用户名: 密码: 验证码:
矽肺纤维化生物活性介质调控网络研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
矽肺是最为严重的一种职业病之一,是由于长期吸入大量含有游离二氧化硅粉尘所引起的一种不可逆转的渐进性加重的肺间质纤维化疾病。引起矽肺的主要职业有武警黄金水电部队的开矿挖掘作业,地方各行业如矿山开采、冶金工业中的原料破碎、陶瓷工业的原料加工,这些职业均可导致不同程度的肺纤维化。矽肺患病率逐年增多,造成直接和间接经济损失巨大,是危害最严重的职业病之一,而且已经成为重大社会公共卫生问题。国内外学者对矽肺纤维化的单个细胞因子作用虽已取得了一定的研究进展,但其系统网络调控机制尚未阐明。
     目的确定矽肺纤维化相关的生物活性介质,构建生物活性介质调控网络及其基因调控网络,以及二者整合网络,以此系统阐明矽肺纤维化的网络调控机制。
     方法本文主要应用系统生物学的方法构建生物活性介质调控网络。1.生物活性介质的确定。采用RevMan4.2进行meta分析,对研究的偏倚进行漏斗图、异质性、敏感性分析后进而确定相关活性介质。2.初始调控网络的构建。利用meta分析后数据,通过三次样条插值,采用微分方程模型并应用最小二乘法求解加权矩阵,构建活性介质调控网络。3.大鼠矽肺模型及实验后调控网络构建。应用气管暴露法注入二氧化硅粉尘悬液或生理盐水建立大鼠矽肺模型或对照模型。随机将Wistar大鼠分为矽尘组和对照组,每组再分为第1d,第3d,第7d,第14d,第21d,第28d共6个时间点,每个时间点分别取8只大鼠处死,收集相应血清和肺组织后系统检测相关生物活性介质。采用天狼猩红染色法结合偏振光显微镜观察肺组织胶原变化,并用图像分析系统定量分析Ⅰ、Ⅲ型胶原面积比;采用ELISA法系统测定血清中活性介质NF-κB、IL-1β、IL-10、TNF-α、INF-γ、TGF-β1、GM-CSF的含量;利用硝酸还原酶法测定NO含量。通过系统检测数据应用相关系数模型和微分方程模型进一步构建调控网络。4.干扰实验对调控网络的校正。同样应用气管暴露法建立大鼠矽肺模型,随机将32只大鼠分为TNF-α干扰组和矽尘组,每组再分为第7d和第14d两个时间点,每个时间点取8只大鼠并检测以上相同活性介质,通过比较两组之间各指标的差异校正调控网络。5.基因调控网络实验确证和扩充。造模后第14d用Trizol提取染矽尘组和对照组中肺组织总RNA,通过Illumina大鼠全基因表达芯片的检测,结合Diffscore差异分值筛选差异表达基因。通过KEGG、GO、DAVID等数据库平台,应用功能富集分析方法以及Cluster、TreeView等工具建立相关细胞因子基因聚类树,并利用差异表达基因相关系数矩阵构建基因调控网络,整合活性介质和基因调控网络,扩充和完善生物活性介质调控网络。
     结果1.meta分析后肺纤维化相关活性介质为TNF-α、TGF-β1、IFN-γ、MCP-1、IL-4、IL-6、IL-18、MMP-9、IL-10、IL-1β、IL-5、IL-8、IGF-1、GM-CSF、MMP-2、EGF。其中肺组织中TNF-α随时间的变化并不是直线升高,而是呈波浪性升高。肺组织、巨噬细胞、血清活性介质TNF-α各时点变化并不一致,其中巨噬细胞在第1天变化比其余两者更为明显,肺组织除第1天外各时点变化具有显著性差异,血清在各个时点变化均较肺组织表达弱一些。2.当权值阈值为2σ时,肺纤维化活性介质调控网络中重要节点为:IFN-γ、IL-10、IL-1β、IL-18、IL-6、IGF-1、GM-CSF、TGF-β1、TNF-α;非重要节点的活性介质为IL-4、IL-5、IL-8、MCP-1、MMP-2、MMP-9、EGF。当权值阈值为3σ时,肺纤维化活性介质调控网络中重要的节点变为:IFN-γ、IL-10、IL-1β、GM-CSF、TGF-β1、TNF-α;非重要节点的活性介质为IL-18、IL-6、IGF-1、IL-4、IL-5、IL-8、MCP-1、MMP-2、MMP-9、EGF。3.肺组织天狼猩红染色显微镜及图像分析仪观察表明第21天、第28天矽肺模型是成功的。实验组与对照组比较,血清中NF-κB和NO各时间点(除第21天NO外)表达具有统计学意义,动态表达比趋势较为一致。TGF-β1第21天、第28天表达增加,而IFN-γ第21天、第28天表达有降低趋势。TNF-α表达比呈先降低后增高趋势,但整体上与对照组相比没有统计学意义。IL-1β、IL-10、GM-CSF不同时间点动态表达比均大于1,前两者先升高后降低,后者呈波浪性升高。4.调控网络中度大于等于5的节点介质为IFN-γ、GM-CSF、TGF-β1、TNF-α;度小于5的节点为IL-10、IL-1β、NF-κB、NO、COLⅠ、COLⅢ。TNF-α可溶性受体干扰实验是可行的,该受体能够抑制矽尘诱导的大鼠肺组织Ⅰ、Ⅲ型胶原的增加,抑制外周血清中NO、IL-1β、TGF-β1、NF-κB的蛋白表达。原调控网络中同TNF-α相关联的介质可能还包括COL I、GM-CSF等介质。5.矽肺纤维化血清中通过功能富集分类得出相关细胞因子基因共有29个,其调控网络中“度”大于5的关键基因为CCL7、GRN、IL-18、SFTPD、SPN、SPP1、TNF-α、TNFRSF。
     结论矽尘诱发机体活性介质的变化通过网络状态调控肺纤维化的形成。16种生物活性介质(TGF-β1,IFN-γ,MCP-1, IL-4, IL-6,IL-18,MMP-9, TNF-α,IL-10,IL-1β,IL-5,IL-8, IGF-1, GM-CSF, MMP-2, EGF)可能参与肺纤维化的调控,且具有一定的时空变化规律。时间趋势上活性介质的含量不是呈直线性,而是呈波浪性升高或降低趋势,各时点变化并不一致。空间表现上活性介质在细胞中出现最早,血清中出现最晚;各时点在肺组织中表达最强,血清中表达较弱。肺纤维化生物活性介质调控网络中重要节点介质为:IFN-γ、IL-10、IL-1β、GM-CSF、TGF-β1、TNF-α、NF-κB、NO;非重要节点为IL-18、IL-6、IGF-1、IL-4、IL-5、IL-8、MCP-1、MMP-2、MMP-9、EGF。在肺纤维化活性介质调控网络中,NO和NF-κB是一个启动中枢,而TNF-α、TGF-β1既担当启动子又担当致纤维化调控网络的中间传递子,GM-CSF、IL-1β、IFN-γ呈现级联瀑布放大或抑制网络效应。在网络效应活性介质促进和抑制功能不平衡的条件下形成肺纤维。
Silicosis, one of most severe occupation diseases, is an gradually aggravated and irreversiblely pulmonary interstitial fibrosis disease, induced by long-term inhalation of free silica powder dust, such as the dust of mining excavation in the gold and hydropower armed police force, civil mine exploitation, raw material quassation in the procedure of metallurgy and ceramics, which can cause momentous lose of economy directly and indirectly, and induce substantially aggravated problems in the fields of society and public health. Up to now, the study of the single cytokine effectiveness of silicosis fibrosis had got some achievements, but the mechanism of systematic regulatory network is still not being demonstrated.
     Objective To ascertain related bioactivity mediums of silica-reduced pulmonary fibrosis in rats, to construct the regulator network of the material bioactivity and its genes as well as both integration, to evaluate network regulatory mechanism of silicosis fibrosis systematically.
     Method The regulatory network of the bioactivity mediums was constructed by the method of systems biology in this paper. 1. Identification of the bioactivity mediums. The mediums of biological activity were identified by the meta-analysis software RevMan 4.2. The investigative biases were also evaluated by analytical methods such as funnel plot, heterology and susceptibility. 2. Construction of initial regulatory network with meta-analysis database. The potential regulatory network pathway was constructed and analyzed by meta–analysis, cubic spline interpolation, differential model and weighting matrix obtained with least square method. 3. Silicosis model in rats and construction of initial regulatory network with animal experiment database. The rats models in silicosis or control group were established with intratracheal infusion of silica dust suspension or physiological saline by trachea exposure method. Wistar rats were divided randomly into two groups including control group and silicosis group. At each time point such as day 1, 3, 7, 14, 21, and 28 after establishment of the rat model, eight rats from each group were sacrificed. After the serum and pulmonary tissue of the model were required, the related bioactivity mediums were detected systematically. The abnormal syntheses of collagenⅠandⅢin pulmonary tissue with Sirius red staining were detected by polarization microscopy. The area percentages of collagensⅠandⅢwere quantitatively analyzed by image analysis systems. The concentration of NF-κB, IL-1β, IL-10, TNF-α, INF-γ, TGF-β1, and GM-CSF protein in serum was measured by ELISA method. And NO content was determined by nitric acid reeducates method. The regulatory network was constructed with correlation coefficient and differential equation model by systematical detection database. 4. Revise of regulatory network by intervention experiment. Silicosis model in rats was established by the same trachea exposure method. 32 rats were divided into two groups randomly, i.e. TNF-αintervention group and silica group, which were observed at the 7th day and 14th day after establishment of the animal model, respectively. Eight rats from each group at each time point were sacrificed, and the same bioactivity mediums as above-mentioned were detected systematically. The regulatory network was reconstructed and revised by comparing the difference of each bioactivity mediums in the two groups. 5. The experiment ascertainment and expansion of the gene regulatory network. The total RNA of pulmonary tissue in silicosis and control group was abstracted by Trizol method at the 14th day after model construction. The different express genes were screened with diffscore value by illumina gene expression microarray chip. The cluster of the related cytokines gene was analysised by the software including Cluster and TreeView and by the database platform such as KEGG, GO and DAVID. Then the gene regulatory network was established by correlation coefficient matrix and was also integrated with regulatory network of bioactivity medium for the purpose of expanding and improving the network.
     Result 1. The related bioactivity mediums of silica-reduced lung fibrosis were ascertained to be TNF-α,TGF-β1,IFN-γ,MCP-1, IL-4, IL-6,IL-18,MMP-9, IL-10,IL-1β,IL-5,IL-8, IGF-1, GM-CSF, MMP-2 and EGF by meta-analysis. Of the mediums, TNF-αcontent in lung tissue increased not on a straight line but on a wave line in a time-dependent manner. The medium level wasn’t coincident in lung tissue, macrophage and serum. Specially, the medium content in macrophage was more than the others’at the 1st day after model constructing, and the medium of pulmonary tissue in silica group was more significant statistically than that in control group except on the 1st day, and the mediums content in the serum was lower than that in the lung tissues. 2. The mediums, IFN-γ,IL-10,IL-1β,IL-18,IL-6,IGF-1, GM-CSF, TGF-β1 and TNF-αwere the key nodal points in regulatory network of the pulmonary fibrosis, but IL-4, IL-5,IL-8,MCP-1, MMP-2, MMP-9 and EGF were not in the regulatory, if threshold value in weighting matrix exceeded absolute value 2σ. The mediums, IFN-γ,IL-10,IL-1β, GM-CSF, TGF-β1 and TNF-αwere the key nodal points in regulatory network of the pulmonary fibrosis, but IL-18, IL-6,IGF-1, IL-4, IL-5, IL-8,MCP-1, MMP-2, MMP-9 and EGF were not in the regulatory, if threshold value in weighting matrix exceed absolute value 3σ. 3. The lung tissue with sirius red staining were observed by microscopy and image analysator, with the result that the rat model of silicosis was established successfully at day 21, 28. Compared with that in the control group, the content of NF-κB and NO in serum increased significantly at all the time points in silicosis group except for NO at day 21, and dynamic state express ratio tendency of both mediums was coincident. At the 21st day and 28th day, the express ratio of TGF-β1 in silicosis group was higher, but that of IFN-γwas lower than one in the control group. TNF-αprotein level decreased in earlier period and increased in the later period, but had no statistical significance during the whole experiment in both comparisons. The dynamic express ratio of the content of IL-1β, IL-10, and GM-CSF exceed 1 at various time point. Of the total mediums, the tendency of the former two protein level was elevated in fibrosis prophase and degraded in fibrosis anaphase, but the tendency of the later GM-CSF was raised by waved method. 4. The mediums in regulatory network in which the degree weren’t less than 5 had IFN-γ, GM-CSF, TGF-β1, TNF-α, and the mediums of which the degree was less than 5 had IL-10, IL-1β, NF-κB, NO, COLⅠ, COLⅢ. The soluble TNF-αreceptor which was feasible to the intervention of pulmonary fibrosis could suppress formation of collagenⅠandⅢin lung tissues, and play role of anti-fibrosis through peripheral serum mediums such as NO, NF-κB, TGF-β1, and IL-1βin cytokine network in silicotic process. In the above regulatory network, the mediums in the pathway related to TNF-αshould include COL I, GM-CSF. 5. 29 genes related to cytokines function categorization in serum were divided to the regulatory network in silicosis fibrosis. The key genes with degree exceeding 5 in regulatory network were CCL7, GRN, IL-18, SFTPD, SPN, SPP1, TNF-αand TNFRSF.
     Conclusion The pulmonary fibrosis was regulated by the network method of silica-induced changes of bioactivity mediums. The regulatory factors which involve in pulmonary fibrosis consist of 16 bioactive mediums including TGF-β1,IFN-γ,MCP-1, IL-4, IL-6,IL-18,MMP-9, TNF-α,IL-10,IL-1β,IL-5,IL-8, IGF-1, GM-CSF, MMP-2, EGF with space-time transmutation rule. In the fibrosis process, the mediums’levels which weren’t consistent in various time points increased or decreased not by straight line method, but by wave line method. In the various specimens related pumomary fibrosis, the detection of the mediums’variation in the related cells was the earliest than that in the others, but the one in serums was the latest than that in the others. The mediums levels in lung tissue were the maximum, but the one in serums was the minimum. The mediums, IFN-γ, IL-10, IL-1β, GM-CSF, NF-κB, NO, TGF-β1 and TNF-α, were the key nodal points in regulatory network of the pulmonary fibrosis, but IL-18, IL-6,IGF-1, IL-4, IL-5, IL-8,MCP-1, MMP-2, MMP-9 and EGF weren’t in the regulatory. NO and NF-κB were a prime center in the regulatory network of pulmonary fibrosis, and TNF-α, TGF-β1 not only acted as the promoter, but also held the post of intermediate transferring factor in regulatory network which caused lung fibrosis. The changed content of GM-CSF,IL-1β,IFN-γamplified and inhibited cascade network effective, respectively. Then network effective of these bioactivity mediums resulted in lung fibrosis under the condition of imbalance of promoting agent and suppressing agent.
引文
[1] 卫生部, 等. 卫生部等单位通报我国职业病防治工作情况及今后重点工作[EB/OL]. (2006- 04-24) http://www.moh.gov.cn
    [2] 李德鸿.加强预防措施研究强化监督机制为实现消除尘肺而努力[J].中华劳动卫生职业病杂志, 2001, 19(1):1-2.
    [3] 钱峰.尘肺病例估计不少于 100 万[N].健康报, 2005.01.13(1)
    [4] Singh SK, Chowdhary GR, Purohit G. Assessment of impact of high particulate concentration on peak expiratory flow rate of lungs of sand stone quarry workers. Int J Environ Res Public Health. 2006, 3(4): 355-359.
    [5] Ke Q, Li J, Ding J, et al. Essential role of ROS-mediated NFAT activation in TNF-{alpha} induction by crystalline silica exposure. Am J Physiol Lung Cell Mol Physiol. 2006, 291(2):L257-L264.
    [6] Carnevale F, Baldasseroni A. A long-lasting pandemic: diseases caused by dust containing silica: Italy within the international context. Med Lav. 2005, 96(2):169-176.
    [7] Bufton MW, Melling J. Coming up for air: experts, employers, and workers in campaigns to compensate silicosis sufferers in Britain, 1918-1939. Soc Hist Med. 2005 , 18(1): 63-86.
    [8] Velan GM, Kumar DD. Conary inflammation and fibrosis following subacute inhalational esposure to silica: determinants of progression. Pathology, 1993, 25: 282-292
    [9] O'Reilly KM, Phipps RP, Thatcher TH, et al. Crystalline and amorphous silica differentially regulate the cyclooxygenase- prostagland in pathway in pulmonary fibroblasts: implications for pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol. 2005 , 288(6): L1010- L1016.
    [10] Quinlan TR, BeruBe KA, Marsh JP, et al. Patterns of inflammation, cell proliferation and related gene expression in lung after inhalation of chrysotile asbestos. Am.J.Pathol. 1995,147:728-739
    [11] Davis GS, Leslie KO, Schwarze JE, et al. Altered patterns of lung lymphocyte accumulation in silicosis in cytokine-sufficient (C3H/HeN) and cytokine-defficient (C3H/HeJ-LPSd) mice. Chest, 1993,103 (Suppl.2):120S-121S
    [12] Davis GS, Holmes CE, Pfeiffer LM, et al. Lymphocytes, lymphokines, and silicosis. J Environ Pathol Toxicol Oncol, 2001,20(Suppl.1): 53-65
    [13] Schapira R.M, A.J.Ghio, R.M.Effros, et al. Hydroxyl radical production and lung injury in the rat following silica or titanium dioxide instillation in vivo. Am.J.Respir. Cell Mol. Biol. 1995,12: 220-226
    [14] Oichi Kawanami, Hui-Xin Jiang, Hirosh Mochimaru, et al. Alveolar fibrosis and capillary alteration in experimental pulmonary slicosis in rats. Am J Respir Crit Care Med, 1995,151:1946-1955
    [15] Churg A. The uptake of mineral particle by pulmonary epithelial cells. Am.J. Respir. Crit. Care Med.1996, 154:1124-1140
    [16] Quinlan.TR, BeruBe KA, Hacker MP, et al. Mechanisms of asbestos- induced nitric oxide production by rat alveolar macrophages in inhalation and in vitro models. Free Radic Biol Med. 1998, 24(5): 778-788.
    [17] Scabilloni JF, Wang L, Antonini JM, et al. Matrix Metalloprotei- nase induction in fibrosis and fibrotic nodule formation due to silica inhalation. Am J Physiol Lung Cell Mol Physiol. 2005,288(4):L709- L717.
    [18] 王世鑫, 魏茂提. 矽尘致肺纤维化中 NO、NOS、TGF-β、TNF-α 的变化.武警医学院学报, 2002,12(3):141-144
    [19] 王世鑫, 张西正, 杜海科等. 染矽尘大鼠早期肺组织一氧化氮合酶的表达.中华劳动卫生与职业病杂志, 2004,22(3):152-154
    [20] Jagirdar J, Begin R, Dufresne A, et al. Transforming growth factor-beta(TGF-β) in silicosis . Am.J.Respir.Crit.Care Med.1996,154(4,Part1):1076-1081
    [21] Brooke JM, Andrew C. Mechanisms in the pathogenesis of abestosis and silicosis. Am J Respir Crit Care Med.1998,157:1666-1680
    [22] Bice Fubini, Andrea Hubbard. Reactive oxygen species(ROS) and Reactive nitrogen specie (RNS) generation by silica in inflammation and fibrosis. Free Radical Biology & Medicine, 2003,34(12):1507-1516
    [23] Mariani TJ, Roby JD, Mecham RP, et al. Localization of type Ⅰ procollagen gene expression in silica-induced granulomatous lung disease and implication of transforming growth factor-beta as a mediator of fibrosis. Am J Pathol. 1996,148:151-164
    [24] Williams A.O, K.C.Flanders, U.Saffiotti. Immunohistochemical localization of transforming growth factor-beta 1 in rats with experimental silicosis,alveolar type Ⅱ hyperplasia,and lung cancer. Am.J.Pathol,1993, 142:1831-1840
    [25] Barbarin V, Xing Z, Delos M, et al. Pulmonary overexpression of IL-10 augments lung fibrosis and Th2 responses induced by silica particles. Am J Physiol Lung Cell Mol Physiol, 2005, 288(5): L841-848
    [26] Junko Hata, Kumiko Aoki, Hiroaki Mitsuhashi, et al. Change in location of cytokine-induced neutrophil chemoattractants (CINCs) in pulmonary silicosis. Experimental and Molecular Pathology,2003, 75: 68-73
    [27] Hubbard AK, Timblin CR, Shukla A, et al. Activation of NF-kappaB dependent gene expression by silica in lungs of luciferase reporter mice. Am J Physiol Lung Cell Mol Physiol, 2002, 282(5):L968-975
    [28] 赵宝钰, 段丽琴. 尘肺病肺纤维化过程中细胞因子的作用. 职业与健康, 2007, 23(21): 1982-1984
    [29] Liu T, Dhanasekaran SM, Jin H, et al. FIZZ1 stimulation of myofibroblast differentiation. Am J Pathol, 2004,164:1315–1326.
    [30] Kaminski N, Allard J D, Pittet J F, et al. Global analysis of gene expression in pulmonary fibrosis reveals distinct programs regulating lung inflammation and fibrosis. Proc Nat Acad Sci, 2000,97:1778–1783.
    [31] Du M, Irani R A, Stivers D N, et al. H2-Ea deficiency is a risk factor for bleomycin-induced lung fibrosis in mice. Cancer Res,2004,64:6835–6839.
    [32] 姚武.尘肺病相关基因筛选研究. 四川大学, 博士学位论文,2005, 1-122.
    [33] 曾家伟,王世鑫,赵学峰,等.双向电泳一质谱技术筛选矽肺血清差异蛋白的研究.中华劳动卫生职业病杂志, 2007,25(3):136-140
    [34] Yang K, Ma W Z, Liang H H, et al. Dynamic simulations on the arachidonic acid Metabolic network[J]. PLoS Computational Biology,2007,3(3):523-530
    [35] Ideker T, Thorsson V, Jeffrey A, et al.Integrated genomic and proteomic analyses of a systematically perturbed Metabolic network[J]. Science, 2001, 292, 929-934
    [36] Jack A, Bruce F, Jeffrey A, Joel R. Cytokine networks in the regulation of inflammation and fibrosis in the lung.Chest 1990;97;1439-1445.
    [37] 王世鑫. 二氧化硅粉尘致肺纤维化机制及早期生物标记物研究. 重庆大学, 博士学位论文: 2004.
    [38] Malaviya A M. Cytokine Network and Its Manipulation in Rheumatoid Arthritis. JAPI, 2006, 54(SUPPLIMENT):15-18
    [39] Trey I, Owen O, Benno S, et al. Discovering regulatory and signaling circuits in molecular interaction networks. BIOINFORMATICS, 2002, 18(suppl.1): s233-s240.
    [40] Alexander W, Timothy G. Modular organization of cellular networks. PNAS, 2003, 100: 1128-1133
    [41] Natalie C. Duarte, Scott A. Becker, et al. Global reconstruction of the human Metabolic network based on genomic and bibliomic data. PNAS, 2007, 104 ( 6 ): 1777–1782.
    [42] Yang K, Ma W Z, Liang H H, et al. Dynamic Simulations on the Arachidonic Acid Metabolic Network. PLoS Computational Biology,2007,3(3):523-530
    [43] Ma W Z, Lai L H, Ouyang Q, et al. Robustness and modular design of the Drosophila segment polarity network. Mol Syst Bio, 2006,2:70
    [44] Natarajan M, Lin K M, Hsueh R C, et al. A global analysis of cross-talk in a mammalian cellular signalling network. Nat cell bio, 2006,8(6): 571-580.
    [45] Qian J, Lin J, Luscombe N M, et al. Prediction of regulatory networks: genome-wide identification of transcription factor targets from gene expression data. Bioinformatics, 2003, 19 (15 ): 1917-1926
    [46] 魏丽娟, 董惠娟. Meta 分析中异质性的识别与处理[J]. 第二军医大学学报, 2006,27 (4): 449-450
    [47] 何寒青, 陈坤. Meta 分析中的异质性检验方法[J]. 中国卫生统计, 2006, 23(6):486-490
    [48] Chen XC, Xu MT, Zhou W, et al. A Metaanalysis of relationship between β-fibrinogen gene 148C/T polymorphism and susceptibility to cerebral infarction in Han Chinese[J]. Chin Med J 2007,120(13): 1198-1202.
    [49] Lei XD, Peng CH, Tian DL, et al. Meta-analysis and its application in global change research [J]. Chinese Science Bulletin. 2007,52(3):289-302
    [50] Bajwa EK, Ayas NT, Schulzer M, et al.Interferon-gamma1b therapy in idiopathic pulmonary fibrosis: a Metaanalysis[J]. Chest,2005,128(1): 203-206.
    [51] Dianna B. Petitti. Meta-analysis, decision analysis, and cost-effectiveness analysis-methods for quantitative synthesis in medicine. Second edition. Oxford University Press:2000, 127-132
    [52] 刘景艳, 修清玉, 张铁锋.中药对肺纤维化动物模型细胞因子表达的影响[J]. 中华中医药杂志, 2005,20(7):401-403.
    [53] 侯宇虹, 潘金兵,齐景宪, 等. 肺纤维化大鼠丙二醛、肿瘤坏死因子 α 和内皮素-1 水平的变化[J]. 郑州人学学报(医学版), 2002,37(2): 200-202
    [54] 陈思娇,徐锦春,陈佰义,等. 博莱霉素致老年肺纤维化发病机制中 TNF-a 和 PDGF 的作用[J]. 当代医师杂志,1997,2(4):4-6
    [55] 周昌华, 蔡美英, 魏大鹏,等. 番茄红素对实验性肺纤维化大鼠血浆 TNF-a 、NO、MDA含量及SOD活性的影响[J]. 西部医学,2004(16)4:293-295
    [56] 张天嵩, 韩镭, 吴银根, 等. 肺纤煎联合泼尼松对博莱霉素致肺纤维化小鼠实验组织TGF-β1 mRNA 表达的影响[J]. 山东中医药大学学报,2004,28(1):66-68
    [57] 朱际平, 丁 蓉, 曹世宏. 温润养血颗粒对肺间质纤维化模型大鼠肺泡灌洗液 TNF-α 浓度的影响[J]. 浙江中医杂志, 2003, 6(6): 266-267
    [58] 王耀勇, 徐启勇, 叶燕青, 等. IL-10 在博莱霉素诱导大鼠所致肺纤维化中的作用[J]. 武汉大学学报(医学版), 2004,25(2): 159-165
    [59] 陈佰义, 姜 莉, 赵洪文,等. 肺纤维化大鼠肺泡巨噬细胞释放肿瘤坏死因子-α 和血小板源生长因子的研究[J]. 中华结核和呼吸杂志,1996,19(4): 209-212
    [60] 齐曼古丽,程继荣,哈木拉提,等. 喘消雾化液对博莱霉素诱导大鼠肺纤维化模型 IL-8、TNF-α 水平的影响[J]. 新疆医科大学学报, 2005,28(6): 499-501
    [61] 陈建, 何冰, 李永春, 等. 阿奇霉素对肺间质纤维化大鼠干预作用的研究[J]. 中华内科杂志, 1999, 38(10):677-670
    [62] 刘巨源, 海广范, 刘瑞丽, 等. 川芎嗪对实验性肺纤维化肺泡巨噬细胞释放肿瘤坏死因子的影响[J]. 新乡医学院学报,2005,22(1):1-3
    [63] 袁志明, 陈光瑾, 杜文彬. 大鼠肺纤维化过程中肺泡巨噬细胞释放白细胞介素 6 和肿瘤坏死因子α的观察. 天津医药, 1999, 27(12):742-743
    [64] 靳长俊, 辛洪涛, 林殿杰, 等. 芪丹颗粒剂对大鼠肺纤维化模型的干预作用及对 TGF-β、TNF-α 表达的影响[J]. 中国病理生理杂志, 2006, 22(4): 814-817/820
    [65] 辛洪涛, 宋秀杰, 徐少华,等. 芪丹颗粒剂对大鼠肺间质纤维化时 TGF-β 和 TNF-α 表达的影响[J]. 首都医科大学学报, 2004, 25(1):49-53
    [66] 王欣燕, 吴晓梅, 赵红. 盐酸氨溴索对实验性肺纤维化的干预作用[J]. 中华结核和呼吸杂志, 2004, 27(4):282-284
    [67] 郭永忠. 胆红素对博莱霉素致大鼠肺纤维化的阻抑作用[J]. 山西医科大学, 2002,硕士学位论文
    [68] 陆思静,刘又宁,王化洲. 丹参对博莱霉素所致大鼠肺纤维化保护作用的实验研究[J]. 中国临床药理学与治疗学, 2005, 10(5):514-517.
    [69] 潘金兵, 侯宇虹. 支气管哮喘患者血浆肾上腺髓质素、肿瘤坏死因子-α 水平的变化[J]. 临床荟萃, 2001(16)19: 869
    [70] Huang JQ, Zheng GF, Irvine EJ.et a1.Assessing heterogeneity in Meta-analyses of helicobacter pylori infection-related clinical studies:a critical appraisal[J].Chin J Dig Dis, 2004, 5:126-133.
    [71] Juni P, Altman DG, Egger M.Systematic reviews in health care:Assessing the quality of controlled clinical trial [J].British MedicalJournal, 2001,323:42-46.
    [72] Sharon , lise T. Meta-Analysis: formulatlng, Evaluating, Combining, and reporting. Statistics in Medicine, 1999, l8: 321-359
    [73] Anne whitehead. Meta-analysis of contro1led clinical trial John Wiley & Sons Ltd.2002
    [74] Copas JB.What works Selectivity models and Meta-analysis.J R Stat A, 1999, 162:95-109.
    [75] Copas JB, Shi JQ. A sensitivity analysis for publication bias systematic reviews. Statistical method in medical research, 2001,10: 251-265
    [76] Copas JB, Shi JQ. Meta-analysis, funnel plots and sensitivity analysis. Biostatlstics, 2002, 1:247-262
    [77] 陈声利, 闰军, 刘毅, 等. 英利昔单抗治疗斑块状银屑病随机对照试验的 Meta 分析, 中华皮肤科杂志, 2007, 40(4): 251-252
    [78] 胡俊峰, 翟红, 王洁贞. 游离二氧化硅暴露与肺肿瘤关系的 Meta 分析, 中华劳动卫生职业病杂志, 2006, 24(7): 415-417.
    [79] 茹雪莹, 徐丽敏, 吴泰相. 肿瘤坏死因子-α 与银屑病发病相关研究的 Meta 分析, 中国中西医结合皮肤性病学杂志,2007,6(1):44-50
    [80] Peter C, Asbj?rn H, Katja M, et al. Data extraction errors in Meta-analyses that use standardized mean differences[J]. JAMA, 2007, 298: 430-437.
    [81] 陈晓玲, 黄善生, 李文斌, 等. 大鼠肺纤维化形成中肺巨噬细胞增殖和凋亡的变化[J]. 中国病理生理杂志, 2004, 20(3):433-436
    [82] Wang S X, Liu P, Wei M T, et al. The roles of serum CC16 and SP-D on early diagnosis and progression of silicosis[J]. J Occup Environ Med, 2007, 49(8):834-839.
    [83] Jack A, Bruce F, Jeffrey A, et al. Cytokine networks in the regulation of inflammation and fibrosis in the lung[J].Chest. 1990, 97(10): 1439-1445
    [84] 孙保存, 倪春生, 冯玉梅, 等. 基于线性微分方程模型和 k-means 聚类研究乳腺癌转移相关基因调控通路[J]. 中华医学杂志, 2006, 86(26): 1808-1812
    [85] Chen T, He H L, Church G M. Modeling gene expression with differential equations. Pac symp biocomput,1999, 4: 29-40.
    [86] De-Hoon M J, Imoto S,Kobayashi K, et al. Inferring gene regulatory networks from time-ordered gene expression data of bacillus subtilis using differential equations. Pac symp biocomput, 2003, 8: 17-28.
    [87] Ideker T, Thorsson V, Ranish JA, et a1.Integrated genomic and proteomic analyses of a systematically perturbed Metabolic network[J].Science, 2001, 292(5518): 929-933.
    [88] Shannon P, Markiel A, Ozier O,et al. Cytoscape: A software environment for integrated models of biomolecular interaction networks[J]. Genome Res. 2003,13(11): 2498-2504.
    [89] Nikitin A, Egorov S, Daraselia N, et al. Pathway studio-the analysis and navigation of molecular networks[J]. BMC Applications note, 2003, 19 (16): 2155–2157
    [90] Hu ZJ, Mellor1 J, Wu J, et al. VisANT: an online visualization and analysis tool for biological interaction data[J]. BMC Bioinformatics,2004, 5(17): 1471- 2105
    [91] Kanehisa M, Goto S. KEGG: Kyto encyclopedia of genes and genomes[J]. Nucleic Acids Res. 2000,28(1):27-30.
    [92] Xenarios I, Salwinski L, Duan XJ, et al. DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions[J]. Nucleic Acids Res. 2002,30(1):306-309.
    [93] Bader GD, Hogue CW. BIND: a data specification for storing and describing biomolecular interactions, molecular complexes and pathways[J]. Bioinformatics. 2000, 16(5):465 -477.
    [94] Nidiforova VJ, Willmitzer L. Network visualization and network analysis[J]. EXS, 2007, 97:245-275.
    [95] Luciano JS, Stevens RD. e-Science and biological pathway semantics[J]. BMC Bioinformatics, 2007, 8(suppl 3):s3
    [96] Sean M. Studer, Naftali Kaminski. Towards systems biology of human pulmonary fibrosis[J]. Proc Am Thorac Soc, 2007, 4: 85–91.
    [97] Jeong H, Tombor B, Albert R, et a1.The large-scale organization of Metabolic networks [J].Nature, 2000, 407(6804):651-654.
    [98] Wagner A.Fell D.The small world inside large Metabolic networks [J].Proc Biol Sci, 2001, 268(1478):1803-1810.
    [99] Fell D A, Wagner A.The small world of Metabolism[J].Nature Biotechnology, 2000, 18(11):1121-1122.
    [100] Ravasz E, Somera A L, Mongru D A, et al. Hierarchical organization of modularity in Metabolic networks[J]. Science, 2002, 297(5568): 1551-1556.
    [101] Watts D J, Strogatz S H. Collective dynamics of ‘small- world’networks[J]. Nature, 1998,393(6684):440-442.
    [102] Albert R, Parabasi A L. Error and attack tolerance of complex networks[J]. Nature, 2000, 406(6794): 378-382.
    [103] Jeong H, Mason S P, Barabasi A L, et a1.Lethality and centrality in protein networks, [J].Nature, 2001(6833), 411:41-42.
    [104] Winzeler E A, Shoemaker D D, Astromoff A, et al. Functional characterization of the S.celevisiae genome by gene deletion and parallel analysis[J].Science, 1999, 285(5429):901-906.
    [105] Gerdes S Y, Scholle M D, Campbell J W , et a1.Experimental determination and system-level analysis of essential genes in Escherichia coli[J].J Bacterial, 2003, 185(19):5673-5684.
    [106] Barkai N, Leibler S.Robustness in simple biochemical networks[J].Nature, 1997, 387(6636):913-917.
    [107] Alon U, Surette M G, Barkai N, et a1.Robustness in bacterial chemotaxis[J].Nature, 1999, 397(6715):168-171.
    [108] 张敏,朱晶, 郭政,等. 利用亚细胞位置特异的基因功能模块与表达调控网络识别疾病特征基因[J].科学通报, 2006,51(13):1545-1551.
    [109] 倪春生, 孙保存, 冯玉梅,等. 乳腺癌转移相关基因表达调控网络的线性微分方程模型的初步研究[J]. 生物化学与生物物理进展, 2005, 32(12):1165-1172
    [110] King JY, Ferrara R, Tabibiazar R, et a1.Pathway analysis of coronary atherosclerosis [J].Physiol Genomics, 2005, 23(1):103-118.
    [111] KY Yeung, DR Haynor, WL Ruzzo, Validating clustering for gene expression data, Bioinformatics.2001, 17:309-318.
    [112] Tamayo et al. Interpreting patterns of gene expression with self-organizing maps:Methods and application to hematopoietic differentiation. Proc. Natl. Acad. Sci., 1999,96: 2907-2912
    [113] Raychaudhuri, S., Stuart, J. M. & Altman, R. B. Principal components analysis to summarize microarray experiments: application to sporulation time series. Pac. Symp. Biocomput, 2000: 455-466.
    [114] Brown MP, et al. Knowledge-based analysis of microarray gene expression data by using support vector machines. Proc. Natl Acad. Sci. USA 2000, 97: 262-267
    [115] Yuh C, Bolouri H, Davidson EH.Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene [J].Science, 1998, 279(5358):1896-1902.
    [116] Quackenbush J. Computational analysis of microarray data[J].Nat Reviews Genetics, 2001, 2(6):418-427.
    [117] Friedman N, Linial M , Nachman I, et a1.Using Bayesian network to ana1yze expression data[J].J Comput Bio1.2000, 7(3):601-620.
    [118] 张永新, 张幼怡. 心血管疾病研究中的系统生物学[J]. 中国分子心脏病学杂志, 2006,6(6): 311-315.
    [119] Wagner A. How to reconstruct a large genetic network from a gene perturbations in fewer than n(2) easy steps[J]. Bioinformatic, 2001, 17(12): 1183-1197.
    [120] Hwang D, Alistair G, Stephen R, et al. A data integration methodology for systems biology[J]. PNAS, 2005, 102(48): 17296-17301.
    [121] Hwang D, Jennifer J, Smith M , et al. A data integration methodology for systems biology: Experimental verification[J]. PNAS, 2005, 102(48): 17302-17307.
    [122] Lukásová P, Vcelák J, Vanková M, et al. Regulatory network of transcription factors: their key role in the development and function of pancreas[J]. Cas Lek Cesk. 2007, 146(3):227-234.
    [123] Okada H, Kalluri R. Cellular and molecular pathways that lead to progression and regression of renal fibrogenesis[J]. Curr Mol Med. 2005,5(5):467-474.
    [124] Brasier AR. The NF-kappaB regulatory network[J]. Cardiovasc Toxicol. 2006,6 (2) :111-130.
    [125] Sinqh AV, Rouchka EC, Rempala GA, et al. Integtative database management for mouse development: Systems and concepts[J]. Birth Defects Res C Embryo Today. 2007, 81(1): 1-19.
    [126] Chen XC, Xu MT, Zhou W, et al. A Metaanalysis of relationship between β-fibrinogen gene 148C/T polymorphism and susceptibility to cerebral infarction in Han Chinese[J]. Chin Med J, 2007, 120(13): 1198- 1202.
    [127] Lei XD,Peng CH,Tian DL, et al. Meta-analysis and its application in global change research[J]. Chinese Science Bulletin. 2007,52(3):289-302
    [128] Bajwa EK, Ayas NT, Schulzer M, et al. Interferon-gamma therapy in idiopathic pulmonary fibrosis: a Metaanalysis[J]. Chest,2005,128(1): 203-206.
    [129] 陈晓玲, 黄善生, 李文斌, 等. 大鼠肺纤维化形成中肺巨噬细胞增殖和凋亡的变化[J]. 中国病理生理杂志, 2004, 20(3):433-436
    [130] Kapanci Y, Desmouliere A, Pache JC, et al. Cytoskeletal protein modulation in pulmonary alveolar myofibroblasts during idiopathic pulmonary fibrosis. Possible role of transforming growth factor beta and tumor necrosis factor alpha[J]. Am J Respir Crit Care Med, 1995,152: 22163-22169
    [131] 陈莹, 董静, 陈杰,等.γ-干扰素对矽肺大鼠肺脏白介素-4 和转化生长因子-β1 蛋白表达的影响[J]. 中华劳动卫生职业病杂志, 2004, 22(5):350–353
    [132] Huaux F, Louahed J, Hudspith B, et a1.Role of interleukin-10 in the lung response to silica in mice[J].Am J Respir Cell Mol Biol. 1998, 18(1):51-59
    [133] Lee CG, Homer RJ, Zhu Z, et a1.1nterleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor B1[J].J Exp Med, 2001, 194(5):809-821
    [134] Fujita M, Shannon JM, Morikawa O, et al. Over expression of tumor necrosis factor-alpha diminishes pulmonary fibrosis induced by bleomycin or transforming growth factor beta[J].Am J Respir Cell Mol Biol, 2003, 29 (6): 669–676
    [135] Nohynek H, Teppo AM, Laine E, et al. Serum tumor necrosis factor-αconcentrations in children hospitalized for acute respiratory tract infection [J]. J Infect Dis, 1999,163:1029
    [136] Allen AD, Cooper J.Pulmonary fibrosis pathways are slowly coming into light[J].Am J Respir Cell Mol Biol, 2000, 22(6):520-523
    [137] 黄日红,吴泰华,张中和,等. 肿瘤坏死因子 α 和白细胞介素 6 对大鼠肺成纤维细胞基质金属蛋白酶及其抑制因子表达的影响[J]. 中华结核和呼吸杂志,2005,28(7):496-497
    [138] 陈亚萍, 李玉瑞. 实验性矽肺病变中 I 型及 III 型胶原基因表达的研究. 卫生研究, 1993. 22(1): 1-4. [ 139 ] Hubbard, A.K., C.R. Timblin, A. Shukla, M. RinconB.T. Mossman, Activation of NF-kappaB-dependent gene expression by silica in lungs of luciferase reporter mice. Am J Physiol Lung Cell Mol Physiol, 2002. 282(5): p. L968-75.
    [140] Schmidt C, Peng B, Li Z, et a1.Mechanisms of proinflammatory cytokine-induced biphasic NF-kappaB activation [J].MolCell, 2003, 12 (5):1287-1300
    [141] Alderton, W.K., C.E. CooperR.G. Knowles, Nitric oxide synthases: structure, function and inhibition. Biochem J, 2001. 357(Pt 3): p. 593-615.
    [142] Schapira, R.M., J.H. Wiessner, J.F. Morrisey, U.A. AlmagroL.D. Nelin, L-arginine uptake and Metabolism by lung macrophages and neutrophils following intratracheal instillation of silica in vivo. Am J Respir Cell Mol Biol, 1998. 19(2): 308-15.
    [143] Blackford JA, Antonini JM, Castranova V.Intratracheal instillation of silica up-regultes inducible nitric oxidesynthase gene expression and increase nitric oxide production in alveslar macrophage and neutrophils. Am J Respir Cell Mol Biol, 1994, 11:426-431
    [144] Huffman LJ, Judy DJ, Castranova V.Regulation of nitric oxide produciton by rat alveolar macrophages in response to silica exposure. J Toxicol Environ Health, 1998,58:29-46.
    [145] Setoguchi K, Takeya M, Akaike T, et a1.Express of inducible nitric oxidesynthase and its involvement in pulmonary granulomatons inflamation in rats.Am J Pathol, 1996, 149 (6):2005-2022.
    [146] Chen, F., D.C. Kuhn, L.J. GaydosL.M. Demers, Induction of nitric oxide and nitric oxide synthase mRNA by silica and lipopolysaccharide in PMA-primed THP-1 cells. Apmis, 1996. 104(3): p. 176-82.
    [147] 王世鑫. 二氧化硅粉尘致肺纤维化机制及早期生物标记物研究. 重庆大学, 博士学位论文. 2004.
    [148] 王明臣, 王培昌, 李玉山, 等.煤工尘肺患者血中一氧化氮自由基含量的改变[J].中国工业医学杂志, 2000, 13(5):270-272.
    [149] 王世鑫, 张西正, 杜海科等. 染矽尘大鼠早期肺组织一氧化氮合酶的表达.中华劳动卫生与职业病杂志, 2004,22(3):152-154
    [150] 王世鑫, 魏茂提, 周蔚, 等.染矽尘大鼠肺组织匀浆一氧化氮含量、一氧化氮合酶活力的研究. 中国预防医学杂志,2OO2,3(3):241-242
    [151] 魏茂提, 王世鑫, 周蔚, 等.染矽尘大鼠血浆 NO、NOS 的变化 [J].中国工业医学杂志, 20O2, 15(2):80-83.
    [152] Kapanci Y,Desmouliere A,Pache JC, et al. Cytoskeletal protein modulation in pulmonary alveolar myo-fibroblasts during idiopathic pulmonary fibrosis. Possible role of transforming growth factor beta and tumor necrosis factor alpha[J]. Am J Respir Crit Care Med, 1995,152:2163-2169.
    [153] Venkatesan N, Roughley PJ, Ludwig MS.Proteoglycan expression in bleom ycin lung fibroblasts:role of transforming growth factor-beta(1) and interferon-gamma[J]. Am J Physiol Lung Cell Mol Physiol, 2002,283(4):806-814.
    [154] 陈莹, 董静, 陈杰, 等.γ-干扰索对矽肺大鼠肺脏白介素-4 和转化生长因子 β1 蛋白表达的影响[J].中华劳动卫生职业病杂志, 2004, 22(5): 350~353.
    [155] Ulloa L.Inhibition on transforming growth factor-beta/SMAD signalling by the intgerferon -gamma /STAT pathway[J].Nature, 1999, 397(6721):7l0-7l3.
    [156] Ghosh AK.Antagonistic regulation of type Ⅰ collagen gene expression by interferon-gamma and transforming growth factor beta. Intertional coactivators[J].J Biol Chem, 2001, 276(14):l1041-11048.
    [157] Robert AB, Flanders KC, Heine UI, et a1.Transforming growth factor-13:multifunctional regulator of differentiation and development[J].PNlos Trans R Soc Lond B Biol Sci, 1990, 327(1239):145-154.
    [158] Heldin CH, Miyazono K, ten Dijke P. TGF-β1 signaling from cell membrane to nucleus through SMAD proteins[J]. Nature,1997,390:465-471.
    [159] 王世鑫, 曾锦波, 杜海科, 等. 肿瘤坏死因子-α及核因子-ΚB在染矽尘大鼠肺组织中的动态表达及其关系. 武警医学院学报,2007,16(5):488-495
    [160] 李戎, 闰智勇, 李文军, 等.肺纤维化发生与防治机制的重要因素-细胞因子作用机制研究.中国中医药, 2004, 6:23.
    [161] Sullivan DE, Ferris M, Peciask D. et a1.Tumor necrosis factor-αinduces transforming growth factor-βl expression in lung fibroblasts through the extracellular signal regu lated kinase pntllwa. Am J Respir Cell Mol Biol, 2OO5.32:342-349.
    [162] 李才, 张一宁, 牛俊奇, 等.主编.器官纤维化-基础与临床.人民卫生出版社, 第 1 版.北京: 2003
    [163] Fujita M,Shannon JM, Morikawa O,et al.Over expression of tumor necrosis factor-alpha diminishes pulmonary fibrosis induced by bleomycin or transforming growth factor-beta[ J ]. Am J Respir Cell Mol Biol,2003,29(6):669 - 676
    [164] 王世鑫, 魏茂提, 周蔚,等. 矽尘致肺纤维化中 NO、NOS、TGF-β1、TNF-α 的变化[J].武警医学院学报, 2002,11(3):141-145
    [165] 刘巨源,海广范,刘瑞丽,等.川芎嗪对实验性肺纤维化肺泡巨噬细胞释放肿瘤坏死因子的影响[J].新乡医学院学报,2005,22(1):1-3.
    [166] 袁志明,李光谨,杜文彬.大鼠肺纤维化过程中肺泡巨噬细胞释放白细胞介素 6 和肿瘤坏死因子α的观察[J].天津医药,1999,27(12):742-743.
    [167] Huaux F, et a1.Lung fibrosis induced by silica particles in NMRI mice is associated with an upregulation of the P40 subunit of interleukin-12 and Th-2 manifestations[J].Am J Respir Cell Mol Biol, l999, 20:561-572.
    [168] Huaux F, et a1.Role of interleukin-10 in the lung response to silica in mice[J].Am J Respir Cell Mol BiOl, l998, 18:5l 一 59.
    [169] Miyakawa Y, Oda A, Druker BJ, et a1.Thromt~poietin induces tyrosine phosphorylation of Star 3 and Star 5 in human blood platelets .Blood, 1996, 87:439-446.
    [170] Selman M, Pardo A.Idiopathic pulmonary fibrosis:anepithelial / fibroblastic cross-talk disorder.Respir Res, 2002, 3(1):3.
    [171] Kelly M , Kolb M , Bonniaud P, et a1.Pro:Inflammatory mechanisms are a minor component of the pathogenesis of idiopathicpulmonaryfibrosis.Am J Respir Crit Care Med, 2002, 165(9):1205-1206.
    [172] Naftali Kaminski, Ivan O. Gene expression profiling as awindow into idiopathic pulmonary fibrosis pathogenesis. Proc am thorac soc, 2006,3(2):339-344.
    [173] Fubini B, Hubbard A.Reactive oxygen species(ROS)and reactivc nitrogen species(RNS) generation by silica in inflammation and fibrosis[J].Free RadicBiol Med, 2003, 34(12):1507-l5l6.
    [174] Schapira RM, Ghio AJ, Effros RM, et a1.Hydroxyl radical production and lung injury in the rat folowing silica or titanium dioxide instillation in vivo lJJ.Am J Respir Cel Mol Biol, 1995, 12(2):220-216
    [175] Garg AK, Aggarwal BB.Reactive oxygen intermediates in TNF signaling[J].Mol Immunol, 2002, 39(9):509-517.
    [176] Quinlan TR, BeruBe KA, Marsh JP, et a1.Patterns of inflammation cell proliferation, an d related gene expression in lung after inhalation of chrysotfle asbestos[J].Am J Pathol, 1995, 147(3):728-739.
    [177] Anuk M D, Don E G, Christopher J M, et al Fighting pulmonaryfibrosis:new science brings new therapeutic opportunities [J].Drug Discovery Today:Therapeutic Strategies, 2004, 1(3):361-368.
    [178] 柏金根, 杨健, 朱敦皖, 等. 生长因子及其与体内微环境的多重相互作用. 科学通报, 2006, 51(5): 506-511.
    [179] Lentsch AB, Czerm ak BJ, Bless NM, et a1.Essential role of alveolar macmphages in intrapulmonary activation of NF-kappaB. Am J Respir Cel Mol Biol, 1999, 20:692-698.
    [180] Goetze S, Kintscher U, Kaneshim K, et a1. TNF alpha induces expression of transcription factors c-fos,Egr-l, and Ets-l in vascular lesions through extracelular signal-regulated kinases 1/2.Athemsclemsis.2001,159:93-101.
    [181] Grimbacher B, Aicher WK, Peter HH, et a1.TNF-alpha induces the tran scription factor Egr-l,pro-iNFlammatory cytokines and cell proliferation in human skin fibmblasts mad synovial lining cels.Rheumatol Int, 1998, 17:185-192.
    [182] 牛海艳,曾庆富,李翔,等.核转录因子在二氧化硅刺激巨噬细胞产生细胞因子中的作用,中华病理学杂志,2004,33(4):363-367
    [183] Barbarin V, Arras M, Huax F. Characterization of the efect of Interleukin-l0 on silica induced lung fibrosis in mice[J].Am J Respir Crit Care Med,2004,31: 78 - 85
    [184] Fubini B,Hubbard A.Reactive oxygen species(ROS)and reactive nitrogen species (RNS)generation by silica in inflammarion and ibrosis.Free Radic Biol Med,2003,34:1507-15l6
    [185] Piguet PF,Collart MA ,Grau GE , et al. Requirement of tumor necrosis factor for development of silica-induced pulmonary fibrosis. Nature, 1990, 344: 245-247
    [186] Piguet PF, Vesin C. Treatment by human recombinant soluble TNF receptor of pulmonary fibrosis induced by bleomycin or silica in mice. Eur Respir J, 1994,7 :515-518
    [187] Denis M, Cormier Y, Fournier M, et al. Tumor necrosis factor plays an essential role in determining hypersensitivity pneumonitis in a mouse model. Am J Respir Cell Mol Biol, 1991, 5 (5): 477-483
    [188] Ye Q, Chen B, Tong Z, et al. Thalidomide reduces IL-18, IL-8 and TNF-alpha release from alveolar macrophages in interstitial lung disease. Eur Respir J, 2006, 28: 824-831
    [189] Hoon MJ, Imoto S , Kobayashi K, et al. Inferring Gene Regulatory Networks from Time-Ordered Gene Expression Data of Bacillus Subtilis Using Differential Equations .Pacific Symposium on Biocomputing 2003, 8: 17-28
    [190] Beal1 M J, Falciani F, Ghahramani Z, et al.A Bayesian approach to reconstructing genetic regulatory networks with hidden factors. BIOINFORMATICS, 2005, 21 (3): 349–356
    [191] Lockhart DJ, Dong H, Byrne MC, et al. Expression monitoring by hybridization to high-density oligonucleotide arrays. Nature Biotechnol. 1996,14: 1675–1680.
    [192] Schena M, Shalon D, Davis R W, et al. Quantitative monitoring of gene expression patterns with complementary DNA microarray. Science,1995,270: 467–470.
    [193] Laura J, van v, et al. Gene expression profiling predicts clinical outcome of breast cancer. Nature, 2002, 415:530-536
    [194] Quackenbush J. Computational analysis of microarray analysis, Nature Reviews Genetics, 2001, 2:418-427.
    [195] Werhli AV, Husmeier D. Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge. Stat Appl Genet Mol Biol. 2007;6:Article15. Epub 2007 May 29.
    [196] Kuhn K, Baker SC, Chudin E, et al. A novel, high-performance random array platform for quantitative gene expression profiling[J]. Genome Res, 2004, 14(11):2347-56
    [197] Stokes TH, Han X, Moffitt RA, et al. Extending microarray quality control and analysis algorithms to illumina chip platform[C]. Conf Proc IEEE Eng Med Biol Soc, 2007, 1:4637-40.
    [198] Osborne JD, Zhu LJ, Lin SM,et al. Interpreting microarray results with gene ontology and MeSH[J]. Methods Mol Biol, 2007,377:223-42.
    [199] Lü X, de la Pe?a L, Barker C, et al. Radiation-induced changes in gene expression involve recruitment of existing messenger RNAs to and away from polysomes[J]. Cancer Res, 2006, 15,66(2):1052-61.
    [200] Zuo F, Kaminski N, Eugui E.et a1.Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans.Proc Natl Acad Sci USA, 2002, 99(9):6292-6297.
    [201] Liu T, Dhanasekaran SM, Jin H, et al. FIZZ1 stimulation of myofibroblast differentiation. Am J Pathol, 2004,164:1315–1326.
    [202] Vanhee D, Gosset P, Boitelle A, et al. Cytokines and cytokine network in silicosis and coal workers’ pneunoconiosis. Eur Respir J, 1995, 8, 834-842.
    [203] OsborneJD,ZhuLJ,LinSM,KibbeWA.Interpreting microarray results with gene ontology andMeSH. Methods Mol Biol.2007;377:223-42
    [204] Huang DW,Sherman BT,Tan Q, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithmstobetter extract biology from large gene lists. Nucleic Acids Research, 2007, 35, Web Serverissue W169-W175
    [205] Mark P.S., Gregory S., Overview of computational methods for the inference of gene regulatory networks, Computers and Chemical Engineering, 2005, 29, 519–534
    [206] Imoto S, Higuchi T, Goto T, et al. Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks, J. Bioinform. Comput. Biol., 2004, 2, 77–98
    [207] Gardner TS, di Bernardo D, Lorenz D, etc. Inferring genetic networks and identifying compound mode of action via expression profiling, Science, 2003, 301, 102–105
    [208] Hu X, Wu DD. Data mining and predictive modeling of biomolecular network from biomedical literature databases. IEEE/ACM Trans Comput Biol Bioinform, 2007, 4(2):251-263
    [209] Nidiforova VJ, Willmitzer L. Network visualization and network analysis. EXS, 2007, 97:245-275.
    [210] Christensen C, Thakar J, Albert R. Systems-level insights into cellular regulation: inferring, analysing, and modelling intracellular networks. IET Syst Biol. 2007 Mar;1(2):61-77.
    [211] Hume DA, Wells CA, Ravasi T. Transcriptional regulatory networks in macrophages. Novartis Found Symp. 2007,281:2-18.
    [212] Lukásová P, Vcelák J, Vanková M, et al. Regulatory network of transcription factors: their key role in the development and function of pancreas. Cas Lek Cesk. 2007;146(3):227-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700