
    [49] M. Benk and K. Bergmann. Brilliance scaling of discharge sources forextreme-ultraviolet and soft x-ray radiation for metrology applications[J]. Journalof Micro/Nanolithography, MEMS, and MOEMS.2012,11(2):021106.
    [50] J. Pankert, K. Bergmann, J. Klein, et al. Physical properties of the HCT EUVsource[C]. Proceedings of SPIE.2003,5037:112-118.
    [51] K. Bergmann, G. Schriever, O. Rosier, et al. Highly repetitive, extreme-ultravioletradiation source based on a gas-discharge plasma[J]. Applied Optics.1999,38(25):5413-5417.
    [52] G. Schriever, M. Rahe, U. Stamm, et al. Compact Z-pinch EUV source forphotolithography[C]. Proceedings of SPIE.2001,4343:615-620.
    [53] C. H. Zhang, P. Lv, S. Katsuki, et al. Gas flow rate effects from a Z-pinch dischargeplasma on extreme ultraviolet emission[C]. Proceedings of IEEE.2009,958-961.
    [54] B. Huang, Y. Takimoto, M. Watanabe, et al. Effect of Electron Density on ExtremeUltraviolet Output of a Z-Pinch Xe Discharge Produced Plasma Source[J].Japanese Journal of Applied Physics.2011,50:06GB09.
    [55] M. W. Mcgeoch. Power scaling of a Z-pinch extreme ultraviolet source[C].Proceedings of SPIE.2000,3997:861-866.
    [56] S. F. Horne, M. M. Besen, D. K. Smith, et al. Application of a high-brightnesselectrodeless Z-pinch EUV source for metrology, inspection, and resistdevelopment[C]. Proceedings of SPIE.2006,6151:61510P.
    [57] E. L. Antonsen, K. C. Thompson, M. R. Hendricks, et al. Ion debrischaracterization from a z-pinch extreme ultraviolet light source[J]. Journal ofApplied Physics.2006,99(6):063301.
    [58] K. Koshelev, V. Krivtsun, V. Ivanov, et al. New type of discharge-produced plasmasource for extreme ultraviolet based on liquid tin jet electrodes[J]. JournalMicro/Nanolithography, MEMS, and MOEMS.2012,11(2):021103.
    [59] P. Lu, S. Katsuki, N. Tomimaru, et al. Dynamic Characteristics of Laser-AssistedDischarge Plasmas for Extreme Ultraviolet Light Sources[J]. Japanese Journal ofApplied Physics.2010,49(9R):096202.
    [60] J. Rocca, D. Beethe and M. Marconi. Proposal for soft-x-ray and XUV lasers incapillary discharges[J]. Optics Letters.1988,13(7):565-567.
    [61] J. Rocca, V. Shlyaptsev, F. Tomasel, et al. Demonstration of a discharge pumpedtable-top soft-x-ray laser[J]. Physical Review Letters.1994,73(16):2192-2195.
    [62] M. Akel, S. A. Salo, S. Saboohi, et al. Xenon plasma as a potential source for EUVand soft X-ray radiations: Numerical experiments[J]. VACUUM.2014,101:360-366.
    [63] W. N. Partlo, I. V. Fomenkov and D. L. Birx. EUV (13.5-nm) light generation usinga dense plasma focus device[C]. Proceedings of SPIE.1999,3676:846-858.
    [64] P. Zuppella, A. Reale, A. Ritucci, et al. Spectral enhancement of a Xe-based EUVdischarge plasma source[J]. Plasma Sources Science and Technology.2009,18:025014.
    [65] E. Kieft, K. Garloff, J. Van Der Mullen, et al. Comparison of experimental andsimulated extreme ultraviolet spectra of xenon and tin discharges[J]. PhysicalReview E.2005,71(3):036402.
    [66] M. Klosner, H. Bender, W. Silfvast, et al. Intense plasma discharge source at13.5nm for extreme-ultraviolet lithography[J]. Optics Letters.1997,22(1):34-36.
    [67] V. Banine and R. Moors. Plasma sources for EUV lithography exposure tools[J].Journal of Physics D: Applied Physics.2004,37:3207-3212.
    [68] S. Churilov, Y. Joshi, J. Reader, et al.4p64d8-(4d75p+4d74f+4p54d9) Transitions inXe XI[J]. Physica Scripta.2004,70:126-138.
    [69] K. Fahy, P. Dunne, L. Mckinney, et al. UTA versus line emission for EUVL:Studies on xenon emission at the NIST EBIT[J]. Journal of Physics D: AppliedPhysics.2004,37(6):3225-3232.
    [70] M. Poirier, T. Blenski, F. De Gaufridy De Dortan, et al. Modeling of EUV emissionfrom xenon and tin plasma sources for nanolithography[J]. Journal of QuantitativeSpectroscopy and Radiative Transfer.2006,99;482-492.
    [71] S. Churilov. High-resolution spectrum of xenon ions at13.4nm[J]. Optics Letters.2003,28(16):1478-1480.
    [72] J. White, P. Hayden, P. Dunne, et al. Simplified modeling of13.5nm unresolvedtransition array emission of a Sn plasma and comparison with experiment[J].Journal of Applied Physics.2005,98(11):113301.
    [73] Z. Andreic, S. S. Ellwi, S. Pleslic, et al. Performance of the13.5nm PVC capillarydischarge EUV source[J]. Physics Letters A.2005,335(5-6):430-434.
    [74] R. Lebert, B. Jagle, C. Wies, et al. Progress on EUV-source development, toolintegration and applications[C]. Proceedings of SPIE.2005,5835:230.
    [75] S. Gtze and S. Ellwi. Time resolved diagnostics of plasmas in polyacetal ablativecapillary discharges[J]. Physics Letters A.2002,299(5-6):571-576.
    [76] E. Robert, B. M. Blagojevic, R. Dussart, et al. Spectroscopic and energeticinvestigation of capillary discharges devoted to EUV production for newlithography generation[C]. Proceedings of SPIE.2001,4343:566-575.
    [77] Andrei, S. Ellwi, S. Plesli, et al. In-band EUV radiation of ablative capillarydischarges in PVC[J]. Vacuum.2003,71(1-2):229-232.
    [78] M. A. Klosner and W. T. Silfvast. Intense xenon capillary dischargeextreme-ultraviolet source in the10-16-nm-wavelength region[J]. Optics Letters.1998,23(20):1609-1611.
    [79] M. Klosner and W. Silfvast. Xenon-emission-spectra identification in the5-20-nmspectral region in highly ionized xenon capillary-discharge plasmas[J]. Journal ofthe Optical Society of America B-Optical Physics.2000,17(7):1279-1290.
    [80] S. R. Mohanty, E. Robert, R. Dussart, et al. A novel fast capillary discharge systememitting intense EUV radiation-Possible source for EUV lithography[J].Microelectronic Engineering.2003,65:47-59.
    [81] Y. Teramoto, H. Sato, K. Bessho, et al. Development of Xe-filled capillarydischarge extreme-ultraviolet radiation source for semiconductor lithography[C].Proceedings of SPIE.2003,5037:767-775.
    [82] T. Boboc, R. Bischoff and H. Langhoff. Emission in the extreme ultraviolet byxenon excited in a capillary discharge[J]. Journal of Physics D-Applied Physics.2001,34:2512-2517.
    [83] K. Nowakowska-Langier, L. Jakubowski, E. Baronova, et al. Observations ofextreme ultraviolet emission from plasma produced by capillary discharges[J].European Physical Journal D.2009,54(2):377-382.
    [84] I. Song, K. Iwata, Y. Homma, et al. A comparative study on the performance of axenon capillary Z-pinch EUV lithography light source using a pinhole camera[J].Plasma Sources Science&Technology.2006,15:322-327.
    [85] M. A. Klosner and W. T. Silfvast. Xenon capillary discharge extreme-ultravioletsource emitting over a large angular range[J]. Applied Optics.2001,40(27):4849-4851.
    [86] Y. Teramoto, H. Sato, K. Bessho, et al. Radiation characteristics of high repetitionrate capillary Z-pinch EUV source[C]. Proceedings of IEEE.2004,242-245.
    [87] M. Mcgeoch. Radio-frequency-preionized xenon z-pinch source for extremeultraviolet lithography[J]. Applied Optics.1998,37(9):1651-1658.
    [88] M. W. Mcgeoch. High power extreme ultraviolet source based on a Z-pinch[C].Proceedings of SPIE.1999,3676:697-701.
    [89] K. Bergmann, S. Danylyuk and L. Juschkin. Optimization of a gas dischargeplasma source for extreme ultraviolet interference lithography at a wavelength of11nm[J]. Journal of Applied Physics.2009,106(7):073309.
    [90] J. S. V. Kaufman, J. L. Tech. Analysis of the4d9-4d85p transitions in nine-timesionized xenon (Xe X)[J]. Journal of the Optical Society of America.1983,73(5):691-693.
    [91] G. O'sullivan. Charge-dependent wavefunction collapse in ionised xenon,[J].Journal of Physics B: Atomic, Molecular and Optical Physics.1982,15:L765-L771.
    [92] J. Blackburn, P. Carroll, J. Costello, et al. Spectra of Xe VII, VIII, and IX in theextreme ultraviolet:4d-mp, nf transitions[J]. Journal of the Optical Society ofAmerica.1983,73(10):1325-1329.
    [93] S. Churilov and Y. Joshi. Analysis of the4p64d84f and4p54d10configurations of XeX and some highly excited levels of Xe VIII and Xe IX ions[J]. Physica Scripta.2002,65:40-45.
    [94] F. Gilleron, M. Poirier, T. Blenski, et al. Emissive properties of xenon ions from alaser-produced plasma in the100–140spectral range: Atomic-physics analysisof the experimental data[J]. Journal of Applied Physics.2003,94(3):2086-2096.
    [95] N. Bowering, M. Martins, W. Partlo, et al. Extreme ultraviolet emission spectra ofhighly ionized xenon and their comparison with model calculations[J]. Journal ofApplied Physics.2004,95(1):16-22.
    [96] S. Wieneke, S. Bruckner and W. Viol. Spectroscopic studies of ahollow-cathode-triggered Z-pinch discharge[J]. IEEE Transactions on PlasmaScience.2007,35(3):601-605.
    [97] J. Zeng, C. Gao and J. Yuan. Extreme-ultraviolet emissivity from Xe8+to Xe12+byusing a detailed line-by-line method[J]. European Physical Journal D.2010,60:309-316.
    [98] L. Juschkin, A. Chuvatin, S. Zakharov, et al. EUV emission from Kr and Xecapillary discharge plasmas[J]. Journal of Physics D: Applied Physics.2002,35:219-227.
    [99] U. Stamm, J. Kleinschmidt, K. G bel, et al. EUV Source Power and Lifetime: theMost Critical Issues for EUV Lithography[C]. Proceedings of SPIE.2004,5374:133.
    [100]王丽萍.极紫外投影光刻光学系统[J].中国光学与应用光学.2010,3(5):452-461.
    [101]吴涛,王新兵,王少义, et al.基于脉冲CO2激光锡等离子体光刻光源的极紫外辐射光谱特性研究[J].光谱学与光谱分析.2012,32(7):1729-1733.
    [102] W. Tao, W. Xinbing and W. Shaoyi. Spectral Efficiency of Extreme UltravioletEmission from CO2Laser-Produced Tin Plasma Using a Grazing IncidenceFlat-Field Spectrograph[J]. Plasma Science&Technology.2013,15(5):435-438.
    [103]高城,沈云峰,曾交龙.电子相关对Xe10+离子4d8-4d75p跃迁系跃迁概率的影响[J].物理学报.2008,57(7):4059-4065.
    [104]苏茂根.激光产生的锡、碘和金等离子体极真空紫外光谱的分析和模拟[D].西北师范大学博士.2009:8-34.
    [105] R. W. P. Mcwhirter. Plasma Diagnostic Techniques[M]. Academic,1965:191-229.
    [106] A. Hassanein, V. Sizyuk, V. Tolkach, et al. Simulation and optimization of DPPhydrodynamics and radiation transport for EUV lithography devices[C].Proceedings of SPIE.2004,5374:413-422.
    [107] K. Bergmann, O. Rosier, W. Neff, et al. Pinch-plasma radiation source forextreme-ultraviolet lithography with a kilohertz repetition frequency[J]. AppliedOptics.2000,39(22):3833-3837.
    [108] D. Colombant and G. Tonon. X-ray emission in laser-produced plasmas[J].Journal of Applied Physics.1973,44(8):3524.
    [109]沈云峰.氙和金等离子体粒子布居及光谱的细致能级模型研究[D].国防科学技术大学理学硕士学位论文.2007:20-24
    [110]王骐,赵永蓬.激光器动力学[M].哈尔滨工业大学出版社,2008:39-42
    [111]曾交龙.使用细致谱项模型研究铝等离子体的辐射不透明度[D].国防科学技术大学理学博士学位论文.2001:97-99
    [112] P. Vrba and M. Vrbová. Z-Pinch Evolution in Capillary Discharge[J].Contributions to Plasma Physics.2000,40(5-6):581-595.
    [113]刘鹏.毛细管放电泵浦X光激光装置及荧光谱实验研究[D].哈尔滨工业大学工学博士论文.2002:21~50
    [114] Y. P. Zhao, Y. L. Cheng, B. H. Luan, et al. Effects of capillary discharge current onthe time of lasing onset of soft x-ray laser at low pressure[J]. Journal of PhysicsD-Applied Physics.2006,39:342-346.
    [115] Y. P. Zhao, Q. Wang, Y. Xie, et al. Laser output and multiple pinches of plasma incapillary discharge[J]. Journal of Plasma Physics.2008,74(06):839-846.
    [116] F. E. Zocchi, E. Buratti and V. Rigato. Design and optimization of collectors forextreme ultraviolet lithography[C]. Proceedings of SPIE.2006,6151:61510T.
    [117] F. E. Zocchi. High-efficiency collector design for extreme-ultraviolet and x-rayapplications[J]. Applied Optics.2006,45(35):8882-8888.
    [118] G. Derra and W. Singer. Collection Efficiency of EUV Sources[C]. Proceedings ofSPIE.2003,5037:728-741.
    [119] M. Yoshioka, D. Bolshukhin, M. Corthout, et al. Xenon DPP Source Technologiesfor EUVL Exposure Tools[C]. Proceedings of SPIE.2009,7271:727109.
    [120] S. Zhang, Q. Wang, D. Zhu, et al. Optical design for EUV lithography sourcecollector[J]. Chinese Optics Letters.2011,9(5):052201.
    [121]孙承纬.高密度Z箍缩等离子体物理学[M].国防工业出版社,2003:8-30
    [122] A. F. Nastoyashchii. Optimal physical conditions for extreme UV generation[C].Proceedings of SPIE.2004,5448:749-755.
    [123] M. Masnavi, M. Nakajima, E. Hotta, et al. Estimation of optimum density andtemperature for maximum efficiency of tin ions in Z discharge extreme ultravioletsources[J]. Journal of Applied Physics.2007,101:033306.
    [124] Q. Zhu, J. Yamada, N. Kishi, et al. Investigation of the dynamics of the Z-pinchimploding plasma for a laser-assisted discharge-produced Sn plasma EUVsource[J]. Journal of Physical D: Applied Physics.2011,44:145203.
    [125] S. A. George, P. P. Naulleau, S. Rekawa, et al. Estimating the out-of-bandradiation flare levels for extreme ultraviolet lithography[J]. Journal ofMicro/Nanolithography, MEMS, and MOEMS.2009,8(4):041502.
    [126] K. N. Koshelev, H.-J. Kunze, R. Gayazov, et al. EUV sources for lithograph[M].Hardcover,2006:175-189
    [127] W. Soer, D. Klunder, M. Van Herpen, et al. Debris mitigation for EUV sourcesusing directional gas flows[C]. Proceedings of SPIE.2006,6151:61514B.
    [128] L. A. Shmaenok, C. C. D. Bruijn, R. H. Fledderus, et al. Demonstration of A FoilTrap Technique to Eliminate Laser Plasma Atomic Debris and SmallParticulates[C]. Proceedings of SPIE.1998,3331:90-94.
    [129] J. Sporre and D. N. Ruzic. Debris transport analysis at the intermediate focus ofan extreme ultraviolet light source[J]. Journal of Micro/Nanolithograph, MEMS,and MOEMS.2012,11(2):021117.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700